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Abstract

A systematic approach to the modeling of de-
formable strings such as cords and ropes is pre-
sented. There exist many mantpulative operations that
deal with deformable objects in the environments that
robots are expected to take active parts, while rigid 0b-
ject manipulation has been a main interest in most
researches on robotic manipulation. Manipulative op-
erations that deal with deformable objects is thus a
challenging issue in robotic manipulation.

In this article, we will present a static formulation
of the deformation of strings. First, a generalized co-
ordinate system appropriate to describe the string de-
formation is introduced. Secondly, internal energy of a
string and geometric constraints imposed on it are for-
mulated. Deformation of the string is then computed
by use of nonlinear programming techniques. Finally,
numertcal examples and expertmental results demon-
strate the effectiveness of the proposed approach.

1 Introduction

In the past decades, many researchers have been in-
terested in robotic manipulation and many approaches
and methods have been presented. Most of these
works focus on manipulation of rigid objects. Namely,
manipulative operations such as grasping, pick-and-
place operation, assembly, and disassembly of rigid
objects have been taken into consideration. Investi-
gating manufacturing fields and viewing our living en-
vironment, however, there are many operations that
deal with deformable soft objects. For example, many
manufacturing processes deal with deformable objects
such as rubber tubes, sheet metals, cords, leather
products, and paper sheets. There exist many deform-
able soft objects such as clothes and foods in our daily
life. Soft tissues including muscles and skin are ma-
nipulated in medical operations. Robotic machine sys-
tems are expected to take active parts in these envi-
ronments. Manipulation of deformable object manip-
ulation is thus an important research issue.

Automatic handling of deformable parts in shoe
and garment manufacturing have been studied [1].
These studies have been done for individual processes
independently and few systematic approaches have
been developed yet. Solid mechanics has been studied
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for a long time in order to analyze deformation of a
solid body by investigating the relationship between
stress and strain of the object [2]. Tt is not easy to an-
alyze large deformation of a soft object such as paper
and leather by solid mechanics approach, which basi-
cally deals with small deformation of a solid body. In
computer graphics, some methods to represent shapes
of curved lines and curved surfaces has been proposed
[3]. Shape of cloths [4] and shape of elastic objects [5]
have also been studied. These studies are not applica-
ble to manipulative operations of deformable objects
directly since they mainly focus on deformed shapes
of objects and manipulation processes are not formu-
lated there.

Solid modeling techniques [6] have been applied to
the studies on manipulation of rigid objects so that
the model of the manipulated objects can be built.
Thanks to the solid modeling techniques, a system-
atic approach to the manipulation of rigid objects has
been developed recently. On the contrary, we have
no systematic method of modeling deformable objects
during their manipulative operations.

In this article, a systematic approach to the formu-
lation of deformable strings such as cords and ropes
is presented. First, a generalized coordinate system
is introduced to express the deformation of a string.
Secondly, internal energy of a string and geometric
constraints imposed on it are formulated. Deforma-
tion of the string can be computed by minimizing the
internal energy under the geometric constraints. Next,
an algorithm to compute the deformation is developed
based on nonlinear programming techniques. Finally,
simple experimental results are shown to demonstrate
how the deformation is computed by use of the pro-
posed approach.

2 Formulation of String Deformation

2.1 Representation of Deformation

In this section, we will formulate the deformation of
a string in three-dimensional space. The deformation
is formulated by the following steps:

Step 1. Introduce generalized coordinates that can
describe the natural shape and the deformed
shape of the string.



Step 2. Formulate physical quantities of the string.

Step 3. Formulate interactions with other objects
surrounding the string.

