Chapter 2

Finite Element Approximation

2.1 Piecewise linear approximation

One-dimensional piecewise linear approximation Let us approximate one-dimensional
function f(z) over region P;P; in one-dimensional space. The function takes values f;, f;
at points P;, P;. Let x;, x; be coordinates of points P;, P;. Let P be any point of which
coordinate is given by z. Let us introduce the following two functions

PP T —x

N; = J — 2.1.1
P;P —x;

N;i(z) = . (2.1.1b)

Pin .’L‘j — X

Noting that

1 z=u 0 z=ua
M@ ={ ¢ 228 wuw={] TTv

linear approximation of function f(x) over region P;P; is described as follows:
This function is linear since both N; ;(z) and N;;(z) are linear. Also, this function satisfies

Lij(xi) = fi Nij(zi) + fj Nji(zi) = fi

Lij(x;) = fi Nijj (@) + f5 Nji(x;) = [
concluding that function L; j(x) provides one-dimensional approximation over P;P;.
Two-dimensional piecewise linear approximation Let us approximate two-dimensional
functoin f(z,y) over triangle region AP;P;P} in two-dimensional space. The function takes
values f;, fj, fr at points P;, P;, Pr. Let (2;,y;) be coordinates of point P;, (x;,y;) be

coordinates of point P;, and (z,yx) be coordinates of point Pj. Let P(x,y) be any point of
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which coordinate is given by (z,y). Let us introduce the following three functions

APP;PL  (y; —yu)r — (x5 — o)y + (590 — Tryy)

N n(o) _ 2.1.3
N S 2APP;Py e
APiPPr (yx —yi)r — (o — 23)y + (ThYi — Tiyk)

Nop (o) = _ 2.1.3b
J.k, (l‘ y) AP:P]Pk QAPZP]P]{ ( )
APPP (yi—y)r — (z — 2)y + (way; — x91)
Niss _ it j j i 2.1.3
ki (7, 9) APP,P; 2AP;P;Py ( )
where

2AP; PP = (xiy; — xjyi) + (2ye — 2ry;) + (TrYi — Tiyw)-
Noting that

1 atP;
Nijr(z,y) = { 0 at P;, Py
1 atP;
Njri(z,y) = { 0 at Pi, P;
1 at Py

Ny (@, y) = { 0 atPy;, P

linear approximation of f(z,y) over region AP,;P;Py, is described as follows:

Lijn(z,y) = fi Nijr(x,y) 4+ f; Njri(z,y) + fr Niij(z,y) (2.1.4)

This function is linear since N; ; x(z,y), Njri(x,y), and Ny ; ;(x,y) are linear. Also, this
function satisfies

Lijw(ziy) = fi, Liji(xj,y5) = fj Lijr(xe,yr) = fu

concluding that function L; ; x(z,y) provides two-dimensional approximation over triangle
region AP;P;Py.

Three-dimensional piecewise linear approximation Let us approximate three-dimensional
function f(z,y, z) over tetrahedron region OP;P,;P,P; in three-dimensional space. The func-
tion takes values f;, fj, fu, fi at points P;, P;, Py, P;. Let (z;,9:,2;) be coordinates of
point P;, (z;,y;, ;) be coordinates of point P;, (zx, yr, 2) be coordinates of point Py, and

(21, y1, z1) be coordinates of point P;. Let P(z,y, z) be any point of which coordinate is given

by (x,y, z). Let us introduce the following four functions

Nijki(2,y,2) = m (2.1.5a)
Njk,i(@,y,2) = m (2.1.5b)
Niij(@,y,2) = m (2.1.5¢)
Niijr(@,y,2) = m (2.1.5d)

Then, linear approximation of f(x,y,z) over region OP,P;P;P; is described as follows:
Lijw(x,y,2) = fiNijka (2,4, 2) + [ Njgo,i(@, 4, 2) + fi Nioi i (2,9, 2) + fi N g (2,9, 2)
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(2.1.6)

This function L; j (2, y, z) provides three-dimensional approximation over tetrahedron re-
gion OPinPkPl.

2.2 One-dimensional finite element approximation

Strain potential and kinetic energies are formulated as integral forms over one-, two-, or
three-dimensional regions. It is difficult or impossible to analytically calculate such integrals.
Finite element approximation provides methods to calculate the integrals numerically. Finite
element approximation employs divide-and-conquer approach, which is outlined as follows:

Step 1 Obtain integral form with respect to unknown functions.

Step 2 Divide the integral into a finite number of integrals over small regions.
Step 3 Approximate unknown functions to calculate integrals over small regions.
Step 4 Sum up the calculated integrals over small regions.

Recall that strain potential energy of a one-dimensional soft robot is given by eq. (1.5.3), that

1S:
L L 2
B 1, B 1 ou

This integral U includes one unknown function u(x), which should be obtained. The above
integral over region [0, L] can be divided into, for example, integrals over four small regions:

L To T3 T4 Ts5
L=lovfo L+
0 T T2 T3 T4
Applying piecewise linear approximation, we analytically or numerically calculate individual
integrals over small regions, resulting that we can obtain integral U.

