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Modeling and Parameter Estimation of Rheological

Objects for Simultaneous Reproduction of
Force and Deformation

Zhongkui Wang
Advisor: Prof. Shinichi Hirai

Abstract

There are many deformable objects in our living life demonstrated rheolog-

ical behaviors, such as human organs and tissues, potteries, clays, and various

food products. Many applications has been involved, including computer aided

surgery, robotics, and food automation. Rheological object has both elastic and

plastic properties. Due to the presence of residual deformation, it is difficult

to model rheological objects, especially to reproduce both rheological force and

residual deformation simultaneously.

This thesis aims at modeling and parameter estimation of rheological ob-

jects for simultaneous reproductions of both rheological force and deformation.

Physically-based models were firstly investigated for describing rheological be-

haviors and were summarized into two groups: serial and parallel models. Gen-

eralized constitutive laws of both groups were formulated. Analytical expressions

of rheological forces and residual deformation were derived for parallel models.

We found a contradiction between the reproductions of rheological force and de-

formation. To solve this problem, a dual-moduli viscous element was introduced.

2D and 3D FE dynamic models were developed and then extended to deal

with non-uniform layered objects and contact interaction between objects as well.

Criterions for detecting the contact moment were established. In addition, to

cover large deformation and deformation with rotation motion, FE model with
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nonlinear Green strain tensor was developed and simulation results were presented

as well.

Methods for estimating the parameters involved in the FE model were pro-

posed based on nonlinear optimization, which aims at minimizing the difference

between simulation (or calculation) results and experimental measurements. Ba-

sically, two ideas were investigated. One is based on iterative FE simulation and

the other is based on the straightforward calculation of rheological forces by tak-

ing the advantages of parallel structure of the physical model. We have tested

both methods for estimating the parameters of our FE model.

Various compression experiments with commercial available clay and Japanese

sweets materials were performed. During the experiments, force data and images

of deformed shapes were recorded and used to estimate the physical parameters of

both materials. The estimated parameters and the proposed FE models were then

used to reproduce these experimental behaviors. Finally, by using our FE model

and parameter estimation method, we successfully reproduced both rheological

forces and deformation behaviors simultaneously.
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1 the second Lamé constant of the first elastic element in the 5-element

model

µela
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Chapter 1

Introduction

1.1 Modeling of Deformable Objects

There are many deformable objects in our daily life, such as human organs and

tissues, pottery, clay, and various food products. Modeling and simulation of such

deformable objects has been studied for over 20 years and many applications have

been involved, including computer aided surgery, food automation, and robot

manipulation. In our definition, deformable objects were roughly divided into

three categories (Fig. 1.1): elastic object, in which the deformation is completely

reversible; plastic object, in which the deformation is completely maintained; and

rheological object, in which the deformation is partially reversible.

(a) (b)

(c) (d) (e)

Figure 1.1: Categories of deformable objects. (a) Original shape before pushing.

(b) Deformed shape during manipulation. (c), (d), and (e) Deformed shape after

releasing. (c) Elastic object. (d) Plastic object. (e) Rheological object.
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1.1 Modeling of Deformable Objects

E c

(a)

E

c

(b)

E

c1
c2

(c)

c1

E1

E2 c2

(d)

Figure 1.2: Widely used physically-based models: (a) the Maxwell model, (b) the

Kelvin-Voigt model, (c) the Lethersich model, and (d) the Burgers model.

Early work on the modeling of deformable objects can date back to Ter-

zopoulos et al. (1987) and Terzopoulos & Fleischer (1988). They have shown the

advantages of physically-based models over kinematic models for computer ani-

mation and have proposed several physically-based models for simulating inelastic

deformation. Generally, a physically-based model consists of a finite numbers of

elastic and viscous elements connected in a certain configuration. Some famous

physically-based models, such as the Maxwell model1, the Kelvin-Voigt model2,

the Lethersich model3, and the Burgers model4 (Fig. 1.2), were often used to de-

scribe the behaviors of deformable materials. In conventional material tests, e.g.,

force relaxation and creep recovery tests, one-dimensional (1D) models were used

to describe the behaviors of materials. However, along with the developments of

computer, we are able to reconstruct an object with two-dimensional (2D) and

three-dimensional (3D) geometry to achieve more realistic simulation behaviors

of deformable objects.

