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ABSTRACT 
 

A differential geometry based modeling to represent 

deformation path for a belt object is proposed. Adequate 

deformation path of a belt object such as film circuit board or 

flexible circuit board must be generated for automatic 

manipulation and assembly. First, deformation of a belt object 

is described using the direction of the central axis and torsion 

around it. Second, a method to derive an adequate transition of 

the object shape from the initial state to the final state is 

proposed. The adequate deformation transition can be derived 

by minimizing the maximum potential energy during its 

manipulation process. Flexible circuit board can be easily bent 

along the central axis, but it must not be twisted around the 

central axis because it may cause the crack at the transverse 

edges leading to wiring disconnection. So, more suitable 

deformation path is considered so that the stress in a belt object 

is small. 

INTRODUCTION 
 

 Due to downsizing of various electronic devices such as 

notebook PCs, mobile phones, digital cameras, and so on, more 

film circuit boards or flexible circuit boards illustrated in Fig.1 

are used instead of conventional hard circuit board. It is 

difficult to assemble such flexible boards by a robot because 

they can be easily deformed during their manipulation process 

and they must be deform in the final state. For example, the 

flexible circuit board shown in Fig.1-(a) must deform to the 

objective shape illustrated in Fig.1-(b) to install into the hinge 

part of a flip phone. Therefore, analysis and estimation of 

film/flexible circuit boards is required. 

In computer graphics, a deformable object is represented by a 

set of particles connected by mechanical elements[1]. Recently, 

fast algorithms have been introduced to describe liner object 

deformation using Cosserat formulation[2]. Cosserat elements 

possess six degrees of freedom; three for translation 

displacement and three for rotational displacement. Flexure, 

torsion, and extension of a liner object can be described by use 

of Cosserat elements. In robotics, insertion of a wire into a hole 

in 2D space has been analyzed using a beam model of the wire 

to derive a strategy to perform the insertion successfully[3][4]. 

Kosuge et al. have proposed a control algorithm of dual 

manipulators handling flexible sheet metal[5]. Lamiraux et al. 

have proposed a method of path planning for elastic object 

manipulation with its deformation to avoid contact with 

obstacles in a static environment[6]. Saha and Isto proposed a 

motion planner for manipulating ropes and realized tying 

several knots using two cooperating robot arms[7]. In 

differential geometry, curved lines in 2D or 3D space have been 

studied to describe their shapes mathematically[8]. Moll et al. 

 
 

(a) Natural shape     (b) Objective shape 

 

Fig. 1. Example of flexible circuit board 
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have proposed a method to compute the stable shape of a liner 

object under some geometrical constraints quickly based on 

differential geometry[9]. It can be applied to path planning for 

flexible wires. Jian proposed the modeling method for 

deformable shell-liked object[10]. 

As above, the modeling method to represent deformable 

object deformation and the method to manipulate it has been 

proposed. However, to my knowledge, there is not a research to 

estimate the deformed shape and load condition of it during its 

manipulation process. A flexible circuit board is a deformable 

object. So, it is possible to be deformed to contact with itself or 

obstacles in a static environment. In addition, a flexible circuit 

board is precision mechanical equipment. This means that it is 

possible to make fracture when it is deformed largely during its 

manipulation process. It can be easily bent along the central 

axis, but it must not be twisted around the central axis because 

it may cause the crack at the transverse edges leading to wiring 

disconnection. So, it is required to estimate the deformation 

shape and load condition of the object during its manipulation 

process.  

In solid mechanics, the Kirchhoff theory for thin plates and 

Reissner-Mindlin theory for thick plates have been used[11]. 

For extremely thin plates, the inextensional theory was 

proposed[12]. In this theory, it is assumed that the middle 

surface of a plate is inextensional, that is, the surface of the 

plate is developable. Based on these theories, the deformed 

shape and load condition of the object can be calculated using 

the Finite Element Method (FEM). However, the high aspect 

ratio of thin objects often causes instability in computation of 

deformed shapes. Wakamatsu has proposed a differential 

geometry to represent linear object deformations and path 

planning[13]. In this paper, we apply this theory to deformation 

and deformation path of a belt object and propose the 

manipulation planning so that the object deforms with little 

damage during its manipulation process. 