Finite element approximation of strain potential energy Let us detail the above
procedure. Divide region [0, L] into a finite number of small regions. Here we divide the
region into four equal regions. Width of the small regions is h = L/4. End points of small
regions are referred to as nodal points. Here we have five nodal points. Let us describe the
nodal points as x; = 0, x9 = h, 3 = 2h, --- , 5 = L. Dividing integral interval [0, L] into
small regions, we have

*2 1 du\? 31 du\? 51 du\?
[J:/x1 2EA<dx> dl“"/zQ 2EA(d{I;) d$++/m4 2EA<dx> dx (222)

We apply piecewise linear approximation (eq. (2.1.2)) to function u(x) over small region [z,
x;]. Piecewise linear approximation of the function is described as follows:

u(r) = u; N j(z) +uj Nji(z), €[z ;] (2.2.3)

where u;, u; represent displacements at nodal points P(z;), P(z;). Through this approxima-
tion, function u(x) can be described by five parameters uy, ug, - - - , us.

Let us substitute the above piecewise linear approximation into individual integrals over
small regions. For sake of simplicity, assume that Young’s modulus E and cross-sectional
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area A are constants. Substituting piecewise linear approximation given in eq.(2.2.3) into

integral over small region [z;, x; |, we have

2 1 du\? 1 EAT 1 —1][ w
| yeA () =gl w150 2 ]

(see Problem 5 in Chapter 2). Consequently, we have

1 EA[ 1 -1 ur |
U=glw w520 0 |4
+1[u U}EiA—l *1”“2_+..
R O N R
1 EAT 1 =177 ug |
tolw w5l D ]
which directly yields
1 -1 Ul
. pal 1 2 -1 Us
Uzi[ul U2 U3 Uy U5}T -1 2 -1 us
-1 2 -1 Uy
-1 1 us

Introducing nodal displacement vector

Uy
U2
uN = | us
Uy
Us

and stiffness matrix

1 -1

N

K
h

strain potential energy is described by the following quadratic form:

1
U:iugKuN.

Note that K is a band matrix.

(2.2.4)

(2.2.5)

(2.2.6)

Let us calculate strain potential energy of a one-dimensional soft robot with non-uniform
cross-sectional area. Let function A(z) denote the cross-sectional area at P(z). Assume that
Young’s modulus E is constant. Recalling that du/dz takes a constant value (—u; + u;)/h

in small region [z;, z;], strain potential energy over the region is given as

il du)? 1 —ui 4wy [
/m‘ iEA(a:) (dx) dz = §E (h) /z A(z) dzx

w1 B Ve e || w
PR R 7 Vi u;

.3
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where
T
Vij :/ A(z) dz (2.2.7)

represents the volume of the three-dimensional region specified by small region [z, z;].
Thus, when region [0, L] is divided into four small regions, stiffness matrix is described as
follows:

V12 Vi
E —Vig Vig+Vas Va3
K= 72 —Vas Vos+Vaa V3.4 . (2.2.8)
V34 Vaa+Vis —Vas
—Vus Vas

This matrix K is also a band matrix.
Let us reformulate the above calculation. Assume again that Young’s modulus F and
cross-sectional area A are constants. Potential energy stored in region [x;, ;| is given by

1 ;
Uij= 3 [z oz | Ky [ 2, } (2.2.9)
where
EA 1 -1
K; ;= e [ 1 } (2.2.10)

We obtain stiffness matrix K (eq.(2.2.5)) by synthesizing matrices Ki 2, K23, K34, and
K, 5. Let us introduce operator & to describe this synthesizing:

K=K ®Ky3®Kz4®Kyp (2.2.11)

This equation implies that summing up all contributions of K » through K, 5 yields stiffness
matrix K. Note that

(1,1)-th element of K; ; contributes to (,%)-th element of K,
(1,2)-th element of K; ; contributes to (Z,j)-th element of K,
(2,1)-th element of K; ; contributes to (j,%)-th element of K,
(2,2)-th element of K; ; contributes to (j, j)-th element of K.

We simply describe these contributions as

(1,2) x (1,2) elements of K; ; contribute to (4,7) x (¢,7) elements of K.
Namely, operator x denotes direct product: (1,2) x (1,2) implies (1,1), (1,2), (2,1), (2,2)
while (i,7) x (¢, ) implies (z,4), (4, 7), (4, 1), (4,7)-

Finite element approximation of kinetic energy Let us calculate kinetic energy of a
one-dimensional soft robot given by eq. (1.6.2), that is:

L 2 L

1 ou 1
T = ZoA [ = = ZpAu? 2.2.12
/02” (at) d /ozp“d”” (2:2:12)

For sake of simplicity, assume that density p and cross-sectional area A are constants. Di-
viding integral region [0, L] into four equal regions, we have

z2 1 3 1 5 1
T:/ 5pAz'ﬁ’da,~+/ §pAz'fda:+--~+/ 5pAzfdar; (2.2.13)

Z1 T2 T4
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Piecewise linear approximation of function w(x,t) over small region [z;, ;] is described as
follows:

u(z,t) = ui(t) Nij(x) +u;(t) Nji(x), x€ [z, z;] (2.2.14)

Note that u;, u; depend on time t whereas functions NN; j(x), N;i(x) are not. Differentiating
the above equation with respect time ¢ yields

U(l’7t) = ul(t) Niﬁj(if) + u](t) Nj’i(.’E), T € [l’i, Zl'j] (2215)
Applying the above equation into integral over small region [z;, x; ], we have
I DUV S 1/3 1/6 U;
/Ii ipAuda:—i[uz u]]pAh[l/G 1/3 i,

(see Problem 4 in Chapter 2). Consequently,

Sl 1/3 1/6 ][ 1 |
T=5[w ug}pAh_l/G s | |y |
1. . [1/3 1/6 | [ 1o |
+§[u2 u;),}pAh_l/ﬁ 1/3__u3_+-~
1. . . [1/3 1/6 | [ 1 |
+5[“’4 ’LL5}PAh_1/6 1/3_ _us_
which directly yields
1
T= 5uNTMuN (2.2.16)
where N = [, Tg, -+, U5] and
2 1
R
M:pAh~6 1 4 1 (2.2.17)
1 4 1
1 2

Matrix M is referred to as a inertia matriz. Note that M is a band matrix. Sum of all
elements of M coincides with the total mass, implying that the inertia matrix defines its
distribution. The above calculation is simply described as

M = M2 ® M3 ® M;a® Mys (2.2.18)
where
- _pAL [ 2 1
My = "= [ Lo ] (2.2.19)

denotes a partial inertia matrix corresponding to region [z;, x;].

