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Elastic Model of Deformable Fingertip for
Soft-fingered Manipulation
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Abstract— We propose straightforward static elastic model of
a hemispherical soft fingertip undergoing large contact deforma-
tion, as occurs when robotic hands with the fingertips handle
and manipulate objects, which is suitable for the analysis of
soft-fingered manipulation because of the simple form of the
model. We focus on formulating elastic force and potential
energy equations for the deformation of the fingers which are
represented as an infinite number of virtual springs standing
vertically. The equations are functions of two variables: the
maximum displacement of the hemispherical fingertip and the
orientation angle of a contacting planar object. The elastic
potential energy has a local minimum (LMEE) in our model.
The elastic model was validated by comparison with results of a
compression test of the hemispherical soft fingertip.

Index Terms— Soft fingertip, Manipulation, Grasping, Robotic
hand, Elasticity, Deformation model.

I. INTRODUCTION

To date, various research has been done on manipula-
tions of objects by soft-fingered robotic hands. Most of the
studies, particularly earlier studies, focused only on contact
mechanisms on various soft fingers. More recently, there has
been an increase in studies on sensing mechanisms of human
hand and designing control systems in robotic applications
to emulate the human capabilities which are applicable to
robotic hands. The conventional studies, however, have not
been explicitly providing any analytical exploration of the
simplicity in grasping and manipulating motions in terms of
the soft-fingered handling. As a cause of the above mention,
it has been substantially difficult to derive a fine elastic model
of soft materials used in the fingertips.

Yokokohji et al. proposed a control scheme with visual
sensors which can cancel the frictional twist/spin moment
at the contact point of soft fingertips, and achieved stable
grasping by spherical soft fingertips [1], [2]. Maekawa et al.
developed a finger-shaped tactile sensor covered with a soft
and thin material, and proposed a control algorithm based on
tactile feedback using the sensor, which needs no information
about the geometry of the grasped object [3], [4]. They
managed to control the position of an object along a desired
trajectory. In these papers, point-contacts were used to repre-
sent constraints of rolling contact in their theoretical models,
although the fingertips were made from soft material such as
rubber. Arimoto et al. verified the passivity of equations of
motion for a total handling system by using a Lagrangian
function incorporating the elastic potential energy due to the
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deformation of soft fingertips [5], and compensated for the
gravity effect in three-dimensional space [6]. An elastic force
model was also derived for the elastic potential energy of
a system in which virtual linear springs were arranged for
simplicity in a radial pattern inside hemispherical soft finger-
tips. Doulgeri et al. discussed the problem of stable grasping
with deformable fingertips on which rolling constraints were
described as non-holonomic because of change in the effective
rolling radius of the soft fingertip [7], [8]. The above studies,
however, focused mainly on deriving a control law to realize
stable grasping and pose control of the grasped object, not on
revealing a physically appropriate deformation model, which
also contains the nonlinear characteristics of a hemispherical
soft fingertip.

On the other hand, Xydas et al. proposed an exact deforma-
tion model based on the mechanics of the materials containing
nonlinear characteristics, and performed Finite Element (FE)
analysis for a hemispherical soft fingertip [9], [10]. Kao et
al. experimentally demonstrated that the elastic force due
to deformation satisfied a power law with respect to the
displacement of the fingertip, and insisted that their theory
subsumes Hertzian contact [11]. These studies, however, did
not distinguish between the material nonlinearity of the soft
fingertip and the geometrical nonlinearity caused by the hemi-
spherical shape of the fingertip, and defined a parameter
including the effect of both nonlinearities. Consequently, the
cause of the discrepancy between the results of the simulation
based on their model and the results of actual experiments
was not apparent. In addition, because of the complexity of
their proposed models, these studies do not lend themselves
to analysis of equations of motion for the soft-fingered ma-
nipulation system overall. While FE analysis may enable us
to derive a stress distribution and an elastic force on the soft
fingertip, these simulation results depend on the selected mesh
pattern. Although FE analysis based on a certain arbitrary
mesh pattern may prove the stability for equations of motion
of the handling system, it does not always provide proof of
stability for equations derived from other mesh patterns.