The most popular methods for 2D and 3D modeling of deformable objects are

the mass-spring-damper (MSD) method [Waters (1987)] and the finite element

method (FEM) [Cotin et al. (1996)]. The MSD method has been used to simulate

cloth animation [Baraff & Witkin (1998)], facial expressions [Kähler et al. (2001)],

and the deformation of a myoma (pathology) [Lioyd et al. (2007)], respectively.

1It was introduced by J. C. Maxwell in 1867.
2It was firstly introduced by L. Kelvin in 1875 and later by W. Voigt in 1889.
3It was firstly introduced by W. Lethersich in 1942.
4It was firstly introduced by J. M. Burgers in 1935.
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1.1 Modeling of Deformable Objects

The MSD method has the advantage of conceptual simplicity and relatively low

computation costs. However, the formulation of MSD method was not based on

continuum mechanics and the simulation accuracy is quite limited. Therefore, a

finite element (FE) model has been used as a reference to calibrate MSD model

based on genetic algorithm optimization [Bianchi et al. (2004)] and analytical

expression [Lioyd et al. (2007)], respectively.

The FE method has proven to be a powerful tool for simulating complex

behaviors of deformable objects. In FE formulation, an object is described by

a set of elements (e.g., triangles in 2D case and tetrahedrons in 3D case). The

dynamic behaviors of the object are then determined by analyzing the behaviors of

individual elements. In recent years, many commercial FE softwares are available

and more and more researchers have been using FE method in their applications.

The FE method has been widely used in computer-aided surgery to simulate the

deformation behaviors of biological organs and tissues, such as porcine liver [Ahn

& Kim (2010)], human skin [Bischoff et al. (2000)], liver [Nava et al. (2008)], and

uterus [Kauer et al. (2002)]. It currently also was employed to model some surgical

operations, such as needle insertion [Hing et al. (2007)] and soft tissue cutting

[Mendoza & Laugier (2003)]. FE method is based on continuum mechanics and

does not suffer from geometry problems. But, it is quite time-consuming. In order

to speed up FE simulation, matrix condensation technology [Bro-Nielsen & Cotin

(1996)] and fast FEM [Bro-Nielsen (1998)] have been proposed. Current parallel

calculation architecture, such as graphics processing unit (GPU), also has been

investigated by Taylor et al. (2009). In addition, to achieve real-time simulation

of soft tissue, other modeling methods were also presented, such as the radial

elements method [Balaniuk & Salisbury (2003)] and the point collocation-based

method of finite spheres [Lim & De (2007)]. The FEM also has been used in food

industry to model food products. For example, FE analysis has been used to

model and simulate the indentation of bread crumbs [Liu & Scanlon (2003)]; FE

simulation has been used to evaluate the dependence of temperature and water

content on process time during meat cooking [Purlis & Salvadori (2005)]; and FE

method also has been employed to calculate food quality and safety losses during

processing, storage and distribution [Martins (2006)].
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1.2 Parameter Estimation of Deformable Objects

To date, the modeling of soft organs and tissues mostly supposed that the

organs and tissues are completely recoverable and the deformation behaviors after

unloading operations are not considered in most applications. Some organs and

tissues, however, may fail to totally recover from the deformation after loading-

unloading operations. Hrapko et al. (2006) found that porcine brain tissue did not

recover completely after a loading-unloading cycle. In vivo experimental results

showed that residual deformation may also present in human liver [Nava et al.

(2008)]. In addition, residual deformation may also exist when biological organs

and tissues suffer from some diseases or undergoing a significant external forces.

Such residual deformations could be handled by rheological models. On the other

hand, modeling and property estimation of food materials were studied so far

mainly on the chemical and ingredient composition point of view for improving

the cooking ability, product quality, and nutrition. As an “engineering material”,

however, it was not well developed. Chua et al. (2003) stated that the most

critical barrier against the application of robotics and automation in food industry

is a lack of understanding of the food product properties as an “engineering”

material for handling operations. We have therefore turn our attention on the

modeling, simulation, and parameter estimation of rheological objects, especially

considering the residual deformations which has not been studied intensively.