Let us calculate kinetic energy of a one-dimensional soft robot with non-uniform cross-
sectional area. Let function A(x) denote the cross-sectional area at P(x). Assume that
density p is constant. Kinetic energy over small region [z;, ;] is then given by

¥ 1 | VASKI 743 U
oA = = [ o % % v

pAu dr = woouy | p| S S 3

/17: 2 2 [ ] iz,j] i]’jj U




(a) region S (b) cover by triangles

Figure 2.1: Approximation of two-dimensional region

where

Vi = / A@){Nj@)yde, VI = / A() {4 (2)}2d,

i i

Vi = "Alx) N i,j(2) Nji(z) de

X4

Thus, when region [0, L] is divided into four small regions, inertia matrix is described as
follows:

1,1 1,2
‘{1122 *221’ 2,2 2,3
Y1 ‘G’é—JQF323 —332’3—33 73,4
M=p 2,3 2,737‘!;43,11 7443,21744 s
3,4 3,117‘!4‘54,’ V455;
Vis Vis

This matrix M is also a band matrix. Note that VZ R VJ 74 QVZ J =V, ;, implying that the
inertia matrix defines the distribution of the total mass

2.3 Two-dimensional finite element approximation

Strain potential energy and kinetic energy of a two-dimensional soft robot are formulated
by integrals over two-dimensional region S, which is often described by an irregular shape,
making analytical calculation of integrals difficult or impossible. Let us approximate two-
dimensional region S (Fig. 2.1(a)) by a set of small triangles (Fig.2.1(b)). Then, integral over
two-dimensional region S can be approximated by the sum of integrals over small triangles:

/S Z /AP,;Pij.

AP,P;Py,

Here we apply piecewise linear approximation to individual integrals over small triangles so
that we can analytically or numerically calculate the integrals.

Finite element approximation of kinetic energy Let us calculate kinetic energy of a
two-dimensional soft robot given by eq. (1.6.4), that is:

1
Tz/fp'dTiLhdS (2.3.1)
52
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P4 P5 P6

1

1 1
P1 P2 P3

Figure 2.2: Example of rectangle region

First, we calculate integral over triangle region AP;P;Py:
1
Tk = / —pu'uhdS (2.3.2)
APiP]‘Pk

Piecewise linear approximation of function w over triangle region AP;P ;P is described as
follows:

u=1u; Ni’j,k + u; Nj,k,i + ug Nk,i,j~ (2.3.3)
Noting that u;, u;, ur depend on time while N; ;r, N; i, Nis,; do not, we have

U= Nijp+t; Njp;+ g Ny (234)

which directly yields

2 .

{Nijk}Iaxa  NijiNjriloxz NijxNkijlaxe u;

.T -T .T 2 .

[ @] 4 ) || NigaNjgidoxa  {Njrit?Ioxa NjgkilNeijlaxo j
2 .

NijkNiijloxo NjgiNkijloxa  {Nkij}tlaxo Uy,

where 1545 represents 2 x 2 identical matrix. For sake of simplicity, assume that density p
and thickness h are constants. Then,

(A)6)axe  (A)12)Iax2 (A/12)154o u;

Ti,j,k: = [ uT ’UJT ’U,; ] ph (A/lQ)IQXg (A/6)IQ><2 (A/lQ)IQXQ ’l.l,j

DO =

i j
(N12) 552 (ANJ12)Iays  (AN/6)I2xa uy,
21 I I u;
1 . . . h/\ 2x2 2x2 2x2 b
=3 [a] o] ]plT oo 2I3x2  Izxo U (2.3.5)
Inxo  Iaxz  2lox2 U,

where A = AP;P;P;, (see Problem 6). Matrix

21 I I
hA 2X2 2x2 2X2
M; . = plT Inxa  2Ix2 Inxe (2.3.6)
Inyo  Inxa  2Iax2

is referred to as partial inertia matriz. Note that the sum of all blocks of matrix M; ;j is
equal to phA I35, which denotes the mass of this triangular element.

Let us calculate the total kinetic energy over rectangle region [JP;P3PgP4 shown in
Fig.2.2. This region consists of four triangle regions: AP1PsP4, APsP3P5, AP5P4P5, and
APsP5P3. For sake of simplicity, assume that ph/A/12 is constantly equal to 1. Then, partial
inertia matrices are given as

2% Iax2  Iax2
Mios=Myzs=Mss2=Mss3=| Iaxa 2lax2 Iaxo
Ioyo  Ioxa  2IDo4o
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Let uyn be a collective vector consisting of all displacement vectors at nodal points:

uy
)

uN (2.3.7)
Ug

which is referred to as nodal displacement vector. The total kinetic energy is then described
by a quadratic form with respect to t:

1
T = §u§MuN,

where M is referred to as inertia matriz. Noting that
(1,2,3) x (1,2, 3) blocks of Mj 24 contribute to (1,2,4) x (1,2,4) blocks of M,
namely,