In this report, we propose a static elastic model of a
hemispherical soft fingertip in a physically reasonable and
straightforward form suitable for theoretical analysis of robotic
handling motions. We distinguish between geometric nonlin-
earity due to the hemispherical shape and material nonlinearity
of soft materials, i.e., the nonlinearity of the Young’s modulus
of the soft material, allowing us to focus only on the geometric
nonlinearity of the soft fingertip, and analytically formulate
elastic force and elastic potential energy equations for the
deformation of the fingertip. We show that each equation is a
function of two variables: the maximum displacement of the
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fingertip and the orientation angle of a contacting object. We
also show that when the object is positioned normal to the
fingertips, the elastic potential energy is minimum. We finally
validate the static elastic model by conducting a compression
test of the hemispherical soft fingertip and comparing the
results.

II. STATIC ELASTIC MODEL OF HEMISPHERICAL SOFT

FINGERTIP

We treat the fingertips as if they were composed of an
infinite number of virtual linear springs standing vertically.
Fig.1 shows one such spring. We formulate elastic force
and elastic potential energy equations for the deformation
of the fingertip. In order to simplify the derivation process
of both equations, two assumptions associated with material
characteristics are given as follows:

1) The incompressibility of elastomer materials is not dealt
with.

2) Young’s modulus is constant.
Note that the contact condition being discussed in the present
study is restricted to the case that an applied force to the
fingertip is assumed to be along z-axis of the fingertip. In
addition, we consider that an object never comes into contact
with the underneath plane of the fingertip.

A. Fingertip Stiffness

Let us apply an infinitesimal virtual spring QR with sec-
tional area dS inside the soft fingertip, as shown in Fig.1.
Let dF be the infinitesimal elastic force due to the shrinkage
PQ of the virtual spring. Let θp be the orientation angle
of the contacting object, a be the fingertip radius, d be the
maximum displacement of the fingertip, ac �

�
a2� �a�d�2

be the radius of the contacting circle, and P be the point where
the spring is in contact with the object. Furthermore, let θ
be the angle subtended between line PQ and the z-axis, and
φ be the azimuthal angle on the xy-plane. Using the contact
surface equation, xsinθp � zcosθp � a�d (see Appendix I),
the infinitesimal elastic force dF is given by

dF � k �PQ � k

��
a2� �x2 � y2�� a�d� x � sinθp

cosθp

�
� (1)

where k is the spring constant of the spring QR. Note that k
is proportional to the sectional area dS and inversely propor-
tional to the natural length

�
a2� �x2 � y2�. Letting E be the

Young’s modulus of soft finger materials, k is described as
(see Appendix II)

k �
E dS�

a2� �x2 � y2�
� (2)

Letting K be the fingertip stiffness on the entire deformed part
illustrated in Fig.1, K can be expressed from Eq. (2) as

K �

� �
ell

k � E
� ac

�ac

� b2�y�

b1�y�

dx dy�
a2� �x2 � y2�

� (3)

where

b1�y� � �a�d�sinθp� cosθp

�
a2

c� y2
� (4)

b2�y� � �a�d�sinθp � cosθp

�
a2

c� y2
� (5)

Fig. 1. Contact mechanism

Fig. 2. Integration area.

and ell denotes the elliptical region shown in Fig.2-(a).
Applying a numerical integration to Eq. (3), we obtain a
constant fingertip stiffness depicted as continuous lines, as
shown in Fig.3. This indicates that the fingertip stiffness K is
independent of the object orientation θ p. Hence, in this study
we additionally provide the thir assumption that:

3) the fingertip stiffness is independent of the object ori-
entation as long as the maximum displacement remains
constant.

By using the above assumption, we formulate the fingertip
stiffness K in an analytical formula.