 

MODELING OF BELT OBJECT 

DESCRIPTION OF DEFORMED SURFACE 

 

In the case of a thin object, one dimension is assumed to be 

successfully small comparing with the other two dimensions, 

namely, 𝑑1 ≪ 𝑑2, 𝑑3. In this paper, we define an object with 

the following aspect ratio as a belt object : 𝑑1 ≪ 𝑑2 ≪ 𝑑3. This 

implies that the thickness h of the object is sufficiently smaller 

than its width b, and its width b is sufficiently smaller than its 

length L. In manipulation of belt objects such as film/flexible 

circuit boards, flat cables, and so on, they bend and twist 

mainly and their expansion/contraction can be negligible. In 

differential geometry, a 3D surface which can be flattened 

without its expansion or contraction is defined as a developable 

surface. So, the deformed shape of an inextensible belt object 

corresponds to a developable surface.  

Let u be the distance from one end of the object along the 

central axis in its longitudinal direction and let v be the distance 

from the central axis in the transverse direction of the object. 

Let P(u, v) be a point on the object. In order to describe 

deformation of the central axis of a belt object, the global space 

coordinate system and the local object coordinate systems at 

individual points on the object are introduced as shown in 

Fig.2. Let O-xyz be the coordinate system fixed in space and P-

𝜉𝜂𝜁 be the coordinate system fixed at an arbitrary point P(u, 0) 

on the central axis of the object. Select the direction of 

coordinates so that the 𝜉-, 𝜂-, and 𝜁-axes are parallel to the x-, 

y-, and z-axes, respectively, in the natural state. Deformation of 

the object is then represented by the relationship between the 

local coordinate system P-𝜉𝜂𝜁 at each point on the object and 

the global coordinate system O-xyz. Let 𝝃, 𝜼, and 𝜻 be unit 

vector along the 𝜉-, 𝜂-, and 𝜁-axes, respectively, at any point 

P(u, 0). By analogy with angular velocities of a rigid object, 

partial differentiation of these unit vector with respect to u are 

described by 

 

 

(1) 

 

 

where 𝜔𝜉 , 𝜔𝜂 , and 𝜔𝜁  are infinitesimal ratios of rotation 

angles around the 𝜉-, 𝜂-, and 𝜁-axes, respectively, at point 

P(u, 0). Note that 𝜔𝜉  and 𝜔𝜁  correspond to curvatures of 

central axis in the 𝜂𝜁-plane and in the 𝜉𝜂-plane respectively, 

and 𝜔𝜂  correspond to torsional ratio around the central axis. 

Solving differential equations described by eq.(1) numerically, 

vector 𝝃, 𝜼, and 𝜻 at point P(u.0) can be determined. Let 

𝒙(𝑢, 0) =  𝑥(𝑢, 0) 𝑦(𝑢, 0) 𝑧(𝑢, 0) T be the position vector 

at P(u,0). The position vector can be computed by integrating 

vector 𝜼(u, 0). Namely, 

 

(2) 

 

where 𝒙𝟎 =  𝑥0 𝑦0 𝑧0 T  is the position vector at the end 

point P(0, 0). 

 Next, we consider description of the deformed surface of a 

belt object. According to differential geometry, the normal 

curvature 𝜅 in direction 𝒅 = 𝑎𝜼 + 𝑏𝜻 of the object surface is 

represented as follow: 

 

(3) 

 

where E, F, and G are coefficients of first fundamental form 

and L, M, and N are those of the second fundamental form of 

the surface. These coefficients are defined as follows: 

 

(4) 

duuu
u


0

0 )0,()0,( ηxx 　

22

22

2

2

GbFabEa

NbMabLa






1,0,1  ζζζηηη GFE

 
 

Figure2: Coordinate of belt object 
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(5) 

 

Here, we introduce parameter 𝛿 𝑢, 0 = 𝑁. It corresponds to 

the curvature in the transverse direction. 

The normal curvature κ depends on the direction d and its 

maximum value 𝜅1 and its minimum value 𝜅2 are called the 

principal curvature. Direction 𝒅1 of the maximum curvature 

𝜅1  and direction 𝒅2  of the minimum curvature 𝜅2  are 

referred to as principal directions. A surface is characterized by 

Gaussian curvature K(u, 0) and the mean curvature H(u, 0). 

