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Abstract

This paper focuses on modeling of bendable cables based on their visual measurement of static and dynamic
deformation. Cable insertion is one of basic operations in electric and automotive industries. Automatic
insertion is desired but the insertion is still done by humans. The barrier against the automatic insertion
of bendable cables is the variance of their deformed shapes. Here we will propose vision-guided individual
modeling to cope such variance.

First, we show a model of bendable cables with nonlinear flexural elasticity. Second, we describe the identi-
fication of model parameters for individual cables based on their visually measured deformation. Experimental
verification demonstrates the proposed approach.
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1 Introduction

This paper presents a modeling of individual cables based on their visual measurement of static and
dynamic deformation. Cable insertion is one of basic operations; this operation often appears in electric
and automotive industries. This operation depends on human work up to now though automatic insertion
is desired for the past decades. The barrier against the automatic insertion of bendable cables is the
variance of their deformed shapes. Individual cables exhibit different deformation, even though their
natural shapes are identical. This suggests that motion of an assembly robot must change according
to individual cables. Manipulation of deformable objects has been studies in the past decade [1, 2, 3].
Insertion of flexible wires has been studies [4, 5, 6, 7] but the variance among wires is out of focus.

One approach to change the motion of an assembly robot is visual servoing, where visual images are
fedback to the robot synchronously to the robot motion. This approach can cope with any deformation
that may happen in actual operation. Unfortunately, capturing successive images, transmitting them to
a image processor, and image processing synchronous to robot motion control require special hardwares,
which results in high cost and low applicability. Thus, alternative approach is needed.

Individual cables exhibit different deformation, implying that a set of physical parameters of each cable
differs from one another. But, the set of parameters appears to be time-invariant, since deformations of
one cable coincide one another. Thus, once the set of parameters of each cable is identified, we can
simulation the deformation of the cable so that the insertion will be successful. This paper apply this
approach, which is referred to as individual modeling. Modeling of deformable objects has been studied
extensively [8, 9, 10]. Modeling of linear objects has been proposed [11, 12, 13, 14, 15]. Unfortunately,
identification of linear object models has not studied well.

In Section 2, we will show the insertion of bendable cables in the vertical plane. Section 3 presents the
modeling of individual cables based on their static and dynamic deformation. Section 5 shows experimental
results on individual modeling of cables as well as the guidance of cables. Section 6 concludes this paper.

2 Insertion of Bendable Cables

Figure 1 illustrates the operation to be tackled in this paper. Operation is to guide the top of a
bendable cable to the predetermined destination area, which represents a hole in which the cable inserted.
We focus on two-dimensional deformation of a cable. An assembly robot, which works in the vertical
plane, grips a bendable cable at one point on the cable. The gripping point is apart from the top so that
the cable can be inserted into the hole.

Figure 2 demonstrates static deformation of cables. We used flat cables of thickness 0.1 mm, width
16.0mm, and line density of 7.4g/m. A robot grasps a flat cable at the point 100mm apart from its
top. Figure 2-(a) shows a superimposed image that shows the deformation of eight cables. As shown in
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Figure 1: Operation to guide the table top to destination area
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(a) measured deformation of eight cables (b) deformation of three cables

Figure 2: Different deformation of cables with same geometry

the figure, the static shapes of eight deformed cables differ from one another. The difference at the top
reached to 13.04mm at its maximum. We applied a sequence of image processing algorithms to extract
the deformed shape of a cable. We divided the total length of a cable into 10 regions, implying that the
extracted shape consists of 11 points. Figure 2-(b) shows the extracted shape of three deformed shapes
out of measured deformations given in Figure 2-(a).

Figure 3 demonstrates dynamic deformation of a cable. Moving the gripping point 50 mm downward
by an assembly robot yields the vibration of the top of a cable. Figures 3-(a) and (b) describe the vertical
and horizontal trajectories of the cable top and the gripping point. As shown in the figures, the cable top
trajectory differs from the gripping point trajectory, implying that the cable deforms dynamically during
the operation. Consequently, we have to cope with the variance of cable deformation as well as dynamic
deformation of cables to perform the insertion of bendable cables.

3 Model of Bendable Cables

We focus on cable deformation in two-dimensional vertical plane. Assuming that the cable thickness
is negligible, we find that the deformed shape is described by a curve in the vertical plane. Assume that
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Figure 3: Dynamic deformation of cable



(a) angle from horizon (b) bending angle

Figure 4: Cable model

a robot grasps a cable and grasping region is given by horizontal planes. The deformed shape is given
by the free side of the cable. Let us approximate the deformed shape of a cable by a sequence of n line
segments, as illustrated in Figure 4-(a). Let Py be the top nodal point of the cable and P,, be its base
point. The deformed shape of a cable is then described by (n 4+ 1) nodal points. Dynamic deformation of
a cable is determined by these nodal points g through P,,. Additionally, let us introduce nodal point P, 1
to describe the region of a cable gripped by a robot. Note that the position of P,, and P,,41 is determined
by the motion of the robot.