Now, performing a substitution that x � r cosφcosθp��a�
d�sinθp and y � r sinφ, Eq. (3) is then transformed into (see
Appendix III)

K � E
� ac

0
r

�� 2π

0

cosθp dφ�
a2��x2�r�φ�� y2�r�φ��

�
dr� (6)

Since assumption 3) claims K is independent of θp, we can
substitute θp � 0 into Eq. (6), and get

K � E
� ac

0
r

�� 2π

0

dφ�
a2� r2

�
dr � 2πEd� (7)

Plotting the simulation result of Eq. (7) as dotted lines onto
Fig.3 together with the results of Eq. (3), we find that both
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Fig. 3. Comparison between numerical results of Eq. (3) and analytical
simulations of Eq. (7) when E � 0�2032 MPa measured in the present study.

lines coincide with each other. This implies that the third as-
sumption due to the numerical observation is appropriate, and
additionally the stiffness is a function of only the maximum
displacement d.

B. Elastic Force

Likewise, by using the third assumption associated with the
fingertip stiffness, we formulate the elastic force and potential
energy equations in a straightforward way. Using Eqs. (1), (2)
and a geometrical relationship QT � PQcosθp (see Fig.14 in
Appendix III), the elastic force F can be written as

F �
1

cosθp

� �
ell

k �QT

�
E

cosθp

� ac

�ac

� b2�y�

b1�y�

QT �dx dy�
a2� �x2 � y2�

� (8)

Performing the same variable conversion as the derivation
process of K, Eq. (8) is then transformed as

F �
E

cosθp

� ac

0
QT �r� � r

�� 2π

0
B�r�φ� dφ

�
dr� (9)

where (see Fig.14)

QT �r� �
�

a2� r2� �a�d�� (10)

In Eq. (9), B�r�φ� corresponds to the integrand within the
braces in Eq. (6). Here applying the assumption 3) to B�r�φ�
as well as Eq. (7), F is finally calculated as

F �
E

cosθp

� ac

0
QT �r� � r

�� 2π

0

dφ�
a2� r2

�
dr �

πEd2

cosθp
� (11)

C. Elastic Potential Energy

As well as Eq. (8), the elastic potential energy P is expressed
as

P �
1
2

� �
ell

k �PQ2 �
1

2cos2 θp

� �
ell

k �QT 2

�
E

2cos2 θp

� ac

�ac

� b2�y�

b1�y�

QT 2 �dx dy�
a2� �x2 � y2�

� (12)

Performing the same variable conversion as the derivation
process of F , Eq. (12) is then transformed as

P �
E

2cos2 θp

� ac

0
QT 2�r� � r

�� 2π

0
B�r�φ� dφ

�
dr� (13)

Fig. 4. Comparison between the numerical integration and the analytical
simulation of F and P, respectively: (a) elastic force, (b) elastic energy.

Here again, applying the assumption 3) to B�r�φ� in Eq. (13),
P is finally be calculated as

P �
E

2cos2 θp

� ac

0
QT 2�r� � r

�� 2π

0

dφ�
a2� r2

�
dr

�
πEd3

3cos2 θp
� (14)

Note that Eqs. (11) and (14) clarify that the elastic force
and elastic potential energy on the entire deformed part of
a hemispherical soft fingertip are functions of two variables,
namely, the maximum displacement d and the object orienta-
tion angle θp. Furthermore, we find that both formulae have a
local minimum when the orientation angle is zero. Especially,
we describe the minimum value of elastic energy as Local
Minimum of Elastic Potential Energy, which is abbreviated as
LMEE.

Finally, in order to confirm the transformations of formulae
from Eq. (8) to Eq. (11) and Eq. (12) to Eq. (14), we verify the
numerical analysis of Eqs. (8) and (12) and simulation results
of Eqs. (11) and (14). Fig.4 indicates the result, and concludes
that both Eqs. (11) and (14) are mathematically reasonable
formulae in the present study.

D. Relationship between Elastic Force and Elastic Energy

While the individual virtual spring used in our study is based
on a linear elasticity, the entire fingertip model that is obtained
by completing the double integration on an elliptical region ex-
hibits a geometrical nonlinearity caused by the hemispherical
shape of the fingertip. In other words, the completed fingertip
model has a nonlinear fingertip stiffness expressed as Eq. (7).
Hence, when we compute the total force Eq. (11) from the
energy Eq. (14), we must define an equivalent displacement
and use it for the differentiatial calculation.