Let us introduce the generalized coordinate system
expressing the deformation. Let L be the length of the
object and s be the distance from one endpoint of the
object along it. In order to describe the object shape,
we will introduce a coordinate system fixed on space;
O — zyz. Let ®(s) = [x(s),y(s), 2(s)]? be spatial co-
ordinates corresponding to a point P(s) on the object.
Now, let us focus on the bend deformation of the ob-
ject by ignoring its extensional deformation. Then,
the magnitude of the derivative of ®(s) with respect
to s must be equal to 1, that is, ||de/ds|| = 1, since
the object has no extensional deformation. In order
to describe the bend deformation of a string, we will
introduce a local object coordinates, say P — &n(, at
individual points on the string, as shown in Figure 1.
Select the direction of coordinates so that the &-axis,
n-axis, and (-axis are parallel to z-axis, y-axis, and z-
axis, respectively, in natural state. Bend deformation
of the string is then given by the relationship between
the local coordinates at each point and the global co-
ordinates. Let us describe the orientation of the local
coordinate system with respect to the space coordi-
nate system by use of Eulerian angles, ¢(s), #(s), and
¢(s). The rotational transformation from P — &n¢ to
O — zyz 1s expressed by the following rotational ma-
trix:

CQC¢C¢ — S¢S¢ CsS C¢ + C¢S¢ —SQC¢
—CQC¢S¢ — S¢C¢ —Cg§>¢8¢ + C¢C¢ SgSw
9Co S65¢ Co

For the sake of simplicity, cosé and sin @ are abbrevi-
ated as Cy and Sy, respectively. A unit vector along
(-axis at the natural state are transformed into the
following vector due to the object deformation:

A —sin @ cos ¢
¢(s) = l sin #sin ¢ ] : (1)

cos @

Since the above vector coincides to the derivative
da/ds, the spatial coordinates can be computed by
integrating it. Namely,

x(s) = /05 C(s)ds + ag (2)

where xg = [%o,¥0, 20]7 denotes the spatial coordi-
nates at the endpoint corresponding to s = 0. Note
that this representation satisfies ||da/ds|| = 1.
Extensional deformations can be taken into consid-
eration by introducing a strain at each point P(s).
Let £ be extensional strain at point P(s) on a string
along its central axis. A unit vector along (-axis at the
natural state are transformed into (1 — €){(s) due to
the object deformations. The spatial coordinates are
computed by integrating (1 —e)((s) instead of {(s) in

eq.(2).
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Figure 1: Description of relationship between natu-
ral shape and deformed shape

From the above discussion, we find that the geomet-
rical shape of a deformable string can be represented
by four variables, that is, Eulerian angles ¢, 6, and v
as well as extensional strain €. Note that each variable
depends upon parameter s.

2.2 Internal Energy of String

Variational principles developed in analytical me-
chanics are useful to formulate physical properties of
a deformable string using the introduced generalized
coordinates [7]. In this article, we will derive a stat-
ically stable shape of a string by applying the varia-
tional principle for statics. Dynamical effects during
operations is assumed to be negligible. Let U be the
potential energy of a string and W be the work done
by external forces applied to the string. The varia-
tional principle for statics is given by

5(U— W) =0 (3)

where ¢ denotes variational operator. The above equa-
tion implies that the internal energy U — W of the
string reaches to its minimum at its statically stable
shape. In other words, the stable shape can be com-
puted by solving the minimization problem.

Let us first formulate the potential energy of a
string. Assume that the thickness and the width of
the string is negligibly small. Applying Bernoulli and
Navier’s assumption, the potential energy U is de-
scribed as follows:

U= Uflex + Utor + Uecet + Ugrav (4)

where Usjer, Utor, and U,y represent flexural energy,
torsional energy, and extensional energy of the string,
respectively, and Uy,,, denotes its gravitational en-
ergy.

Let us describe the curvature of a string and its
torsional angle, which are originated from differential
geometry [8], in order to express bend and twist de-
formations. Let k& and w be the curvature and the
torsional angle at point P(s), respectively. The curva-
ture and the torsional angle can be described by use



of Eulerian angles as follows:
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Assume that bending moment and twisting moment
are proportional to curvature and torsional angle at
each point P(s), respectively, over the object. The
flexural energy and the torsional energy are then de-
scribed as follows:

Ly

Uflex = / —Rflfzds,
0 2
Ly

Uior = / — Ryuw?ds
0 2

where Ry and R; represent the flexural rigidity and the
torsional rigidity at point P(s), respectively. Assum-
ing that extensional force is proportional to external
strain at each point P(s), extensional energy is given
as follows:

L
Um:/ ~R.%ds
0 2

where E. denotes the extensional rigidity of the ob-
ject. The gravitational energy is given by

L
Ugrav :/ Dz ds
0

where D represents weight per unit length of the ob-
ject. Note that quantities Ry, Ry, R., and D may vary
with respect to variable s.