(1,1), (1,2), (1,3) blocks of M 54 contribute to (1,1), (1,2), (1,4) blocks of M,
(2,1), (2,2), (2,3) blocks of Mj 54 contribute to (2,1), (2,2), (2,4) blocks of M,
(3,1), (3,2), (3,3) blocks of M 24 contribute to (4,1), (4,2), (4,4) blocks of M,

we find contribution of M 24 to M as follows:

252 | Iax2 Isx2

Iaxo | 2020 Izx2

Ioxo | Iox2 2132
Similarly,

(1,2,3) x (1,2, 3) blocks of Ms 45 contribute to (5,4,2) x (5,4,2) blocks of M,
namely,

(1,1), (1,2), (1,3) blocks of My 42 contribute to (5,5), (5,4), (5,2) blocks of M,
(2,1), (2,2), (2,3) blocks of Ms 42 contribute to (4,5), (4,4), (4,2) blocks of M,
1), (3,2), (3,3) blocks of M5 42 contribute to (2,5), (2,4), (2,2) blocks of M,

7

we find contribution of M5 42 to M as follows:

2159 Ioyo | Ioxo
Izyo 2132 | Iax2
Isyo Ioxa | 212x2
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Summing up all contributions, we finally have

2Ibx2  I2x2 Ioxo
Ioxa  6lax2  Iaxo  2Dox2 203x2
M- Iyo  4lrx2 2Irx2  Iax2
Ioxo 2052 dlrxo  Iaxo
2Ibx2 2Iax2  Iaxa  6lax2  Iax2
Ioxo2 Iyxo 2122

This inertia matrix M consists of 62 2 x 2 blocks and is a sparse matriz. We simply describe
the above calculation as

M=My24®Ms35®Ms42®Mss3. (2.3.8)

Operator & works block-wise. In general, inertia matrix is described as

M =P M (2.3.9)
1,7,k

where i, j, k represent nodal point numbers of each triangle.
Finite element approximation of strain potential energy We apply the above cal-

culation to strain potential energy. First, let us calculate strain potential energy stored in
small triangle region AP;P;Py:

1
Uijk = / ~e" (M + pl,)e hdS. (2.3.10)
APP; Py,

Piecewise linear approximation of function w over triangle region AP;P ;P is described as

w =u; N; jx +uj Nji;+ ur Ni,; ;. Introducing collective vectors v, = [u;, uj, ug ]T and
_ T

Yo = [vi, vj, V], we find

ou T ou T ov T ov T
a. = us —=b us a. = v —=b v
ox e dy v oz e dy v
where
1 Yj — Yk b 1 Tj— Tk
= - _ 74 5 = — - Z 2.3.11
a BTN Y — Y A Tp — ( )
Yi—Yj Ti —Tj
(see Problem 2). Then, strain vector is given as
a'vu
€= b, (2.3.12)
bT7u + aT')'v
Substituting the above equation into eq. (2.3.10), we have
_ 1 T T a’aT abT Yu
Uz,g,k: - 5 [ Yu Yo ] A |: baT bbT hA Yo
1. + + 2aa’ +bb" ba' Yu
+ 5 [ Yu Yo ] H |: abT beT + aaT VAN Yo (2313)
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(see Problem 7). Then, we have

1
Uik = §’YT (NH + pHy) vy (2.3.14)
where
T T
| Yu | aa’ ab
’Y_|:'7v:|’ H)\_|:baT bbT:lhA,
2aa’ +bb" ba'
Ay = [ ab’ 2bb" +aa’ his.
The above equation is a quadratic form with respect to v = [u;, uj, ug, vi, vj, vr]T. Let
us permutate rows and columns of Hy and H, so that U;; is described by a quadratic
form with respect to w; jx = [, Vi, U, v, U, vr]T. Namely, let 1, 4, 2, 5, 3, 6 rows and

columns of Hy be 1, 2, 3, 4, 5, 6 rows and columns of J;’j’k. Similarly, let 1, 4, 2, 5, 3, 6 rows
and columns of H,, be 1, 2, 3, 4, 5, 6 rows and columns of ijj’k. Then, we have

T T i,4,k T T 1,4,k
Y Hy =y T Wik Y Hyy = 000w
Matrices Jy7"" and JL’]’k are referred to as partial connection matrices. Once coordinates of

P;, P;, Py, are given, we can calculate partial connection matrices Ji’j * and Jﬁ’j’k.
Finally, we find strain potential energy stored in AP;P;Py:

1
Uijk = §UiT,j,k Kijk ik (2.3.15)
where
Kijp = A 4 gk (2.3.16)

is referred to as partial stiffness matriz.
Summing up all strain potential energies over small triangle regions, we obtain the total
strain potential energy described as

1
U= §u§ K uy (2.3.17)
where
K=@P Kijx (2.3.18)
N

is referred to as stiffness matriz. Assuming that Lamé’s constants A and p are uniform over
the region, stiffness matrix is described as

0.5,k ,5,k) — 1,7,k i3,
K =@ A\ + i ™y =X @ 17"+ u € Ji*
.5,k i,j,k i,k

which directly yields

K =X\ +pud, (2.3.19)
where
K=@E =@
ij.k ij.k

are referred to as connection matrices.
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Example Let us calculate partial connection matrices of triangle P1P5P4 shown in Fig. 2.2.

