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ABSTRACT. Though a variety of different algorithms have been implemented for estima-
tion of the deformation fields of biological tissue from magnetic resonance (MR) images,
few attempts in feature tracking areas have been reported. In this study, we propose a
method to measure deformation fields of biological tissues based on local feature track-
ing. First, we use correlation score (cs) based method to obtain a candidate matches set.
Next, relaxation technique is used to disambiguate matches. Third, the dense deforma-
tion fields is calculated using linear interpolation approach within Delaunay triangles net.
To test the validity of our approach, we applied the proposed approach to MR images of
a volunteer’s calf. Moreover, the reverse movement of selected check points was used to
evaluate the reliability and accuracy of the result. Preliminary experiment results of this
paper reveal that the proposed approach is feasible.
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1. Introduction. Since its initial use for human imaging over 20 years ago, magnetic
resonance imaging (MRI) has become a widely used clinical imaging modality [1]. MRI
has increasingly employed in biomedical applications. As one of research branches in MR,
image processing, interior deformation fields measurement is very important for physical
parameters estimation. The purpose of this paper is to develop a valid approach for
measurement the dense deformation fields of non-rigid and non-uniform object. The
input data of this procedure is MR images before and after deformation.

Though there has been significant growth on deformation fields measurement from
medical MR images, most works have been done are mainly focus on non-rigid registra-
tion approaches. Especially, many proposed approaches are based on elastic deformable
model[2-10]. Generally, the deformable models can be classified in two basic categories:
parametric and geometric deformable models [5]. Parametric deformable models, also
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called snakes, was first proposed by Kass, Witkin and Terzopoulos in 1987 [11]. Para-
metric deformable models represent curves and surfaces explicitly in their parametric
forms during deformation. Usually, it must formulate an energy function for a deformable
contour in order to find a parameterized curve that minimizes the weighted sum of in-
ternal energy and potential energy. Different from parametric deformable models, geo-
metric deformable models are based on curve evolution theory and the level set method,
representing curves and surfaces implicitly as a level set of a higher-dimensional scalar
function. Their parameterizations are computed only after complete deformation, this
allowing topological adaptivity to be easily accommodated [12]. In deformable models,
the motion fields of deformable contour or surface can be regarded as the deformation
fields.

Though the deformable models undergo a significant development, and are widely used
in image segmentation, non-rigid registration and deformation fields measurement, they
still have some limitations. Typically, for parametric approach, the difference between the
initial model and the desired object boundary will directly affect the final result. More-
over, it has difficulty dealing with topological adaptation such as splitting or merging
model parts, a useful property for recovering either multiple objects or an object with
unknown topology. Although geometric approach can address the topological adaptation
using curve evolution theory, it may generate shapes that have inconsistent topology with
respect to the actual object, when applied to noisy images with significant boundary
gaps [12]. Furthermore, the most important issue of deformable models in deformation
fields measurement is that they cannot deal with the interior deformation fields measure-
ment.

In this paper, we propose a feature matching-based approach to measure sparse local
deformation fields from MR images of non-rigid non-uniform biological tissues. By means
of linear interpolation, the interior dense deformation fields at different regions of an
object are interpolated using local deformation fields on the nodes of an irregular Dealunay
triangle net. In this case, certain numbers of high curvature feature points (also called
points of interest) in the initial and deformed MR volumetric images are first pre-extracted
to form two feature points sets. Then, we apply the proposed feature matching method
into the two feature points sets in order to find feature pairs homologous each other. The
local deformation fields are computed from the obtained homologous feature point pairs.

This paper is organised as follows. Section 2 gives overview of the proposed approach.
Section 3 describes interior deformation fields measurement from MR images. Section 4
presents examples and the results of preliminary experiments. The final section presents
our discussion and conclusions.

2. Overview of the Proposed Approach. The pipeline of our approach is shown
in Figure 1. At the initial phase, Harris operator [13] is used to automatically extract
high curvature points of interest from the initial and deformed MR images as references
features. The purpose of absolute orientation is to find the geometric relationship be-
tween deformed MR image and the initial one. Many approaches have been reported to
address this problem. For example, a mutual information based non-rigid registration
approach [19] was proposed to find geometric transformation parameters in order to align
two medical images. In this paper, we use an unit quaternion method [14][15] to find the
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solution of the transformation parameters of two systems: rotation matrix R and trans-
lation vector 7. This mainly comes from: 1) there is a rigid region (bone) in experiment
data; 2) we have already extracted rigid feature points around bone, which are useful for
finding geometric transform parameters by means of unit quaternion approach.
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F1GURE 1. Pipeline of the proposed approach

Before obtaining the dense deformation fields, we must track the precise corresponding
position in the deformed MR image for a given feature point of interest in the initial MR
image. In this paper, we propose a correlation score based robust algorithm to obtain
homologous point pairs.

