Ecoles Polytechniques Fédérales de Lausanne June 23, 2008

Jumping via Deformation

Shinichi Hirai Dept. Robotics, Ritsumeikan Univ. http://www.ritsumei.ac.jp/se/~hirai/

Agenda

- Principle of Crawling and Jumping
- 2D Motion of Circular Robot
- Simulation
- 3D motion of Spherical Robot
- Conclusion

Circular Robot (2D motion)

8 SMA coils for crawling Toki corp. BMX-100

diameter 40mm weight 3g

Control

hill-climbing

h

Jumping heights

	experiment [mm]	simulation[mm]
(a) cap	480	457
(b) cup	670	669
(c) peanut	970	980
(d) dish	1180	1171

Summary

- Circular robot (2D) jump three times its diameter
- Simulation
 particle-based modeling works well
- Spherical robot (3D) jump twice its diameter
- Jumping height depends on initial shapes
- "Dish shape"
 - small force but long contact time large impulse, higher jump