Vectors a, b are given by @ = [—1,1,0]T and b=[-1,0, 1]T. Assuming h = 2, we have
1 -1 0] 1 0 -1 3 -2 —-1|1 -1 0
—1 0|—-1 0 1 -2 2 0 0 0 0
0 0 0 0 -1 0 1 |1-1 1 0
=110t o0 1| I 0 -1[3 -1 -2
0 0] 0 0 O -1 0 1 |1-1 1 0
—1 0l—-1 0 1 0 0 0]-2 0 2

Permuting rows and columns of the above matrices, we find

1 1]-1 0] 0 —-17
1 1}{-1 0| 0 -1
Jh24 _ -1 —-1] 1 0] 0o 1
AT 0O 0|l 0 0| 0O O
0 o]l 0 O] 0 0O

| -1 -1 1 0| 0 1|

3 1|-2 —-1|-1 07
1 3] 0 —-1|-1 -2
g2 _ -2 0] 2 0] 0 o0
2 -1 =1 0 1] 1 0
-1 -1 0o 1] 1 0

| 0 —-2| 0 0| 0 2|

Let us calculate partial connection matrices of triangle PsP4P5 shown in Fig.2.2. Vectors
a, b are given by a = [—1,1,0]" and b = [~1,0, 1]7. Thus, assuming h = 2, we find
J§’4’2 = Ji’2’4 and J2’4’2 = Jﬁ’2’4. Partial connection matrices are invariant with respect to
translation displacement. As a result, under the same assumption, we have

1,24 _ 4235 _ 542 _ 46,53 1,24 _ 7235 _ 7542 _ 76,53
R e R NN S e

Let us calculate connection matrices Jy and J,, of rectangle region [IP;P3PsP, shown in
Fig.2.2. Noting that

(1,2,3) x (1,2,3) blocks of Ji’2’4 contribute to (1,2,4) x (1,2,4) blocks of Jy,
namely,

(1,1), (1,2), (1,3) blocks of Ji’2’4 contribute to (1,1), (1,2), (1,4) blocks of Jy,
(2,1), (2,2), (2,3) blocks of J,** contribute to (2,1), (2,2), (2,4) blocks of Jy,
(3,1), (3,2), (3,3) blocks of J;’2’4 contribute to (4, 1), (4,2), (4,4) blocks of Jy,

we obtain contribution of J)l\’2’4 to Jy. Noting that
(1,2,3) x (1,2,3) blocks of J§’4’2 contribute to (5,4,2) x (5,4,2) blocks of Jy,
namely,

(1,1), (1,2), (1,3) blocks of J§’4’2 contribute to (5,5), (5,4), (5,2) blocks of Jy,
(2,1), (2,2), (2,3) blocks of J;"*? contribute to (4,5), (4,4), (4,2) blocks of Jy,
(3,1), (3,2), (3,3) blocks of J§’4’2 contribute to (2,5), (2,4), (2,2) blocks of Jy,

)
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we obtain contribution of Ji’4’2 to Jy. Summing up all contributions, we finally have

1 1] -1 0 0 -1
1] -1 0 0 -1
-1 -1 2 1] -1 0] 0 1 0 -1
0 0 1 2| -1 0 1 0] -1 -2
-1 -1 1 0 0 1 0 0
I — 0 0] O 1 1 0|-1 -1
A0 o0l 0 1 I 0[-1 -1
-1 -1 1 0 0 1 0 0
0 -1 0 1] -1 0 2 1] -1 -1
-1 -2 1 0] -1 0 1 2 0 0
0 -1 -1 0 1 1
i 0 -1 -1 0 1 1 ]
We simply describe the above calculation as
I= L2000 e ot e gy, (2.3.20)
Operator @ works block-wise. Similarly, we have
Ju =T e IR e e I, (2.3.21)
which yields
[ 3 1]-2 -1 -1 0 i
1 3| 0 -1 -1 -2
-2 0 6 1]-2 -1 0 1]-2 -1
-1 -1 1 6| 0 -1 1 0|-1 —4
-2 0 3 0 0 1]-1 -1
g -1 -1 0 3 1 0] 0 =2
B -1 -1 0 1 3 0]-2 O
0 -2 1 0 0 3|]-1 -1
-2 -1 0 11-2 —-1| 6 11-2 0
-1 -4 1 0o 0 -1 1 6|—-1 -1
-1 0 -2 -1 3 1
I -1 -2 0 1| 1 3]

Matrices Jy and J, are sparse matrices.

2.4 Three-dimensional finite element approximation

Strain potential energy and kinetic energy of a three-dimensional soft robot are formulated
by integrals over three-dimensional region V', which is often described by an irregular shape,
making analytical calculation of integrals difficult or impossible. Let us approximate three-
dimensional region V by a set of small tetrahedra. Then, integral over three-dimensional
region V can be approximated by the sum of integrals over small tetrahedra:

[/ Z /{}PinPkPl

OP;P; PP,

Here we apply piecewise linear approximation so that we can analytically or numerically
calculate individual integrals over small tetrahedra.
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Finite element approximation of kinetic energy Let us calculate kinetic energy over
tetrahedron region OP;P;P;P;:

1 ..
Tkl = / =p a'adv (2.4.1)
OP;P;PLP;

Piecewise linear approximation of function u over tetrahedron region OP;P ;PP is described
as follows:

w =i Nijpo+wj Njkpi + Wk Nigig+w N j- (2.4.2)
Differentiating the above equation with respect to time ¢, we have

@ = U Nijpo + 05 Njgti + Uk Niij + @ Ny g (2.4.3)

For sake of simplicity, assume that density p is constant. Letting I3 3 represent 3 x 3 identical
matrix, we have

2I3x3  I3x3  Isxz  I3xs u;

e+ o o 10| Isxz 2I3xs Isxz Isxs u;
Tw’k’lii[ui i Uk W }% I3xz  I3xz 2I3x3 I3x3 U, (244)

I3xz  I3xz  I3xz  2I343 u

where ¢ = OP,P;P,P; (see Problem 8). Matrix

21343 I3x3  I3xz  I3x3
pO | Isxs 2I3x3 Isxz  Isxs
Mo, PO 245
PRET 00 | Ik Isxs  2@3xs  Isxs ( )
I3xz  I3xz  I3xz  2I3x3

is referred to as partial inertia matriz. Note that the sum of all blocks of matrix M; ;1 is
equal to p{ I3x3, which denotes the mass of this tetrahedron element.