The obtained point matches are used to measure the local deformation fields at the
corresponding location under a global coordinate system. Subsequently, in order to cal-
culate the dense deformation fields, we propose to infer the interior dense deformation
fields using sparse local deformation fields at the nodes of Dealunay triangles.

Finally, the reverse movement of selected check points is used to evaluate the reliability
of obtained dense deformation fields. When the check points in the deformed image can
move back to their original position in the initial image, it implies that the obtained
deformation fields is reliable and accurate.

3. Interior Deformation Measurement from MR Images. This section presents
how to measure interior deformation of non-rigid non-uniform object by means of the
proposed approach. Concisely, we first try to obtain a potential matches set (PMS)
through a robust feature matching algorithm (two steps feature matching algorithm).
Whereafter, interior deformation is calculated using interpolation algorithm in Delaunnay
triangles.

3.1. Feature matching. A) First matching. Let x = [z y]T be the coordinates of an
MR image, p1 be feature point in the initial MR image, and ps be the projection of
p1 in the deformed MR image. Then, the position of py can be calculated using affine
transformation with rotation matrix R and translation vector 7 as follows:

Xp, = RXp, + T, (1)

where xp,, = [z1, 71" and xp, = [22,y2]" are coordinates of point p; and pz, respectively.
Let us introduce the following rectangular region for matching:

Cr = {x=[zy|"|x € [-m,m], y € [-n,n]}. (2)
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The size of this region is given by |C,,| = (2m + 1)(2n + 1). Let g(x) and ¢'(x) be the
intensity of the initial and deformed MR images at position x. Let gp, and g, be the
means of intensity in the rectangular region C,, around p; in the initial image and ps in
the deformed image:

gpl = ‘C ’ Z p1+ g;)Z - Z p2+X (3)

XECm, XEC

Let 0(gp,) and o(gp,) be the standard derivation of the rectangular region C,, around
p1 in the initial image and po in the deformed image, respectively. The correlation score
between feature points p; and ps can be calculated using match regions around them,
which is given by

> (9(p1+ %) — Gp,) (g (P2 + %) — 7))

o xXECm,
es(P1,P2) = Colo(gon) X 7(g03) @)

Through first matching stage, a point matches set with many-to-many relationships is
obtained. Namely, a point in the initial MR image may be paired not less than one points
(we called candidate matches) in the deformed MR image, and vice versa. Therefore, the
first matching based on correlation score only is rough and insufficient. To disambiguate
the matches and obtain potential matches set (PMS), relaxation technique is introduced
in the following section. Here, pair (p1, p2) be regarded as a potential match if and only
if po is the best candidate match of py, and p; also is the best candidate match of ps.

B) Relazation labeling. The idea of relaxation technique is to use iterated local context
updates to achieve a globally consistent result [16]. One of the key issues of relaxation
algorithm is to design a valid cost function in order to control the convergence rate. Let
SM(p1;, P2;) be the strength of match (py;, p2;). Cost function € is given by the average
of strength of match (SM) as follows:

Z SM( P117P2J> (5)

1,j=1

where N, is the total number of matches in PMS, p;,; represents the i-th point in the
initial image, and pg; represents the j-th candidate match of py;.

Let N (p1;) and N (pz;) be the neighbors of point py; and ps; within a circle, respec-
tively. We expect many potential matches (nyy, ng;) if and only if (p1;, p2;) is a potential
match, where ny, € N(py;) and ny; € N (pz;). Otherwise, we expect only a few, or even
none at all. Then, referring to the strength of match function proposed in [17], we define
the SM function between py; and pg; as:

SM(p1;,P2;) = cs(P1;, P2;) + Z cs(nyy, Ng;) - e~ (PriP2m1E N2 Ezf GGJ\A//((;);;)) (6)
Theoretically, if (p1;, p2;) is a potential match, and that (ny, ng;) with ny, € V(p1;)
and ny; € N(pz;) also is a potential match, then the following two are satisfied: 1)
the distance between ny, and p;; in the initial image should close or even equal to the
distance between ny; and pg; in the deformed image, and 2) the deformation direction
of p1; should close or even identical to the deformation direction of ny,, due to they are
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in a local region. Taking account of the above two in SM function, let us introduce the
relative distance difference and direction constraint.