1.2 Parameter Estimation of Deformable Ob-

jects

Before simulating any real objects, some physical parameters of the model have

to be available in advance. In conventional material science, material properties

were usually estimated by direct calculation or curve fitting based on the measure-

ments of experimental tests, such as compressive, tensile, force relaxation, and

creep recovery tests [Shames & Cozzareli (1992)]. However, these calculations

and tests were mostly under an assumption of 1D deformation (pure uniaxial

or pure shear deformation). Deformable objects, on the other hand, have more

complex deformation behaviors and sometimes include several different material

properties. Therefore, they have to be simulated as a 2D/3D continuum and
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1.2 Parameter Estimation of Deformable Objects

Force data

Experiment

Simulation

Initial 
parameters

If Solution
Yes

Parameters 

Update

Error

No

Force results

Figure 1.3: Optimization process for parameter estimation.

complex deformation behaviors have to be considered during parameter estima-

tion. It is a quite challenging work to estimate physical parameters for accurately

reproducing the behaviors of deformable objects.

So far, the most popular method used in estimating physical parameters of de-

formable objects is simulation-based optimization, i.e., the simulation is iterated

with updated physical parameters until the difference between the simulation and

experiment becomes minimal, as shown in Fig. 1.3. Using this method, many

work has been done. For example, Kauer et al. (2002) characterized human uteri

in vivo through an aspiration experiment; Hing et al. (2007) investigated the force

behaviors during the insertion of a needle into a porcine liver; Samur et al. (2007)

developed a robotic indenter for minimally invasive measurements and character-

ized the material properties of pig liver; Ahn & Kim (2010) characterized a porcine

liver by indentation experiments with various indentation depths and two different

tip shapes; Tada et al. (2005) performed a compression test inside a magnetic res-

onance imaging (MRI) system and estimated the material properties of a layered

soft tissue; Augenstein et al. (2005) investigated the physical parameters of pig

heart based on cyclical inflation experiments and MRI tagged images with simul-

taneous pressure recordings; and Ikawa & Noborio (2007) calibrated a food dough

which was simulated by a hierarchical MSD model. In order to accomplish the op-

timization problem of the estimation method, many optimization algorithms have

been used, such as Levenberg-Marquardt method [Kauer et al. (2002)], sequen-

tial quadratic programming (SQP) [Augenstein et al. (2005)], genetic algorithm

(GA) [Ikawa & Noborio (2007)] and extended Kalman filter [Hoshi et al. (2007)].
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1.3 Modeling and Parameter Estimation of Rheological Objects

The optimization-based estimation method is quite robust and works well with

different models. However, this method is time-consuming since it is based on

iterative simulations.

Direct calculation and curve fitting methods have also been used to estimate

physical parameters of deformable objects. Farshad et al. (1999) have performed

a series of compressive and shear tests on pig kidney and estimated its phys-

ical parameters by using curve fitting. Sakamoto et al. (2007) formulated a

“Norimaki-sushi” by a 2-layered Maxwell model and directly calculated its phys-

ical parameters by using least squares method based on the measurements of

force and displacements. In order to well capture the force response during the

grasping of the “Norimaki-sushi”, Tsai et al. (2008) used a Fung’s viscoelastic

model to describe the force behaviors of the sushi and employed curve fitting

method to determine the physical parameters. Direct calculation or curve fitting

method for estimating parameters are efficient since no simulation was involved.

However, this method needs the analytical expressions of force or displacement,

which are not always available. Therefore, such method is not always applicable.

In this dissertation, both simulation-based and calculation-based methods will be

discussed and mixed together to achieve better reproductions of both force and

deformation simultaneously.