Summing up all kinetic energies over small tetrahedron regions, we obtain the total kinetic
energy described as

1
T= §u§ M
where M is referred to as inertia matriz.

Finite element approximation of strain potential energy We calculate strain po-
tential energy stored in small tetrahedron region ¢P;P;P.P;. Introducing collective vectors

Yu = [uia Uj, Ul ul]T7 Yv = [Ui7 Uj7 Vk, ’Uk]—r? and Yw = [wi7 ’LUj, Wi wk]—ra we find
ou T ou T ou -
- =a 9 a - b 9 - =C 9
v T Ov T Ov -
— =a —=b — =c ,
Oz Yus 8y Yo Oz Yo
ow T ow T ow T
— =a — =0b — =c
Oz Yws 8y Yws Oz Yw
where
—Qj k1 —bj k1 —Cj k1
1 : 1 . 1 .
a— - Wi |y L b,1,i e - Chlyi
60 | —ai; 60 | —bui;j 60 | —cCuiyj
ik bi ik Ci,jk
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with

ajrg = (Yizr — yrzj) + (Y2t — yize) + (V12 — y;21)
bkt = (zjxr — zuaj) + (2p2 — 212) + (2125 — 2j27)
cikl = Ty — Tryy) + (Tryr — 2ye) + (1Y — 2501
(see Problem 3). Strain vector is given as
a’v,
b,
e Y
'y, + by,
a’ v, +c v,
b v, +a’y,

Then, strain potential energy stored in OP;P ;P P, is given by

1
Usjka = 57" (AHx + pHy) oy (2.4.6)
where
[ ~u aa’ ab' ac’
Y= Yo ) H)\ - baT bbT bCT <>7

| Yo ca’ ¢cb" cc'
[ 2aa’” +bb" +eccT ba’ ca’

H, = ab’ 2bb" +cc’ +aa’ chb’ 0. (24.7)
i ac’ be' 2¢c” +aa’ +bbT

Let us permutate rows and columns of H) and H,, so that U, ; , is described by a quadratic
form of w; i, = [u] u;-'—, uwl, w |". Namely, let 1, 5,9, 2, 6, 10, 3, 7, 11, 4, 8, 12 rows
and columns of H) be 1 through 12 rows and columns of Ji’j’k’l. Similarly, let 1, 5, 9, 2, 6,
10, 3, 7, 11, 4, 8, 12 rows and columns of H, be 1 through 12 rows and columns of Jﬁj’k’l.
Then, we have

T _ T i,7,k,l T _ T i,7,k,l
Y OHNY =y N Wik, Y OHuy =g S0 Wk

: gkl . , , : -
Matrices Jy7™" and JL’J”“Z are referred to as partial connection matrices. Once coordinates

of Py, P;, Py, Py are given, we can calculate partial connection matrices J;’j’k’l and Jﬁ’j’k’l.
Finally, we find strain potential energy stored in OP;P;P;P;:

1
_ T
Uijid = 5%ij k0 Kiged Wik (2.4.8)

where
K;jra = AP 4 gk (2.4.9)

which is referred to as partial stiffness matriz.
Summing up all strain potential energies over small tetrahedron regions, we obtain the
total strain potential energy described as

1
U::iugzzuN (2.4.10)
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P5
P3
P1 P2

Figure 2.3: Example of regular quadrangular pyramid

where

K= Kijn (2.4.11)
i,5,k,1

is referred to as stiffness matriz. Assuming that Lamé’s constants A and p are uniform over
the region, stiffness matrix is described as

K =\ +pJ, (2.4.12)

where matrices Jy and J,, are referred to as connection matrices.

Let us calculate connection matrices of a regular quadrangular pyramid (Fig.2.3). The
base of the pyramid is square (OP;PyP3P4 and the apex of the pyramid is P5. Coordinates
of vertices are given by &; = [0,0,0]7, x5 = [2,0,0]", 3 =[2,2,0]", 4 = [0, 2, 0],
and x5 = [1, 1, 1]7. The piramid consists of two tetraheda: (P;PyP3P5 and OP3P,P;Ps.