Let d(p1,, n1;) be Euclidean distance between py; and ny, in the initial image, d(p2;, nz;)
be Euclidean distance between pz; and ng; in the deformed image. According to [18], the
relative distance difference dist(p1;, P2;; N1y, n2;) between d(pi1;,nyy) and d(pz;, ny;) is
given by

2|d(p1;,n1y) — d(p2j7 ny)|

7
d(p1;, n1y) + d(p2;, nz;) @

di8t<p1i7p2]‘§n1k7n2l) =1+

Moreover, let notation py;p2; be the vector from py; to its corresponding position pa;,
n;,ny; be the vector form ny; to its corresponding position ns;, and O(plipzj, ny;ny))
be the angle between vector py;pz; and njzng;. Then, the O(py,;pz2;, N1xny;) is given by

1
1+ cos@

O(p1;p2;, N1ynz) = 1 + (8)
where 6 represents the angle between vector py;pz; and ny,na;.

So far, we have already obtained the relative distance difference factor dist(-) and
deformation direction factor O(-), the term J (11, ng;) in SM function (6) is then defined
as

\7<p1i7p2j; Ny, Ny ) = O<p1ip2ja N ;Ny;) - dist(py;, P2;; Nig;, ny;). (9)

It is noting that comparison with the similar SM function in [17]. This paper introduces
the local deformation direction information to improve the robustness of SM function,
especially, in the non-uniform heterogeneous object. Because the deformation direction
are different in different regions, pairs’ deformation direction close to the direction of
candidate match must obtain larger weight for candidate match’s SM computation, and
vice versa. For example, in Figure 2, pairs (n1,,n2,) and (ni3, ng3) must obtain lower
weight than the others in SM(py;, p2 j) computation, since the deformation direction of
these two pairs is opposite to that of the candidate match (p1;, p2;)-

FIGURE 2. Pairs within neighbors of candidate match (p1;, p2;)

In this paper, we use the same relaxation labeling implementation procedure introduced
in [15]. The result of performing the above feature matching algorithm is that a PMS is
obtained, which will be used to measure local sparse deformation fields and to infer the
dense interior deformation fields of a non-uniform object.
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3.2. Deformation Fields Measurement. We propose a Delaunay triangle based linear
interpolation approach to obtain the dense deformation fields of an image. First, we use
feature points in the initial (or deformed) MR image and obtain corresponding feature
points in the PMS to construct Dealunay triangle net. The deformation fields of pixels
inside a triangle are computed using the deformation fields of the triangle’s nodes.

Let m be the number of triangles, j = 0,1, ---,;m—1 be the index of triangles, k = 1,2, 3
be the node number of a triangle and D;; be displacement vector of the k-th node of
triangle j. Then, D, is given by

Djr=Rxjr+T— x}k, (10)

where x,; = [z, y|T be the position of the k-th node of triangle j in the initial image,
which corresponds the position vector in the deformed MR image x}, = [2/, /]". Let us
define function wy, on triangle A(j). Assume that the area of the triangle is positive. Let
p; be an arbitrary point within the triangle A(j). The ratio between areas of A(p;, pi)
and A(j) determines the function:

A(pi, Pr)

U= TAG) (1)
where A(p;, pi) represents the triangle consists of point p; and two nodes except the k-th
node of the triangle A(j). The displacement vector D, of the pixels within triangle A(j)
is given by

3
Dj = Zkaj’k. (12)
k=1

4. Experiments and Results. Several practical examples were designed to demonstrate
the capabilities of the proposed approach. First, we applied the proposed approach to the
MR images sampled from a volunteer’s calf using an MRI scanner at different times and
different status (initial and deformed). In both cases, FOV was 20 x 20 c¢m, and the slice
gap was 2 mm. In this example, we selected two slices sampled at same location before
and after deformation (Figure 3) as the input data and performed the proposed feature
matching approach on them. To compare with the similar feature matching algorithm,
we also applied the robust feature matching (RFM) algorithm proposed by Chen [17] to
the same data under same experiment conditions. Table 1 shows the numeric result of
feature points matching using two approaches.

FIGURE 3. Input data of the exmaple (Left: Initial slice. Right:Deformed slice)
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TABLE 1. Error of the checking points (NOTE: TPA, the proposed ap-
proach; FPS, feature points; ITs, iteration times; T, cost time in seconds.)