We apply particle-based modeling; mass of a cable is distributed to nodal points. Let us equally
distribute the mass of a cable into n nodal points; o through P,,_;. Let m be the mass of these nodal
points. Let 6; (1 =0,1,---,n — 1) be the angle from the horizon of line segment P;;1P;. Since grasping
region is a horizontal plane, let #,, = 0. Then, as illustrated in Figure 4-(b), bend angle of a cable at P,
is given by ¢;, which is defined as

¢i =0; —0ir1, (i=0,1,---,n—1). (1)

Let [ be the length of line segments. Let ; = [z, y; ]T be the position vector of P;, which is described by
= cos 6
L — _ J
Ti=Tn IZ[sinﬁj ]’ (2)
j=i

where x,, is determined by the motion of a robot.
Let K; be the coefficient of flexural rigidity corresponding to angle ¢;. Flexural potential energy of
the cable is then formulated as

n—1
1
Uﬂex = E Esz)? (3)
=0

Gravitational potential energy is simply formulated as

n—1
Ugrav = Z mgy;. (4)
=0

Total potential energy is given by the sum of the above two energies:
U= Uﬂex + Ugrav- (5)

According to the variational principle statics, the above potential energy reaches to its minimum at the
stable deformation of a cable, implying that the partial derivatives of the potential energy with respect to

¢1 to ¢, vanish:
ou

Grs

Computing the above partial derivatives, we have

:07 (ZZO,]_,,H—].) (6)

Ki¢i —mgly (n—k)cosb, =0, (i=0,1,---,n—1). (7)
k=1
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Figure 5: Comparison between uniform and non-uniform models
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Figure 6: Comparison between linear and nonlinear models

Note that the first term K;¢; denotes linear elastic torque caused by cable bending. We can replace this
term by any nonlinear term. In this paper, we will apply the following term:

i = KoY, (8)

where NV be the exponent Here we assume the bending stiffness is not uniform. In addition, we introduce
exponent n to describe nonlinear nature of the cable bending.
In the formulation of dynamic deformation, we will introduce viscous term, resulting in

7 = Kol + Cy, (9)

where C' be the coefficient of bending viscosity. Torque around P; is equivalently converted into forces
at P; and its two neighboring nodal points, P;_; and P;;;. In addition, we will introduce virtual an
extensional Voigt model between neighboring nodal points so that the length of a line segment remains [.
Selecting a large value for the spring coefficient of the virtual Voigt model, the length of a line segment
remains almost equal to [. Solving the dynamic equations of motion with respect to xg through x,
under given x,, we can compute the deformation of a cable.

4 Individual Modeling of Cables

This section focuses on the individual modeling of bendable cables. A stable deformed shape satisfies
the following equations:

Ki¢Y =mgl) (n—k)cosgp, (i=0,1,---,n—1). (10)
k=1

Static shape of a cable determines ¢; as well as 6;. Given a value to exponent N, we can compute flexural
coefficients Ky through K, ;.

Exponent N and viscous coefficient C' affect the dynamic deformation of a cable. Figure 7 demonstrates
the contribution of model parameters to cable top vibration. Frequency of vibration depends on exponent
N, as shown in Figure 7-(a). Viscous coefficient C' mainly affects the damping ratio of the vibration, as
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Figure 7: Contribution of parameters to cable top vibration
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Figure 8: Cable top motion with vertical displacement 0 mm

shown in Figure 7-(b). Once Ky through K,,_; are determined, we can select appropriate values of N and
C by comparing the measured dynamic deformation with simulation result. Iterating the computation of
Ky through K, _; using static deformation and the computation of N and C' using dynamic deformation,
we finally identify K through K, _1, N, and C.

5 Experimental Results

We have used cables used in Section 2. A robot grasps a flat cable at the point 100 mm apart from
its top. The robot hand then moves from its initial position 50 mm downward and keeps its position for
1000 ms. Assume that parameters of a cable are identified during this period. Then, the robot hand moves
downward by Omm, 10 mm, 20 mm, 30 mm, or 40 mm, then moves 50 mm leftward.

Figure 8 shows the motion of the cable top when the robot hand moves downward by 0 mm, then
moves 50mm leftward. Figure 8-(a) shows experimental and simulated results. Figure 8-(b) denotes the
error between the two results. Figure 9 shows the motion of the cable top when the robot hand moves
downward by 10mm, then moves 50 mm leftward. Figure 10 shows the motion of the cable top when
the robot hand moves downward by 20 mm, then moves 50 mm leftward. Figure 11 shows the motion of
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Figure 9: Cable top motion with vertical displacement 10 mm
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Figure 10: Cable top motion with vertical displacement 20 mm
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Figure 11: Cable top motion with vertical displacement 30 mm
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Figure 12: Cable top motion with vertical displacement 40 mm
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Figure 13: Three cables used in experiment
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Figure 14: Trajectory of cable top for selected operation

the cable top when the robot hand moves downward by 30 mm, then moves 50 mm leftward. Figure 12
shows the motion of the cable top when the robot hand moves downward by 40 mm, then moves 50 mm
leftward. As shown in the figures, simulation results almost agree with experimental results, implying that
we can estimate the dynamic deformation of a cable through simulation once parameters of the cable are
identified.

Let us verify if the cable top of cables can be guided to the destination area. We used three cables
shown in Figure 13. As shown in Figure 13-(a), the cables exhibit different static shapes. Figure 13-(b)
describes the extracted nodal points of each cable, which are used in identification. Figure 14 shows the
trajectories of the cable top of the three cables. As shown in Figure 14-(a), the three trajectories differ
one another but all trajectories pass the destination area, as shown in Figure 14-(b). In this case, one of
downward distance was selected among 21 distances between 0 mm and 40 mm with interval of 2mm, so
that the cable top passes the destination area. Figure 15 denotes both cable top motion and robot hand
motion. As shown in the figure, robot downward motion depends on cables.

Figure 15: Cable top motion and robot hand motion



6 Conclusion

We have proposed vision-guided modeling of individual cables. We used static and dynamic deforma-
tion of a cable to build an individual model. We showed that the simulated deformation almost agreed
with actual deformation and that the cable top passed destination area once individual model was built.

Individual modeling requires many dynamic simulations, which consume much time. We have to speed
up the simulation for reduce the time for individual modeling. We need to introduce visual feedback to
reduce the current error.
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