Partial connection matrices of OP1PyP3P5 are as follows:

1 0 1|-1 1 0[0 =1 1]0 0 -2
00 0[O0 0 0[0 0 000 0
1 0 1 |-1 1 0/0 -1 1[0 0 -2
10 -1|1 -1 0(0 1 —1]0 0 2
1 0 1 |-1 1 0/0 =1 1[0 0 -2
J2as _ 1| 0 0 0 0/0 0 0]0 0 0
A 0 0 0/]0 0 0[0 0O 000 0
-1 0 -1/ 1 -1 0[0 1 —1]0 0 2
1 0 1|-1 1 0/0 -1 1[0 0 -2
0 0 0 00 0 00 0 0
00 0[O0 0 0[0 0 000 0
20 -2/ 2 -2 0/0 2 -2[(0 0 4 |
(3 0 1]|-2 0 -1|1 0 0]-2 0 0]
0 2 0|1 -1 1|-1 1 —1/0 -2 0
1 0 3 0 -1/ 1 0 2|-2 0 -4
2 1 0|3 -1 0[-1 0 0]0 0 0
0 -1 0|-1 3 0|1 -2 0|0 0 0
pess_ 1l -1 1 —1]0 0 2|-1 1 -1]2 -2 0
" T -1 1 |-1 1 —1]2 0[—2 0 0
0o 1 0|0 -2 1[0 3 —-1/0 -2 0
0 -1 2|0 0 —1/0 -1 3|0 2 —4
2 0 —2[0 0 2[-2 0 04 0 0
0 -2 0[]0 0 —2/0 -2 2|0 4 0
L0 0 —4/0 0 0|0 0 —4/0 0 8 |




Note that (1,2,3,4) x (1,2,3,4) blocks of J)l\’2’3’5 and Ji’z’?”s contribute to (1,2,3,5) X

(1,2,3,5) blocks of Jy and J,
Partial connection matrices of OP3P4P1P5 are as follows:

34,15
N =

3,4,1,5 _
J, =

Note that (1,2,3,4) x (1,2,3,4) blocks of J§’4’1’5 and J3’4’1’5 contribute to (3,4,1,5) x

1 60 -1y-1 1 0|0 -1 =10 0 2

0 0 0 0 0 0|0 O 010 0 O

-1 0 1 1 -1 0|0 1 110 0 -2

-1 0 1 1 -1 0|0 1 110 0 -2

1 0 -1{-1 1 00 -1 —-1|0 0 2

0 0 0 0 0 0|0 O 010 0 O

0 0 O 0 0 0(0 O 00 0 O

-1 0 1 1 -1 00 1 110 0 -2

-1 0 1 1 -1 0|0 1 110 0 -2

0 0 O 0 0 0(0 O 010 0 O

0 0 O 0 0 0(0 O 010 0 O

2 0 -2|-2 2 0|0 -2 =2|0 0 4 |

3 0 -1}-2 0 1 1 0 01-2 0 0
0 2 0 1 -1 -1|-1 1 1 0 -2 0
-1 0 3 0 0 —-1}-1 0 2 2 0 -4
-2 1 0 3 -1 01]-1 0 0 0 0 0
o -1 0 |-1 3 0 1 -2 0 0 0 0
1 -1 -1} 0 0 2 1 -1 -1|-2 2 0
1 -1 -1}]-1 1 1 2 0 01-2 0 0
0 1 0 0 -2 =110 3 1 0 -2 0
0 1 2 0 0 -1} 0 1 3 0 -2 —4
-2 0 2 0 0 —-2]-2 0 0] 4 0 0
0 -2 0 0 0 2 0 -2 =210 4 O
0 0 —4]0 0 0 0 0 —-4] 0 0 8

(3,4,1,5) blocks of Jy and J,

Synthesizing the above partial connection matrices yields the following connection matri-

ces:

1 0 1|/-1 1 0] 0 -1 1 0 0 0|0 0 -2
0 1 1 0 0 0-1 0 1 1 -1 0|0 0 -2
1 1 2]/]-1 1 0|-1 -1 2 1 -1 0,0 0 —4
-1 0 -1|1 -1 0O 1 -1 0 0 2
1 0 1 /-1 1 00 -1 1 0 0 -2
0 0 0 0 0 00 0 0 0 0 O
1 0 -1 —-1] 0 0 0] 1 0O -1}-1 1 00 0 2
Jri=-|-1 0 —-1]1 -1 0]0 1 -1]0 0 0|0 0 2
4 1 1 2]/-1 1 0|-1 -1 2 1 -1 00 0 —4
0 1 1 -1 0 1 1 -1 0|0 0 -2
0 -1 -1 1 0 -1}-1 1 0j0 0 2
0 0 0 0 0 0 0 0 0|0 0 O
0 0 0 0 0 00 0 0 0 0 0[O0 0 O
0 0 0 0 0 00 0 0 0 0 0[O0 0 O
| 2 -2 —4| 2 =2 0] 2 2 —4|-2 2 0]0 0 8 |




5 0 1|/-2 0 -1,2 -1 —-1|-1 1 1 1-4 0 0

0 5 1 1 -1 1}{-1 2 -1}]0 -2 —-1]0 -4 0

1 1 6 0 0 —-1]1 1 410 0O -1}-2 -2 =8

-2 1 0 3 -1 0 |-1 O 0 0 0 0

0O -1 0 |-1 3 0 1 -2 0 0 0 0

-1 1 —-1]0 0 2 1-1 1 -1 2 -2 0

1 2 -1 1|-1 1 -—-1]5 0 -1}-2 0 1 1-4 0 0
Ju = 1 -1 2 1 0o -2 1 0 5 -1, 1 -1 —-110 -4 0
-1 -1 4 0 0 -1|-1 -1 6 0 0 -1 2 2 -8

-1 0 0 -2 1 0 3 -1 0 0 0 0

1 -2 0 0o -1 0 ]|-1 3 0 0 0 0

1 -1 -1 1 -1 —-1| 0 0 2 2 2 0

-4 0 -=2]0 0 214 0 2 0 0 —-2| 8 0 0

0 -4 =20 0 -2} 0 -4 2 0 0 2 0 8 0

0 0 -8] 0 0 0 0 0 -8] 0 0 0 0 0 16

Since either tetrahedron does not include both Py and Py, (2,4) and (4,2) blocks of the
connection matrices are zero matrices.