1.3 Modeling and Parameter Estimation of Rhe-

ological Objects

Rheological object has both elastic and plastic properties. Generally, it is more

difficult to model a rheological object than model an elastic object due to the pres-

ence of residual deformation. Early work on the modeling of rheological objects

was started by Terzopoulos & Fleischer (1988), who have employed a Burgers

model to describe rheological behaviors. However, it is only a conceptual descrip-

tion and no simulation results and information of parameter determination were

given. A plenty of work on modeling and parameter estimation of rheological

objects has been done by Noborio et al. (2003), who have employed a Lether-

sich model and MSD method to construct a food dough, a typical rheological
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1.3 Modeling and Parameter Estimation of Rheological Objects

object [Nogami et al. (2004b)]. They investigated three different mesh config-

urations: the lattice [Yoshida et al. (2005)], the truss [Nogami et al. (2004a)],

and the hierarchical [Ikawa & Noborio (2007)] structures, with decreased MSD

elements connected between nodal points to reduce the computation cost. Two

optimization methods, modified randomized algorithm [Noborio et al. (2003)] and

genetic algorithm [Ikawa & Noborio (2007)], were used to estimate the physical

parameters. As we mentioned above, the MSD model has an advantage of low

computation cost but the simulation accuracy is quite limited and the physical

parameters are dependent on mesh configuration and resolution. A two-layered

Maxwell model [Sakamoto et al. (2007)] and a Fung’s viscoelastic model [Tsai

et al. (2008)] have been used respectively to reproduce the force response of a

sushi when grasped by a robot hand. Good approximations of force behaviors

were obtained. However, both models are still 1D models. In addition, the ISU

exoskeleton technique has been used in modeling clay to simulate an interaction

between virtual clay and a human finger [Chai et al. (1998)].

Interestingly, most above-mentioned work of rheological objects modeling

has focused on either reproduction of deformation alone [Noborio et al. (2003),

Nogami et al. (2004a), Nogami et al. (2004b), Yoshida et al. (2005), Ikawa &

Noborio (2007)] or reproduction of force alone [Sakamoto et al. (2007), Tsai et al.

(2008)]. Reproduction of both force and deformed shapes of a food dough has

been studied by Yoshida et al. (2007) with a MSD model. Experimental results

suggested that shape calibration (parameter estimation by minimizing the dif-

ference of deformed shape) could only yield good shape reproduction and force

calibration only resulted in good force reproduction. It is impossible to reproduce

both force and deformed shape simultaneously by using one set of parameters.

However, they did not mention the reason of this impossibility and how to solve

it. This will be the main concern of this dissertation.

On the other hand, rheological properties of food materials were frequently

studied in food engineering. Many instruments have been developed to measure

rheological properties, such as rheometer, farinograph, and dynamic oscillator,

as reviewed by Mirsaeedghazi et al. (2008). Sivaramakrishnan et al. (2004) have

used a farinograph and a rheometer to assess the rheological properties of var-

ious types of rice dough to determine their suitability for making rice bread.
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1.4 Aim of the Present Work

Wu et al. (2010) have investigated the use of extrusion cooking on pastes by

estimating the dynamic rheological properties of extruded flaxseed-maize pastes

through dynamic oscillation and creep-recovery tests. However, properties tests

and behavior models on food materials are usually carried out in 1D condition

and mainly focusing on chemical and ingredient composition. Our work has been

motivated from an engineering point of view for grasping and manipulating of

rheological objects. Therefore, the object or material investigated in this disser-

tation basically has a 2D or 3D shape and the deformed shapes are always of

concern.

1.4 Aim of the Present Work

As discussed above, the modeling of rheological objects has not been well devel-

oped and mostly is based on MSD modeling method or with a 1D assumption.

An effective approach for estimating physical parameters of rheological objects

has also not been well established. To our knowledge, the residual (permanent)

deformation after loading-unloading operation has not been taken into consid-

eration during the modeling and parameter estimation of rheological objects so

far. The residual deformation might be important in some situations where the

desired shape is needed without any damage. The aim of this dissertation is

the determination of appropriate models for simulating rheological objects and of

their physical parameters in order to reproduce both rheological force and defor-

mation behaviors simultaneously. In other words, we hope that our present work

is able to help us to understand rheological behaviors and to choose an appro-

priate model and parameters for accurately capturing those behaviors, such as

force response, deformed shapes, and final recovered shapes. Possible application

fields of our present work may include surgical simulation, food engineering, and

robot manipulation.