In the case of normal contact that corresponds to θ p � 0,
elastic models are given as follows:

P �
πEd3

3
� (15)

∂P
∂d

� πEd2 � F� (16)

∂ 2P
∂d2 � 2πEd � K� (17)

where d itself corresponds to the equivalent displacement.
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Continuously, let us consider the case of diagonal contact
when θp �� 0. We define ∆zeq as an equivalent displacement,
and it must satisfy

∂P
∂∆zeq

�
πEd2

cosθp
� F� (18)

∂ 2P
∂∆z2

eq
� 2πEd � K� (19)

The displacement ∆zeq to fulfill Eqs. (18) and (19) can be
found such that a geometrical relationship d � ∆zeq cosθp is
maintained as shown in Fig. 14. It is obvious that ∆zeq means
a true maximum displacement among all the virtual springs in
any case that includes θp � 0 and θp �� 0.

III. COMPARISON WITH HERTZIAN CONTACT

In 1881, Hertz proposed a contact theory for two elastic
objects having arbitrary curved surfaces [12]. He showed that
a normal contact force generated between an elastic sphere and
a plane whose Young’s modulus is infinity can be expressed
as

F �
4
�

R
3

�
E

1�σ2

�
d

3
2 � (20)

where R is the radius, E the Young’s modulus of the object,
σ the Poisson’s ratio, and d the maximum displacement of
the sphere. Since the above equation is useful from a practical
viewpoint, it has been widely used for computing the contact
stress between, for example, a wheel and a rail, a roll and
material, and a retainer and a ball in a bearing. However, in
Hertzian contact, it is assumed that both elastic objects are
open elliptic paraboloids with an arbitrary radius of curvature.
Consequently, no boundary conditions are used in the Hertzian
contact model.

Kao et al. defined the parameter cd corresponding to a
material and geometric nonlinearity [11], and transformed
Eq.(20) into

F � cddζ
� (21)

They conducted a vertical compression test using a hemispher-
ical soft fingertip, and estimated the parameter cd empirically
by using a weighted least-squares method. It has been shown
that ζ is approximately 2.3 or 1.75 when the rate of defor-
mation of the finger is above or below 20%, respectively. In
other words, the parameter ζ is not identical to 3/2 in the
contact model of soft fingertips. Thus the Hertzian contact
theory cannot be adopted for deriving the elastic model of the
hemispherical soft fingertip.

Fig.5 shows a comparison result in which the elastic force
value with respect to the displacement d is plotted when a
hemispherical soft fingertip is compressed vertically, whose
radius is 20 mm. It is obvious that our vertically-oriented
spring model is more suitable for deriving an elastic force
up to the midrange displacement of the fingertip. It is because
that our model contains the geometric nonlinearity due to the
hemispherical shape of the fingertip, that is, the present model
could indicate that ζ becomes 2 by only adopting appropriate
natural length to the individual springs.

Fig. 5. Comparison between the Hertzian contact model and the present
elastic force model when θp � 0 and E � 0�2032 [MPa].

Fig. 6. Stress-strain diagram of polyurethane rubber: (a) stress-strain diagram,
(b) enlarged diagram.

Soft materials exhibit nonlinear characteristics, even for
infinitesimal deformations. In fact, Tatara newly derived a
nonlinear Young’s modulus with respect to compressive strain
[13]. Furthermore, the concept for the contact angle of the
object is not incorporated in the Hertzian contact theory. While
the Hertzian contact theory can be utilized for a simple contact
pattern corresponding to the normal contact, no contact at any
other arbitrary angle or rolling contact can be defined. On the
other hand the elastic models proposed in this paper cover any
contact angle of the object, and therefore, these models can be
used to analyze grasping and manipulating motions containing
varied possible contact forms by soft-fingered robotic hand.

IV. MEASUREMENT OF YOUNG’S MODULUS

In the present study, the Young’s modulus of the soft
fingertip was measured by conducting a compression test on
6 cylinders of polyurethane gel. Three cylinders were 20 mm
in diameter and 15, 20, and 25 mm in height, and three were
30 mm in diameter and also 15, 20, and 25 mm in height, as
shown in Fig.8-(a).