They are related to the principal curvature 𝜅1 and 𝜅2 by 

 

(6) 

 

(7) 

 

Thus, bending of a surface is characterized by infinitesimal 

ratio of rotation angle 𝜔𝜂 (𝑢, 0) and 𝜔𝜁 (u,0) and the curvature 

in a transverse direction 𝛿 𝑢, 0 . 

If a principal curvature 𝜅2, i.e., the mimimum value of the 

normal curvature is equal zero, the surface is developable. 

Namely, it can be flattened without its expansion or contraction. 

Such surface is referred to as a developable surface. In this 

paper, we assume that a belt object is inextensible. Then the 

deformed shape of the object corresponds to a developable 

surface. Gaussian curvature K of a developable surface must be 

zero at any point. So, the following constraint is imposed on the 

object. 

 

(8) 

 

This implies that 𝛿 can be described by 

 

(9) 

 

The infinitesimal ratio of rotation angle around 𝜉 -axis 𝜔𝜉  

must also be satisfied the following equation because of the 

inextensibility of a belt object: 

 

(10) 

 

POTENTIAL ENERGY AND GEOMETRIC CONSTRAINTS 

 

Let us formulate the potential energy of a deformed belt object 

with Kirchhoff theory[14]. In this paper, we supposed the 

deformation of a belt object as follows: 

1. Straight lines normal to the mid-surface remain straight 

after deformation. 

2. Straight lines normal to the mid-surface remain normal to 

the mid-surface after deformation. 

3. The thickness of the plate does not change during a 

deformation. 

We can formulate the potential energy of a belt object with 

Kirchhoff theory. That is described as follows: 

 

 

 

 

(11) 

 

 

 

where E, G and 𝜐 represents Young's modulus, modulus of 

rigidity and Poisson ratio, respectively. Poisson ratio 𝜐 is zero 

because the deformed shape of the object is developable. 𝜅𝜂 , 

𝜅𝜁 , and 𝜅𝜂𝜁  are curvature in the 𝜂-direction, the 𝜁-direction 

and ratios of rotation angle around the 𝜂 -axis. These 

correspond to −𝜔𝜁 , 𝛿, and 𝜔𝜂  respectively. So, Eq. (11) is 

described by 

 

(12) 

 

 Next, let us formulate geometric constraints imposed on a 

belt object. Let 𝒍 =  𝑙𝑥 𝑙𝑦 𝑙𝑧 𝑇 be a predetermined vector 

describing the relative position between two operational points 

on the central axis of a belt object, P (𝑢𝑎 ) and P (𝑢𝑏 ). Recall 

that the spatial coordinates corresponding to distance u are 

given by Eq.(2). Thus, the following equation must be satisfied: 

 

(13) 

 

The oriental constraint at operation point P(𝑢𝑎 ) is simply 

described as follows: 

 

(14) 

 

where 𝝃𝑐 , 𝜼𝑐  and 𝜻𝑐  are predefined unit vectors at this point. 

Therefore, the shape of a belt object is determined by 

minimizing the potential energy described by Eq.(12) under 

geometric constraints imposed on the object described by 

Eqs.(13) and (14). Namely, computation of the deformed shape 

of the object results in variational problem under equation and 

inequality constraints. 

 

COMPUTATIONAL ALGORITHM FOR BELT OBJECT 
MANIPULATION 

 

Wakamatsu developed an algorithm based on Ritz’s method 

[15] and a nonlinear programming technique to compute linear 

object deformation. That algorithm can be applied to the 

computation of the belt object deformation. 

 Let us express function 𝜔𝜁 (u) and 𝜔𝜂 (u) by linear 

combinations of basis function 𝑒1(u) through 𝑒𝑛 (u): 

 

(15) 

 

where 𝒂𝜻  and 𝒂𝜼  are vectors consisting of coefficients 

corresponding to functions 𝜔𝜁 (u) and 𝜔𝜂 (u) respectively, and 

vector e(u) is composed of basis function 𝑒1(u) through 𝑒𝑛 (u). 