1.5 Dissertation Organization

In Chapter 2, we summarized the physically-based models which can be used to

describe rheological behaviors. According to the configuration among elements,

8



1.5 Dissertation Organization

we divided the physically-based models into two groups: serial and parallel mod-

els. General constitutive laws for both groups were formulated and analytical

expressions of force and residual deformation were derived to discuss the ability

of physically-based model for capturing both rheological forces and deformation

behaviors. A dual-moduli viscous element was then introduced in order to repro-

duce both rheological forces and deformation simultaneously.

In Chapter 3, 2D and 3D FE dynamic models were formulated based on

generalized Hooke’s law and linear Cauchy strain tensor. In order to handle large

deformation and deformation with rotation motion, the nonlinear Green strain

tensor was introduced into our FE formation. Simulation results with linear

Cauchy strain and nonlinear Green strain tensors were then performed to compare

the differences. Finally, FE model with the proposed dual-moduli viscous element

was presented for capturing both rheological forces and deformation behaviors

simultaneously.

In Chapter 4, modeling of non-uniform layered objects and contact interaction

between two objects were investigated. The layered objects were artificially sepa-

rated into several uniform objects and modeled by our FE model. The constraints

between interaction boundaries were then imposed to connect these uniform ob-

jects to construct the non-uniform ones. The contact models were divided into

two categories depended on the size of the instruments. A global or local remesh-

ing was needed for the second category but not necessary for the first one. The

contact moment was detected by using a definition of signed area. A contact

condition was established to start the contact simulation. Surprisingly, the losing

contact action can be achieve automatically by using this condition as well. The

losing contact moment also can serve as a criterion required in the dual-moduli

viscous element to switch parameters.

In Chapter 5, the parameter estimation methods were studied for reproducing

both rheological forces and deformation behaviors simultaneously. At first, the

influences of physical parameters and mesh resolution on simulation results were

investigated. Secondly, a three-step estimation method was presented based on

simulation-based optimization with a constraint on the summation of viscous

moduli. By taking the advantages of analytical expressions of rheological forces,

a calculation-based optimization method was then proposed. Finally, the method

9



1.5 Dissertation Organization

for estimating parameters of FE model with dual-moduli viscous elements was

presented.

In Chapter 6, experimental results with commercial available clay and Japanese

sweets materials were presented. A series of compressive tests on flat-squared

objects made of above-mentioned materials were performed with different com-

pressing operations. Measurements of force and deformed shapes were utilized

to estimate the physical parameters of both materials. Different parameter esti-

mation methods were employed to estimate the parameters. Validation results of

both FE model and estimated parameters were then investigated by comparing

the simulation results with experimental measurements.

Chapter 7 concluded this dissertation and suggested possible directions and

applications of future work.
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Chapter 2

Physically-Based Models

Physically-based models are often employed to describe deformable materials and

objects, e.g., an elastic element (Fig. 2.1a) and a viscous element (Fig. 2.1b) rep-

resent ideal elastic and viscous material, respectively. Note that the deformation

generated in an elastic element is completely recoverable while the deformation

generated in a viscous element will be totally maintained after loading-unloading

operations. An elastic and a viscous elements connected in series is called a

Maxwell element (Fig. 2.1c), which denotes a simplest rheological material. An

elastic and a viscous elements connected in parallel is called a Kelvin (or Kelvin-

Voigt) element (Fig. 2.1d), which denotes a visco-elastic material. We shall call

the above four elements as basic elements (Fig. 2.1). By connecting several basic

elements in different configurations, many physically-based models can be ob-

tained for simulating rheological behaviors. We categorized such models into two

E c

E c

E

c

(a) (b)

(d)(c)

Figure 2.1: The basic elements for describing deformable materials: (a) the elas-

tic; (b) the viscous; (c) the Maxwell; and (d) the Kelvin elements.
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2.1 Generalized Serial Model
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Figure 2.2: Two groups of rheological physically-based models: (a) serial models,

and (b) parallel models.

groups: serial and parallel models, as shown in Fig. 2.2.