Approaches | FPS in initial slice | FPS in deformed slice | « | matches in PMS | ITs | T

TPA | 200 240 \ |72 101 | 5

RFM | 200 240 10 | 63 101 |5

small

small

FIGURE 4. Inferred deformation fields (Left: Irregular Delaunay triangles.
Right: Dense deformation fields overlaid on deformed slice. Top: result of
the proposed approach. Down: result of REM)

(c)

FIGURE 5. Deformation fields evaluation ((a) initial position of check
points in deformed slice. (b) the reverse movement result using the de-
formation fields obtained by the proposed approach. (c) reverse movement
result using the deformation fields obtained by RFM; Yellow cross, the orig-
inal position of check points. Green cross, the reverse movement result of
check points using dense deformation fields)

Table 1 indicates that the proposed approach can obtain more matches than RFM
under the same conditions, in spite of it cost more time than RFM. The later results
(Fig.5 and Table 2) show that the proposed approach has higher accuracy than RFM.
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Secondly, to obtain the dense deformation fields, we calculated the sparse deformation
fields correspond to the matches obtained previously using two approaches. Then, we
constructed the irregular Delaunay triangle net, and performed the proposed linear inter-
polation approach to obtain the dense deformation fields. Figure 4 shows the delaunay
triangle net and the dense deformation fields overlaid on the deformed slice. The delaunay
triangle net was constructed using feature points obtained PMS. The deformation fields
are obtained using the two set of sparse deformation fields introduced above. In Figure
4, the green color correspond to small deformation area, and yellow color correspond to
the large deformation area.

Finally, to evaluate the reliability and precision of the estimated deformation field, we
selected 10 obvious points (Figure 5(a)) which can be observed easily. Then, performing
reverse movement using the invert deformation fields of obtained deformation fields on
these check points, we observe if they can move back to the initial position in the initial
slice. Figure 5(b) and (c) illustrate the movement result of 10 check points. In Figure 5(b)
and (c), yellow cross illustrate the original position of check points, and green one illustrate
the projections of reverse movement result of the check points in the deformed MR slice.
As shown in Figure 4, most of the check points can go back to their original position in
the two approaches, implying that the estimated deformation field is reliable. To evaluate
the accuracy, the distance between the location of a check point after performing reverse
movement and its actually original location is used to measure the error of the check point.
Accordingly, the root mean square error (RMSE) of these check points also are computed
to evaluate the accuracy of obtained deformation. Table 2 gives the error of selected 10
check points and RMSE, respectively. In Table 2, there are only two check points (4, 5
and 7) whose error over 0.2 in the proposed approach, but, there are four check points
(2, 4, 5 and 7) whose error over 0.2 in REM approach, this illustrate the deformation
fields obtained using the proposed approach more reliable than that obtained using RFM.
Moreover, the RMSE in Table 2 also reveals that there is evident improvement in the
proposed approach compare to RFM approach.

TABLE 2. Error of the checking points(NOTE: TPA, the proposed ap-
proach; EPi, error of the ¢-th point; the unit in the table is ecm, lem =~
30 pixels)

Approach | EPO | EP1 | EP2 |EP3 |EP4 | EP5 |EP6 |EP7 |EP8 |EP9 | RMSE

TPA | 0.105 | 0.074 | 0.170 | 0.100 | 0.242 | 0.242 | 0.000 | 0.314 | 0.199 | 0.120 | 0.396

RFM | 0.105 | 0.074 | 0.328 | 0.167 | 0.242 | 0.242 | 0.000 | 0.314 | 0.170 | 0.100 | 0.417

5. Conclusions. We proposed a feature matching-based approach to measure the defor-
mation field from MR images. The proposed approach uses matched feature point pairs to
measure the local deformation, then interpolates the deformation field of every pixel via
the deformation field of nodes of Dealunay triangles constructed using the corresponding
points. The preliminary experiment results reveal that the proposed approach is effective.
Advantages of the proposed approach include:

1). Comparison with the existed non-rigid registration approach, the proposed ap-
proach can be use in both image registration and deformation measurement areas.
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2). Comparison with deformable models which used in the deformation measurement,
the proposed featuring matching-based approach can measure deformation not only on
the contour of object, but also in the inner of object.

3). The feature matching based approach for deformation measurement does not need
the initial contour of an object. This is independent of the shape of the initial contour.

4). The proposed approach is more suitable for dense deformation fields measurement
of non-rigid non-uniform object, due to take into account the local deformation direction
information.

However, limitations need to be further addressed include:

1). The accuracy of deformation fields depends on the number of feature pairs in
PMS, sparse feature pairs usually lower the accuracy of deformation fields. Therefore the
proposed approach will not suitable for those data which cannot extract enough feature
points.

2). False matches appeared in the PMS will affect the accuracy and reliable of obtained
deformation fields. Therefore, good method needs to be proposed to remove false matches.
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