Substituting the above equation into Eq.(12), potential energy 

𝑈1 is described by a function of coefficient vectors 𝒂𝜻 and 

𝒂𝜼. Constraints are also described by conditions involving the 

coefficient vectors. Consequently, the deformed shape of a belt 

object can be derived by computing a set of coefficient vectors 
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𝒂𝜻  and 𝒂𝜼  that minimizes the potential energy under the 

constraints. The minimizing problem can be solved by use of a 

nonlinear programming technique such as multiplier 

method[16]. 

Let us compute the belt object deformation. The natural 

shape of the belt object is illustrated in Fig.3-(a). It is 200mm 

long, 20mm wide, and 0.14mm thick. Positional and 

orientational constraints are shown in Fig.3-(b). Fig.4 shows the 

computational results. In this approach, computation was 

performed on two 2.0GHz AMD Operation 246 CPUs with 

3GB memory operated by Solaris 10. Program were compiled 

by a Sun C Compiler 5.8 with optimization option O5. It took 

about 10 minutes to compute. 

 

DEFORMATION PATH PLANNING FOR BELT OBJECT 
DEFORMATION 
 

In manipulation of a deformable belt object, the object is 

often deformed from one shape into another. Let us determine 

appropriate deformation path from an initial shape to a goal 

shape. It is generally required to deform a belt object with little 

damage. Excessive potential energy of a belt object can be 

easily transformed into kinetic energy by a small disturbance 

force, in which case the shape of the object may become 

unstable and change dynamically. Thus, the potential energy of 

a belt object should be small during its deformation process. It 

is found that a deformable path that minimizes the value of the 

maximum potential energy is preferable.  Recall that the 

deformation of a belt object can be described by coefficient 

vectors corresponding to 𝜔𝜁 (u) and 𝜔𝜂 (u). Let a be a 

collective vector of these coefficients. One deformation 

corresponds to a point in coefficient space. The deformation 

process of a belt object is then given by a path in the coefficient 

space Let 𝒂0  and 𝒂1  be the initial and goal 

deformations,respectively, and let 𝒂 𝑘  (0 ≤ 𝑘 ≤ 1) be a path 

from the initial deformation to the goal deformation. Note that 

functions 1 − 𝑘, 𝑘, 𝑘𝑖 1 − 𝑘 (𝑖 = 1,2 ⋯ ) , and k 1 − k j(j =
1,2 ⋯ ) are a set of bases of a function space. Then, any path 

can be approximately by a linear combination of these base 

functions 

 

(16) 

 

where 𝒃𝑖 ,0, 𝒃𝑗 ,1 are expansion coefficients. Any path can be 

represented by an infinite number of coefficients vectors: 

𝒃𝑖 ,0, 𝒃𝑗 ,1.  Let b be a collective vector consisting of these 

coefficient vectors, which is referred to as the deformation path 

vector. The deformation path vector b determines a deformation 

path from the initial deformation 𝒂 𝒃, 0 = 𝒂0  to the goal 

deformation 𝒂 𝒃, 1 = 𝒂1. Vectors a(b, k) corresponds to an 

intermediate deformation along the path. 

 Let U(b, k) be the potential energy of a belt object with 

deformation a(b, k). Let 𝑈𝑚𝑎𝑥 (𝒃) be the maximum of the 

potential energy along a deformation path represented by b: 

 

(17) 

 

Recall that geometric constraints imposed on an object can 

be described by a set of functions of vector b. Consequently, it 

is found that the optimal deformation path can be derived by 

minimizing the function 𝑈𝑚𝑎𝑥 (𝒃)  under the geometric 

constraints. 

Let us show a numerical example in order to demonstrate 

how deformation path is computed by our approach. The 

natural shape of the object is illustrated in Fig.3-(a). Both ends 

of the object are fixed as shown in Fig.3-(b) and the object is 

deformed from being convex upward to being convex 

downward. Fig.5 shows the computed optimal deformation 

path. Fig5-(a) shows the initial shape of the belt object and 

Fig.5-(f) shows the goal shape of it. It took about 2 hours to 

compute the deformation path. 