2.1 Generalized Serial Model

A serial rheological model consists of numbers of Kelvin elements and a viscous

or a Maxwell element connected in series. Note that the deformation generated in

an elastic or a Kelvin element is completely recoverable. Therefore, a serial rheo-

logical model must include a viscous element connected in series, which causes the

residual (permanent) deformation. According to the presence of elastic element,

serial models can be further divided into two types, as shown in Fig. 2.3. Let us

E1

c1

E2

c2

En

cn

L
cn+1

(a)

cn+1En+1

E1

c1

E2

c2

En

cn

L

(b)

Figure 2.3: Generalized serial models: (a) type 1, and (b) type 2.
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2.1 Generalized Serial Model

take the serial model of type 1 (Fig. 2.3a) as an example to show the derivation

procedure of the constitutive law.

Note that the constitutive law of four basic elements can be formulated as:

Elastic element : σ = Eǫ,

Viscous element : σ = cǫ̇,

Maxwell element : σ̇ +
E

c
σ = Eǫ̇,

Kelvin element : σ = Eǫ + cǫ̇,

(2.1)

Let ǫi and ǫn+1 be the strain at the i-th Kelvin element and the (n + 1)-

th viscous element, respectively, in type 1 serial model. Let Ei and ci be the

Young’s modulus and viscous modulus of the i-th elastic and viscous elements,

respectively. Due to the serial connections among these basic elements, the total

stress at the serial model is equal to the stress at each basic element and the total

strain at the serial model is equal to the summation of the strain at each basic

element. That is,

σ = Eiǫi + ciǫ̇i, 1 ≤ i ≤ n,

σ = cn+1ǫ̇n+1,

ǫ =
n+1
∑

i=1

ǫi.

(2.2)

Taking Laplace transform of the above equations, we have

σ(s) = Eiǫi(s) + cisǫi(s), 1 ≤ i ≤ n,

σ(s) = cn+1sǫn+1(s),

ǫ(s) =
n+1
∑

i=1

ǫi(s).

(2.3)

Eliminating ǫi(s) from the above equations, we then have

ǫ(s) =
[

(

n
∑

i=1

1

s + ri

1

ci

)

+
(1

s

1

cn+1

)

]

σ(s), (2.4)

where ri = Ei/ci. Let us define a polynomial as below:

n
∏

i=1

(s + ri) = Ansn + An−1s
n−1 + · · ·+ A1s + A0. (2.5)
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2.1 Generalized Serial Model

The coefficients of the above polynomial have the forms of:

An = 1,

An−1 =

n
∑

i=1

ri,

An−2 =
n

∑

i=1

n
∑

j=1
j 6=i

rirj,

An−3 =

n
∑

i=1

n
∑

j=1
j 6=i

n
∑

k=1
k 6=i
k 6=j

rirjrk,

· · ·

A0 =

n
∏

i=1

ri.

(2.6)

Multiplying Eq. 2.4 by Eq. 2.5, we have

n
∏

i=1

(s + ri)ǫ(s) =
n

∏

i=1

(s + ri)
[

(

n
∑

i=1

1

s + ri

1

ci

)

+
(1

s

1

cn+1

)

]

σ(s)

=
[

n
∑

i=1

n
∏

j=1
j 6=i

(s + rj)

ci

+

n
∏

j=1

s + rj

s

1

cn+1

]

σ(s).
(2.7)

We then find the following equation:

n
∏

j=1
j 6=i

(s + rj) = (s + r1) · · · (s + ri−1)(s + ri+1) · · · (s + rn)

= sn−1 + Bi,1s
n−2 + · · · + Bi,n−2s + Bi,n−1,

(2.8)
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2.1 Generalized Serial Model

where

Bi,1 =
n

∑

j=1
j 6=i

rj,

Bi,2 =

n
∑

j=1
j 6=i

n
∑

k=1
k 6=i
k 6=j

rjrk,

Bi,3 =

n
∑

j=1
j 6=i

n
∑

k=1
k 6=i
k 6=j

n
∑

l=1
l 6=i
l 6=j
l 6=k

rjrkrl,

· · ·

Bi,n−1 =

n
∏

j=1
j 6=i

rj .