2.5 Implementation

Two-dimensional finite element calculation was implemented on MATLAB. Classes Body,
Triangle, and NodalPoint were introduced. Class Body defines a two-dimensional body,
which consists of an array of triangles and an array of nodal points. Class Triangle specifies
a triangle, including three numbers of nodal points. Class NodalPoint defines a nodal point,
including its two coordinates.

For example, rectangle region in Fig. 2.2 consists of 6 nodal points and 4 triangles. Coor-

dinates of individual nodal points are listed as
points:[:cl Ty XT3 T4 Tj we]: 0 12012
000 1 11

Nodal point numbers for individual triangular elements are listed as

triangles =

T W N
W DN O

Y UL N

which 1mpheb that Al = AP1P2P47 AQ = AP2P3P5, Ag = AP5P4PQ7 and A4 = AP6P5P3.
The rectangle region is then given by

elastic = Body(6, points, 4, triangles, thickness);

where thickness specifies thickness h of the two-dimensional body.

Instance of class Triangle includes geometric propertices such as nodal point numbers,
area, and thickness as well as physical parameters such as density and Lamé’s constants.
Class Triangle involves the following methods:

partial_derivaties calculating partial derivatives du/dx, du/dy, Ov/dz, dv/dy
calculate_Cauchy_strain calculating Cauchy strain in the triangle
partial_strain_potential energy strain potential energy stored in the triangle
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calculate_Green_strain calculating Green strain in the triangle

partial _strain_potential_energy_Green_strain strain energy using Green strain
partial_gravitational potential energy gravitational energy stored in the triangle
partial_stiffness_matrix calculating partial stiffness matrix K ;
partial_inertia_matrix calculating partial inertia matrix M; ;
partial_gravitational_vector calculating partial gravitational vector g; ; r

Class Body involves the following methods:

total_strain_potential_energy calculating strain energy stored in the body
total_strain_potential_energy_Green_strain strain energy using Green strain
total_gravitational potential_energy gravitational energy stored in the body
calculate_stiffness_matrix calculating stiffness matrix K
calculate_inertia_matrix calculating inertia matrix M
calculate_gravitational_vector calculating gravitational vector g
constraint_matrix constraint matrix when specified nodal points are fixed
draw draw the shape of the body

Assuming that density p and Lamé’s constants A, p are uniform over the region, the
following specifies these parameters:

elastic = elastic.mechanical_parameters(rho, lambda, mu);
The following calculates the stiffness and inertia matrices:

elastic = elastic.calculate_stiffness_matrix;
elastic elastic.calculate_inertia_matrix;

The stiffness and inertia matrices are then referred by

M
K

elastic.Inertia_Matrix;
elastic.Stiffness_Matrix;

which can be applied to static and dynamic calculation of the motion and deformation of a
soft body.

Three-dimensional finite element calculation was implemented on MATLAB. Classes
Body, Tetrahedron, and NodalPoint were introduced. Class Body defines a three-dimensional
body, which consists of an array of tetrahedra and an array of nodal points. Class Tetrahedron
specifies a tetrahedron, including four numbers of nodal points. Class NodalPoint defines a
nodal point, including its three coordinates.

For example, a regular quadrangular pyramid (Fig.2.3) consists of 5 nodal points and 2
tetrahedra. Coordinates of individual nodal points are listed as

0 2 2 0 1
points:[azl To XT3 Ty Ty ]: 0 0 2 2 1
0 00 01
Nodal point numbers for individual tetrehedron elements are listed as
1 2 35 }

tetrahedra = [ 34 1 5

which implies that ¢1 = OP1P2P3P5 and ¢ = OP3P4P1P5. The quadrangular pyramid is
then given by
elastic = Body(5, points, 2, tetrahedra);

followed by methods to define physical parameters and calculate inertia and stiffness matrices.
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Problems

1. Show eqgs. (2.1.3a)(2.1.3b)(2.1.3c).

2. Calculate partial derivatives of piecewise linear approximation L;;(z,y) given in
eq. (2.1.4) with respect to z, y.

3. Calculate partial derivatives of piecewise linear approximation L; ; x(x,y, z) given in
eq. (2.1.6) with respect to z, y, z.

4. Show the following equations:

z; zj 1

Nij(@) Nij(w)dz = [ Nji(z) Nji(e) dv = 3(z; - )
;j |
Ni)j(x) Njﬂ'(ﬂ?) dx = Nj’i(.’li) Ni’j(aﬁ) dx = 6(95] — Jii)

Letting Lz’,j (SC) = f1 Ni,j (fﬂ) -+ fj Njyi(l’), show
g i—x; | 2 1 i
/m L@ de=[fi ;175 [ 1 2} Hg }

5. Show the following equations:

N . 1
| Ny de = [N ) Ny e =
. ) , Ty , , —1
25 Nij(@) Nji(z) dz = v Noal) Moy ) R

Letting L@j (I) = fz Ni,j (13) + fj N]‘J‘(l‘), show

IR e e 1

6. Show the following equations:

A
2 _ 2 _ 2 _

/ NZ; . dS = / N2, .dS = / NiijdS =%

A A A

JAN
/ Nijk Njgi dS = / Njk,i Ni,ij dS = / Niij Nijje dS = —
yAN A A 12

where A = APIP]P]C
7. Show eq. (2.3.13).

8. Show the following equations:

O

N2 dV=...= 2
/<> i,5,k,1 14 10
O

/<> NN NEAEN NN 20

where ¢ = OP;P;P.P;.
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