 

EXTENSIBLE MODEL OF BELT OBJECT 
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(a) Initial shape 

 

 
 

(b) Deformed shape 

 

Figure3: Example of belt object deformation 
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(b) Front view             (c) Side view 

 

Figure4: Computational result 
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In this paper, we assumed that a belt object bends and twists 

mainly and their expansion/contraction can be negligible. So, 

we assumed that the surface of the belt object is developable 

surface and Gaussian curvature of the object is zero at any 

points. However, generally, an elastic object can expand and 

contract during its bending or twisting. The surface of the 

deformed object with expansion/contraction is not developable. 

In manipulation, the force that causes the object 

expansion/contraction usually are imposed. When the object is 

extensible, it expands or contracts. However, when the object is 

inextensible, such as film/flexible circuit boards, this force can 

lead to locally excessive stress in the object, instead of 

expansion/contraction. When we evaluate the damage of a belt 

object with the whole potential energy as previously explained, 

the locally excessive stress less contributes to the damage of the 

object. However, locally excessive stress can lead to fracture in 

a belt object. So, the locally excessive stress should be small 

during its deformation process.  

In this paper, the deformation involving expansion/contraction 

is referred as undevelopable deformation. When the surface of a 

belt object is developable, the potential energy of a deformed 

belt object is described as Eq.(12). Here, let us formulate the 

potential energy of a belt object that deforms undevelopably. In 

this paper, the model where the object surface is assumed to be 

undevelopable is referred as extensible model while the model 

explained in Section 2 is referred as inextensible model. When 

a belt object deforms undevelopably, the surface of the belt 

object is undevelopable and Gaussian curvature of the object 

isn’t zero at any points. Furthermore, the central axis can bend 

around𝜉 -axis. The potential energy by this deformation is 

described as follows: 

 

(18) 

 

In addition, when a belt object deforms undevelopably, it 

expands and contracts during its bending or twisting. Namely, 

Poisson ratio 𝜐 isn’t zero in Eq.(11). So, the potential energy 

of the shape including the undevelopable deformation is 

described as follows: 

 

 

(19) 

 

 

Then, modulus of rigidity G can be described as follows: 

 

(20) 

 

Expressing function 𝜔𝜉 (u), 𝜔𝜂 (u), 𝜔𝜁 (u), and 𝛿(𝑢) by linear 

combinations of basis function 𝑒1 (u) through 𝑒𝑛 (u) as 

previously explained, potential energy 𝑈2 is described by a 

function of coefficient vectors 𝒂𝝃 , 𝒂𝜼 , 𝒂𝜻 , and 𝒂𝛿 . 

Constraints are also described by conditions involving the 

coefficient vectors. Consequently, the deformed shape of a belt 

object can be derived by computing a set of coefficient vectors 

𝒂𝝃, 𝒂𝜼, 𝒂𝜻, and 𝒂𝛿  that minimizes the potential energy under 

the constraints.  Fig.6 shows a computational result of a belt 

object deformation with extensible model. It seems that the belt 

object shown in Fig.6 twists more largely than that in Fig.4. 

This is because when Poisson ratio 𝜐 isn’t zero, modulus of 

rigidity G becomes small and the potential energy with respect 

to 𝜔𝜂 (u) less contributes to the whole energy.  

 Moreover, let us introduce the extensible model into the 

deformation path planning. Let a be a collective vector of 

coefficients vectors 𝒂𝜉 , 𝒂𝜂 , 𝒂𝜁 , and 𝒂𝛿 , and define a(b, k) 

and 𝑈𝑚𝑎𝑥 (𝒃) as represented Eqs.(16) and (17). Consequently, 

the new optimal deformation path can be derived by 

minimizing the function 𝑈𝑚𝑎𝑥 (𝒃) with the same algorithm 

previously mentioned. Fig.7 shows the computational result of 

new optimal deformation path. It seems that the shapes in the 

deformation path obtained with extensible model are also more 

twisted. 

 

COMPARISON OF TWO MODELS  
 

In this section, the computational results obtained with two 

models will be verified. The model that can be developable 

surface is referred as inextensible model. First, the 

computational results obtained with inextensible model and 

extensible model will be verified by measuring the deformed 

shape of the belt object. We measured a belt-shaped flexible 

polystyrol sheets with 3D scanner. It is 200mm long,20mm 

wide, and 0.14mm thick. Young’s modus E is 3.0GPa and 

Poisson ratio 𝜐 is 0.34. Fig.8 shows the experimental result. 

