Ecoles Polytechniques Fédérales de Lausanne June 23, 2008

How Softness Contributes to Human Dexterity

Shinichi Hirai Dept. Robotics, Ritsumeikan Univ. http://www.ritsumei.ac.jp/se/~hirai/

Humans exhibit outstanding dexterity

Science source of dexterity

Engineering dexterous hands

Background (1/3)

Humans exhibit outstanding dexterity

What's the sources of dexterity

brain-nerve system binocular eyes tactile receptors else?

Background (2/3)

Brain-nerve system

delay in signal transmission (30 – 50 ms)

Why humans can manipulate objects despite of delay?

Background (3/3)

Does this structure contribute to dexterity?

Human finger

soft fingertip hard fingernail on the reverse side

Differs from animals

Can control grasping force

Observations (4/4)

Fix two fingers and apply external force to pinched object

Object rotates without slip

Findings from observations

A pair of 1-DOF fingers with soft tips

can control grasping force and object posture independently against Arimoto et al.'s claim

grasped object can rotate even if the two fingers are fixed

Model compatible with the observations

Modeling (1/7)

Arimoto et al.

A pair of 1 DOF fingers cannot control object posture

Discrepancy between the observation and the claim

Based on radially distributed model

Modeling (2/7)

Radially distributed model

Contact force passes the center of hemisphere

Two fingertips cause non-zero moment around the object

The **3rd DOF** to cancel out the moment

Model verification (2/2)		
Las Francis		
Juneton	parallel model	
90	80	
70 0 80 0 50 0 40 0 940	2 70 8 60	
9 40 7.5 (mm)	2 50 P.5 (mm)	
4.0 [mm] 2.0 [mm]	20 4.0 [mm]	
10 ************************************	10 2.0 jiweg	
-30 -20 -10 0 10 20 30 Orientation θp[deg]	-30 -20 -10 0 10 20 Orientation θp [deg]	

Object rotates without slip as observation Robust against external force

Radial vs parallel models

Sum of two fingertip potential energies around equilibrium point with two joints fixed

Radial model --- saddle point Parallel model --- local minimum no continuous feedback needed

Rigid vs. soft fingertips		
	G	M
	rigid fingertips	soft fingertips
stable grasping	A pair of 1-DOF fingers (2DOF)	A single 1-DOF finger (1DOF)
stable grasping & posture control	1 DOF and 2-DOF fingers (3DOF)	A pair of 1-DOF fingers (2DOF)

Discussion (1/2)

- Parallel distributed model with tangential deformation meets observations
- Experimental model verification force magnitude depends on object posture
- Dynamics of manipulation process simulation and experiment validate parallel model

Discussion (2/2)

- Finger joint angle control object motion is stabilized without object information
- Response to external force meets observations robust against external force

Fingertip model

Is our theory applicable to human manipulation?

Need to measure inner deformation of fingertips

Inner deformation

Compute deformation field from MR images before and after deformation

Estimate non-uniform physical parameters from deformation field

MR images

Image processing Deformation field

Deformation field computation

Robust matching

Candidate generation

Obtain a set of many-to-many candidate matches using correlation score

Consistency check

Eliminate false matches so that candidate matches be globally consistent based on energy function

Ongoing Issues

- Measuring fingertip deformation during human manipulation
- Simulation of skin deformation
- Identification of physical parameters

Measuring human fingertips

pinch motion

pen grasp

Elastic-plastic deformation

Simulating skin deformation

Thank you for your attention