Finally, let us formulate the work done by external
forces. Suppose that an external force F'p is applied
to a string at point P(s3). Note that coordinates cor-
responding to P(sj) at natural shape are given by
®o(s;) = [0,0, s¢]¥. Thus, the work done by force Fy,

is described as F7 {®(sy) — ®o(sz)}. Assuming that n
external forces are applied to the object, the resultant
work done by these forces is described as follows:

W:ZF{{w(sk)—wo(Sk)} (5)

k=1

where F'y through F',, are predefined forces acting on
the object at point P(s;) through P(s, ), respectively.

2.3 Geometrical Constraints

Due to the interaction between a string and other
objects such as fingertips and obstacles, some geomet-
ric constraints are imposed on the string. Let us de-
rive the geometric constraints imposed on a string.
The relative position between some points on a string
is often controlled during manipulative operations.

Consider a constraint that specifies the positional re-
lationship between two points on the string. Let
I =1[l1,,,]" be a predetermined vector describing
the relative position between two operational points,
P(sq) and P(sp). The following equational condition
must be then satisfied:

x(sp) —a(s,) =1 (6)

The orientation at some points of the string must be
also controlled during the operation. These orienta-
tional constraints are simply described as follows:

¢(5c) = ¢., 9(50) =4., 1/)(5c) =), (7)

where ¢., 8., and . are predefined angles at one op-
erational point P(s.).

Contact between a string and rigid obstacles in op-
eration space also yields other geometric constraints.
Note that any points on the string must be located
outside each obstacle or on it. Let us describe the
surface of an obstacle fixed on space by equation
h(x) = 0. Assume that value of function h(#) is posi-
tive inside the obstacle and is negative outside it. The
condition that a string is not interfered with this ob-
stacle is then described as follows:

h(x(s)) <0, Vsel0,L]. (8)

Note that the condition that a string is not interfered
with obstacles is described by a set of inequalities,
since mechanical contacts between the objects con-
strain the object motion unidirectionally.

From the above discussion, we find that the geo-
metric constraints imposed on a string are given by
not only equational conditions such as eqs.(6) and (7)
but also inequality conditions such as eq.(8). The de-
formed shape of the object is, therefore, determined by
minimizing internal energy U —W under these geomet-
ric constraints. Namely, computation of object defor-
mation results in a variational problem under equa-
tional and inequality conditions.

3 Computation Algorithm

Computation of the deformation of a string results
in a variational problem, as mentioned in the previous
section. One method to solve a variational problem
is Euler’s approach, which is based on the station-
ary condition in function space. Recall that the geo-
metric constraints resulting from mechanical contacts
are unidirectional and are mathematically described
by inequalities such as eq.(8). These conditions are
nonholonomic constraints [9]. Thus, the shape of a
string that minimizes potential energy does not nec-
essarily satisfy the stationary condition. This implies
that Euler’s approach, which is based on the station-
ary condition, 1s not applicable.

In this paper, we will develop a direct method based
on Ritz’s method [10] and a nonlinear programming
technique. Let us express functions ¢(s), 6(s), ¢¥(s),
and e(s) by linear combinations of basic functions
©1(s) through ¢, (s). Substituting the linear combina-
tions, internal energy U/ — W is described by a function



of the coefficients of the linear combinations. The geo-
metric constraints are also described by conditions in-
volving the coefficients. In addition, discretizing eq.(8)
by dividing interval [0, L] into N small intervals yields
a finite number of conditions. As a result, a set of the
geometric constraints is expressed by equations and
inequalities with respect to the coefficients. The de-
formation of a string can be then derived by comput-
ing the coefficients that minimize the internal energy
under the geometric constraints. This minimization
problem under equality and inequality conditions can
be solved by use of a nonlinear programming technique
such as multiplier method [11].