Fig.6-(a) shows the overall view of a measured stress-strain
diagram, and an enlarged view of part of the diagram is shown
in Fig.6-(b). Numerical values shown in both graphs denote the
specimen height on the left side and the specimen diameter on
the right side. The data were averaged and smoothed using the
least-squares method (LSM), as shown in Fig.7. We assumed
that the maximum deformation of the soft fingertip is 50%
in the radius. Furthermore, in order to focus predominantly
on the geometric nonlinearity due to the hemispherical shape,
we avoided the issue of the material’s nonlinearity which
is directly related to the Young’s modulus of soft materials.



IEEE TRANSACTION ON ROBOTICS, VOL. 1, NO. 11, NOVEMBER 2005 5

Fig. 7. Average value of stress-strain diagram.

Fig. 8. Compression test of a hemispherical soft fingertip: (a) several
specimens, (b) compression test.

Consequently, we performed a linear approximation for a 50%
strain, as in Fig.7, and estimated the Young’s modulus as
0.2032 MPa.

V. COMPRESSION TEST

By compressing a hemispherical soft fingertip made of
polyurethane gel along the normal direction, as shown in
Fig.1 and Fig.8-(b), we verified the validity of our elastic
force model represented in Eq. (11). Furthermore, by con-
ducting multiple experiments with various contacting angles,
we demonstrated the existence of the local minimum of the
elastic force. In the compression test, we used a fingertip with a
diameter of 40 mm, and contacting rods with thirteen different
shapes. The rods were inclined from 0 to 30 deg in increments
of 2.5 deg, as shown in Fig.8-(b). Fig.9 compares experiments
with simulation results. The horizontal axis represents the
maximum displacement of the compressed fingertip, while the
vertical axis represents the elastic force measured by a loadcell
placed in the compression machine.

In all the graphs in Fig.9, the simulation and experimental
results are almost identical to each other up to d � 6�0 mm,
after which the discrepancies increase with the magnitude
of the displacement. The discrepancy comes from the linear
approximation of the experimental stress-strain diagram shown
in Fig.7. The effect leads directly to nonlinearity of Young’s
modulus, which is outside the scope of the present study.

Fig.10-(a) and Fig.11-(a) show simulation and experimental
results, respectively. Enlarged views of both results are also
shown in Fig.10-(b) and Fig.11-(b). The numerical values
in each graph denote the inclined angle of the contacting
object, and both results are plotted at intervals of 5.0 deg.
The elastic force increases as the orientation angle increases

Fig. 9. Elastic forces in experiments: (a) 2.5 [deg], (b) 5.0 [deg], (c) 7.5
[deg], (d) 10.0 [deg], (e) 12.5 [deg], (f)15.0 [deg], (g) 17.5 [deg], (h) 20.0
[deg], (i) 22.5 [deg], (j) 25.0 [deg], (k) 27.5 [deg], (l) 30.0 [deg].
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Fig. 10. Simulation results of elastic force: (a) simulations, (b) enlarged
view.

Fig. 11. Experimental results of elastic force: (a) experiments, (b) enlarged
view.

under constant maximum displacement. As confirmation, we
plotted the elastic force against θp of Eq. (11) in Fig.12. The
numerical values shown in the graph denote the maximum
displacement d. At about 0 deg, there is a clear local minimum
of the elastic force, and the change in elastic force with θ p

is greatest when the displacement is maximum, that is, 8.0
mm. The same tendency can also be seen in the simulation
results. The results therefore indicate that our proposed elastic
model can present a distinctive phenomenon, i.e., a local
minimum elastic force, even when the deriving process is
represented simply by bringing linear virtual springs standing
in the normal direction. On the other hand, the discrepancy
in the large displacement shown in Fig.12 would be reduced
if the Young’s modulus could be defined as a nonlinear
function of compression strain, and be used to adopt the model
to accommodate the nonlinearity of the material. However,
the present study focuses on the geometric nonlinearity, and
the deriving process including both nonlinearities will be
addressed in future studies.

VI. CONCLUDING REMARKS

We have formulated a static elastic force model and an
elastic potential energy function based on virtual springs
inside a hemispherical soft fingertip. We have also proven
the existence of an LMEE and experimentally demonstrated
that the elastic force due to the deformation has a local
minimum. Our model requires us to only measure the Young’s
modulus of a corresponding material to be used in robotic
fingertips. In future studies, we will consider constant volume
deformation of incompressible elastomer materials, and derive
elastic models incorporating a nonlinear Young’s modulus.