Fig.9-(a) and Fig.9-(b) show the computational results obtained 

with inextensible model and extensible model respectively. As 
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Figure5: Deformation path for a belt object 
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Figure8: Experimental result 

 

    
 

(a) inextensible model      (b)extensible model 

 

Figure9: Computational result 
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shown in these figures, both computational results are well 

coincide with the actual shape. This means that, actually, the 

surface of a belt object is nearly developable surface and a belt 

object bends and twists mainly and their expansion/contraction 

can be negligible. Second, in both shapes shown in Fig.9-(a) 

and Fig.9-(b), the locally stress is verified, and the point which 

is subjected to maximum stress is calculated. The strain in a 

belt object is represented with the curvature 𝜔𝜉 (u), 𝜔𝜂 (u), 

𝜔𝜁 (u), and 𝛿(u) as follows: 

 

 

 (21) 

 

 

As mentioned before, u is the distance from one end of the 

object along the central axis in its longitudinal direction, v is the 

distance from the central axis in the transverse direction of the 

object, and w be the distance from the neutral plane in the 

vertical direction. The stress in a belt object is described by 

 

 

(22) 

 

 

Moreover, the principal stress is represented as follows: 

 

(23) 

 

where 𝜎1  is the maximum principal stress and 𝜎2  is the 

minimum principal stress. Table 1 shows the value of the 

maximum principal stress of the deformed object shown in 

Fig.9-(a) and Fig.9-(b) and the position where the maximum 

principal stress is occurred. In both cases, the position where 

the maximum principal stress is occurred is the same position. 

However, the maximum principal stress of the deformed shape 

obtained with extensible model is larger than that of the 

deformed shape obtained with inextensible model. This is 

because a belt object can deform undevelopably in the 
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(a) Top view 

 

        
 

(b) Front view             (c) Side view 

 

Figure6: Computational result with extensible model 

 

       
  

(a) k=0.0                (b) k=0.2 

 

      
 

(c) k=0.4                (d) k=0.6 

 

         
 

(c) k=0.8                (d) k=1.0 

 

Figure7: Deformation path for a belt object  

with extensible mode 
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extensible model and undevelopable deformation often causes 

the locally excessive stress in a belt object.  

 

FUTURE WORKS  
 

It is found that undevelopable deformation causes the locally 

excessive stress in a belt object. The locally excessive stress can 

make fracture. So, the undevelopable deformation should be 

small during its deformation process. It is assumed that when 

the potential energy 𝑈2  obtained with extensible model is 

nearly equal to 𝑈1 obtained with inextensible model, a belt 

object less deforms undevelopably and the surface of the 

deformed belt object becomes almost developable. So, new 

potential energy 𝑈𝑛𝑒𝑤  can be defined as follow: 

 

(24) 

 

where 𝑐1 and 𝑐2 are the weighting factors of whole potential 

energy and undevelopable deformation respectively.  The 

deformation path of a belt object is determined by minimizing 

the new potential energy 𝑈𝑛𝑒𝑤  under geometric constraints. As 

a result, a belt object deforms developably and the stress in the 

object becomes small during its manipulation process.  

 

CONCLUSION 
 

A differential geometry based modeling to represent belt 

object deformation and optimal deformation path were 

proposed for manipulation of film/flexible circuit boards. First, 

the deformed shape of a belt object was assumed to be 

developable surface and represented as functions of two 

independent parameters. Then we estimated belt object 

deformation by optimizing these parameters so that potential 

energy of the object attains its minimum value under constraints 

imposed on it. Furthermore, adequate deformation path was 

derived by minimizing maximum potential energy during its 

deformation process.  Second, undevelopably deformed shape 

and deformation path were derived.  Third, the deformed 

shape and the maximum principal stress in the objects obtained 

with inextensible model and extensible model were compared, 

and it was verified that undevelopable deformation causes the 

excessive stress in a belt object. Finally, as future prospects, a 

method to generate the path planning was proposed so that the 

deformed shape of a belt object becomes developable. 
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Table1. Principal stress 

 
 Principal 

stress 

[MPa] 

Position  

(u,v,w) 

[mm] 

Inextensible 

Model 
10.7 (100, -10, -0.07) 

Extensible 

Model 
13.0 (100, -10, -0.07) 

 