4 Numerical Examples
In this section, some numerical examples are shown
in order to demonstrate how the proposed method
computes the deformation of a string. The following
set of basic functions are used in the computation of
these examples:
Y1 = 1a Y2 =5,
. 2nws
P2an41 = Sl 7

2nms

Panta = COS (n=1,2,3,4)

In the nonlinear optimization for the computation of
deformed shapes, multiplier method and Nelder and
Mead’s simplex method are applied.

Transition among Shapes The first example
shows the deformation of a string computed by con-
sidering its bending and torsion, say, U = Ugjep +Usor .
Let us reduce a string of its length L along the central
axis of the object. Suppose that the orientation at
one endpoint P(0) is fixed while the rotation around
the central axis of the object alone is allowed at the
other endpoint P(L). Then, we have the following
constraints:

¢(0) = 0(0) = ¥(0) = 0,
sinf(L) =0, cosf(L)=1.

Assume that dimensionless quantity R;/R,, which
characterizes the string shape, is equal to 100. Let us
show the computed shapes corresponding to various
values of the distance between two endpoints; 0.8L,
0.7L, 0.6L, 0.5L, 0.4L, and 0.3L. Computed shapes
of the string are shown in Figure 2. Since the string
shape is not planar for some values of the distance, the
top view, the front view, and the side view are shown
in the figure. The shape of the string is involved in
z-z plane when the distance is equal to 0.8L or 0.7L.
The string i1s twisted and is not involved in any plane
when the distance is equal to 0.6 L or 0.5L. The string
contains one knot when the distance is equal to 0.4L
or 0.3L. Thus, it turns out that the string shape tran-
sits from a knot-free shape into a one-knot shape as
the distance between the endpoints decreases. Recall
that the direction along the central axis of the string
is fixed at both endpoints. This implies that the string
must have a non-planar shape during this transition.
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Figure 2: Example of computed deformation with
shape transitions

Effect of Gravity The second example demon-
strates the computation of string shapes considering
gravitational energy. Assume that the potential en-
ergy of a string consists of flexural energy and gravi-
tational energy, say, U = Ujier + Ugrao. Normalizing
the potential energy and the geometric constraints by
means of dividing variable s by length L, we find that
the shape of the object is determined by the following
dimensionless quantity:

D
=13
P= R,

Quantity p represents the contribution of the gravita-
tional force to the shape of a string. Especially, the
gravitational force is neglected at p = 0.0. The dis-
tance between the endpoints [ 1s fixed to 70 and both
angles from the horizon at these points 8y and A are
equal to 0(rad).

The deformed shapes of a string corresponding to
various values of p; 0.0, 1.0, 2.0, 3.0, 5.0 (x10%) are
shown in Figure 3. As shown in the figure, the height
of the string decreases with increasing quantity p. In
addition, the deformed shape is not symmetric any
more when p exceeds 2.0 x 103. Note that we have
two shapes symmetric each other with respect to the
central vertical line in these cases. One shape of the
two is illustrated in the figure. In order to verify that
the unsymmetrical shape minimizes the potential en-
ergy, let us compute the potential energy of the string
assuming that the string shape is symmetric. We find
that potential energy U is, for example, equal to 0.746
at p = 3.0 x 10® assuming that the deformed shape is
symmetric, while the minimum value of potential en-
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Figure 3: Example of computed object shapes con-
sidering gravity

ergy is equal to 0.518. Namely, the symmetric shape
does not satisfy the condition that the potential en-
ergy reaches its minimum at a stable deformed shape.
This implies that deformed shapes are unsymmetrical
when dimensionless quantity p exceeds a certain value.

Applying External Force and Moment The
third example shows the deformation caused by ex-
ternal force and external moment. Let us assume that
a string deforms along z-z plane and its potential en-
ergy U consists of flexural energy Ugeyx alone. Initial
shape of a string and geometric constraints imposed
on the string are illustrated in Figure 4. Assume that
no moment can be exerted at both endpoints. The
right endpoint may lose contact with the right finger-
tip. The constraints are then described as follows:

0(0) = 0(1) = 0,
#(L)=0, «(L)—~1<0,
2(s) >0, Vs €0,L]

Reduce a string of its length L to I = 0.8L be-
forehand. Then, let us exert an external force at a
point corresponding to sex = 0.5L in the direction of
0, = 3n/4 from the horizon. The deformed shapes
are plotted in Figure 5-(a). From this figure, we find
that the contact at the right endpoint is lost when the
magnitude of the force exceeds 0.14R; /L. Next, let us
exert an external moment to the initial shape where
! = 0.8L around the y-axis at a point corresponding
to sex = 0.5L. The deformed shapes are plotted in
Figure 5-(b). From this figure, we find that the con-
tact at the right endpoint is lost when the magnitude
of the moment exceeds 0.17R;.