These new findings suggest a quasi-static manipulation
theory based on the LMEE for a minimum d.o.f. robotic

Fig. 12. Local minimum of elastic force: (a) simulations, (b) experiments.

Fig. 13. Spring constant inside the soft fingertip.

hand [14]. By expanding the new idea of LMEE in the
development of grasping and manipulation theory using soft-
fingered robotic hand, it is expected that the stable grasping
and the pose control of a grasped object by a minimum d.o.f.
two-fingered hand may be achieved and a succinct control
system will be designed.

APPENDIX I
CONTACT PLANE FORMULA

As illustrated in Fig.1, the point C is described in a vector
form as

��
OC �

�
	 �a�d�sinθp

0
�a�d�cosθp



�

� (22)

In addition, a normal unit vector with respect to the contact
surface is represented as

n �

�
	 sinθp

0
cosθp



�

� (23)

Since the contact plane can be written by an inner product
form,

�
�x�y�z�T ���OC


�n � 0, the plane equation is therefore

described as follows:

xsinθp � zcosθp � a�d� (24)

APPENDIX II
SPRING CONSTANT FORMULATION

As shown in Fig.13, letting k0, dS0, and L0 respectively be
the spring constant, the sectional area, and the natural length of
a specimen for measuring the Young’s modulus, and E be the
Young’s modulus obtained from an appropriate compression
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Fig. 14. Equivalent fingertip stiffness with respect to ∑��-coordinate system.

test, we can derive the following equations according to linear
material mechanics:

σ � Eε (25)

�	 F
S0

� E
δx
L0

(26)

�	 E �
L0

δx
� F

S0
�

L0

δx
� k0δx

S0
� k0

L0

S0
� (27)

where F denotes an applied force to the specimen and δx is
a displacement in the identification test. Since this paper as-
sumes that the Young’s modulus is an invariant physical value
for individual material, the following equation is satisfied:

k
L
dS

� k0
L0

S0
� E (28)

�	 k � E
dS
L

�
EdS�

a2� �x2 � y2�
� (29)

APPENDIX III
COORDINATE CONVERSION TO DERIVE THE FINGERTIP

STIFFNESS

As illustrated in Fig.14, let ∑� be the coordinate system
translated to O� from the ∑ frame, and ∑�� be the cylindrical
coordinate system inclined by θp from z�-axis. Let r be the
arbitrary radius on the contact circle that has an origin C, and
φ be the common rotational angle around the z-, z �-, and z��-
axes. The relationship between �x��y�� on the ∑� frame and
�r�φ� on the ∑�� frame is then expressed as

x� � r cosφcosθp� (30)

y� � r sinφ� (31)

Since the relationship between �x�y� and �x ��y�� is described
as x � x���a�d�sinθp and y� y�, the variable transformation
through the coordinate systems ∑ and ∑�� can be expressed as

x � r cosφcosθp ��a�d�sinθp� (32)

y � r sinφ� (33)

Simultaneously, the elliptical region at the bottom surface of
the fingertip shown in Fig.14 can be converted to a circular
region according to the above transformation rule, that is,

Fig. 15. Fingertip stiffness on a certain perimeter: (a) elliptical perimeter,
(b) circular perimenter.

the integration area of �r�φ� varies at [0�ac] and [0,2π],
respectively.

Next, let us consider the physical meaning of the double
integration of B�r�φ� used in Eqs. (9) and (13), which is
detailed in Eq. (6) as:

� 2π

0
B�r�φ� dφ �

� 2π

0

cosθp dφ�
a2��x2�r�φ�� y2�r�φ�� � (34)

Eq. (34) corresponds to a stiffness on an elliptical perimeter
whose longitudinal radius is r, as shown in Fig.15-(a). Addi-
tionally, substituting θp � 0 into Eq. (34) enables to obtain an
equivalent stiffness on a circular perimeter of radius r shown
in Fig.15-(b).
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