5 Experimental Results

In this section, we will compare the measured de-
formation and the computed deformation in order
to demonstrate the validity of the proposed method.
Note that the proposed method can be applied to the
deformation of thin objects such as paper and sheet
metals around one axis by investigating the cross sec-
tion perpendicular to the axis. Let us measure the

Figure 4: String reduced beforehand by fingers
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Figure 5: Deformation of string due to external force
and moment

deformation of two sheets of copy paper of 92(um)
thick shown in Figure 6-(a) and (b), respectively.
Figure 6-(a) shows a rectangle of 200(mm) long and
30(mm) wide. The bend rigidity R; and the weight
D per unit length of this paper are 10%(gw - mm?)
and 2 x 1073(gw/mm), respectively. This paper is de-
formed so that the distance ! be 180, 140, and 70(mm).
In the computation, we assume that angles #(0) and
O(L) are equal to zero. The difference between the
computed values and experimental values along z-axis
is 11(mm) at most. The ratio of the difference to the
length of the paper is approximately 6%. The differ-
ence between the computed shapes and the measure-
ment values results from the discrepancy between the
given values and the actual values of angles #(0) and
G(L). From the measurement values, we estimate that
angles 6(0) and #(L) are actually equal to 10° and
0°, respectively. The computed values using the esti-
mated angles are illustrated in Figure 7. The differ-



o 200mm - i
‘ i
! A
30mm v

Figure 6: Experimental paper sheets

ence between the computed values and experimental
values along z-axis is 2(mm) at most. Namely, the
ratio of the difference to the paper length is reduced
to 1%.

Figure 6-(b) shows a trapezoid of 200(mm) long
with a left side 50(mm) long and a right side 100(mm)
long. The bend rigidity R; and the weight D of
this paper can be given by 330b(gw - mm?) and 7b x
10~%(gw/mm), where b denotes the width of the pa-
per. Note that the width b, which is given by 50+ s/4,
depends upon variable s. Thus, the bend rigidity and
the weight vary according to variable s. The proposed
method has a capability of computing the deformation
in the case where the bend rigidity or the weight per
unit length varies. Let us reduce this paper so that the
distance [ is equal to 160(mm). Without using esti-
mated values of endpoints, the difference between the
computed values and experimental values along z-axis
is 8(mm) at most. The computed values using the es-
timated angles are illustrated in Figure 8. Note that
the deformed shape of the object is unsymmetrical
due to the ununiformity of the bend rigidity and the
weight per unit length. This figure demonstrates the
proposed method can compute unsymmetrical shape
correctly. The difference between the computed val-
ues and experimental values along z-axis is 2(mm) at
most. Namely, the ratio of the difference to the paper
length is reduced to 1%.

6 Concluding Remarks

An analytical approach to the formulation of
deformable strings in three-dimensional space has
been developed based on the physical properties of
the strings. First, we showed that the relationship be-
tween a natural shape of a string and its deformed
shape should be represented in order to describe the
string deformation. One generalized coordinate sys-
tem was introduced so that the string deformation can
be described appropriately. Secondly, internal energy
and geometric constraints of a string were formulated
using the introduced coordinates. It turned out that
not only equational constraints resulting from prede-
fined condition on the string motion but inequality
constrains resulting from unidirectional nature of me-
chanical contacts are imposed on the string. Next,
a procedure to compute the string deformation has
been developed by applying nonlinear programming
techniques. Some numerical examples and experimen-
tal results have demonstrated the effectiveness of the
proposed approach.
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Figure 7: Computed deformed shape and measured
deformed shape of rectangle paper
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Figure 8: Computed deformed shape and measured
deformed shape of trapezoid paper
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