(2.9)

Substituting Eqs. 2.5 and 2.8 into Eq. 2.7, we have the following Laplace trans-

form equation:

(Ansn+1 + An−1s
n + · · ·+ A0s)ǫ(s)

= (Bs1
n sn + Bs1

n−1s
n−1 + · · ·+ Bs1

1 s + Bs1
0 )σ(s),

(2.10)

where

Bs1
n =

n
∑

i=1

1

ci

+
An

cn+1
,

Bs1
n−1 =

n
∑

i=1

Bi,1

ci

+
An−1

cn+1
,

· · ·

Bs1
1 =

n
∑

i=1

Bi,n−1

ci

+
A1

Cn+1

,

Bs1
0 =

A0

cn+1

.

(2.11)

Applying the inverse Laplace transform to Eq. 2.10 yields the constitutive law of

serial model of type 1 as follows:

n+1
∑

i=1

Ai−1
∂iǫ

∂ti
=

n
∑

j=0

Bs1
j

∂jσ

∂tj
. (2.12)
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Note that the highest-order derivative of strain ǫ is one order larger than the

highest-order of stress σ. In addition, there is no constant term in the coefficients

of strain polynomial (the subscript i starts from 1 in the left side of Eq. 2.12).

Following the same derivation procedure, we can obtain the constitutive law

of serial model of type 2 as follows:

n+1
∑

i=1

Ai−1
∂iǫ

∂ti
=

n+1
∑

j=0

Bs2
j

∂jσ

∂tj
, (2.13)

where

Bs2
n+1 =

1

En+1

,

Bs2
n =

n
∑

i=1

1

ci

+
An

cn+1
+

An−1

En+1
,

Bs2
n−1 =

n
∑

i=1

Bi,1

ci

+
An−1

cn+1
+

An−2

En+1
,

· · ·

Bs2
0 =

A0

cn+1
.

(2.14)

Equation 2.13 indicates that the highest-order derivative of strain ǫ is equal to

the highest-order of stress σ. Note that the left side of Eq. 2.13 has the same

form with the left side of Eq. 2.12.

2.2 Generalized Parallel Models

Two kinds of parallel rheological models were shown in Fig. 2.4. Due to the

parallel connections among basic elements, the total strain at the parallel model

is equal to the strain at each basic element and the total stress at the parallel

model is equal to the summation of the stress at each basic element. For parallel

model of type 1, we therefore have

σ̇i +
Ei

ci

σi = Eiǫ̇, 1 ≤ i ≤ n,

σn+1 = cn+1ǫ̇,

σ =

n+1
∑

i=1

σi.

(2.15)
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E1 c1

E2 c2

En cn⋮

cn+1

(a)

E1 c1

E2 c2

Ei ci⋮

En cn
⋮

(b)

Figure 2.4: Generalized parallel models: (a) type 1; and (b) type 2.

Following the same derivation with serial models, we can end up with the con-

stitutive law of parallel model of type 1 (Fig. 2.4a) as follows:

n
∑

i=0

Ai

∂iσ

∂ti
=

n+1
∑

j=1

Bp1
j

∂jǫ

∂tj
, (2.16)

where

Bp1
n+1 = cn+1,

Bp1
n =

n
∑

i=1

Ei + An−1cn+1,

Bp1
n−1 =

n
∑

i=1

Bi,1Ei + An−2cn+1,

· · ·

Bp1
1 =

n
∑

i=1

Bi,n−1Ei + A0cn+1.

(2.17)

Correspondingly, the constitutive law of parallel model of type 2 (Fig. 2.4b) can

be formulated as:
n

∑

i=0

Ai

∂iσ

∂ti
=

n
∑

j=1

Bp2
j

∂jǫ

∂tj
, (2.18)
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2.2 Generalized Parallel Models

where

Bp2
n =

n
∑

i=1

Ei,

Bp2
n−1 =

n
∑

i=1

Bi,1Ei,

· · ·

Bp2
1 =

n
∑

i=1

Bi,n−1Ei.

(2.19)

We summarize the constitutive laws of generalized serial and parallel models in

Table 2.1, where Eqs. 2.12 and 2.13 are rearranged for convenient comparisons.

We found that the constitutive law of serial model of type 1 has the identical form

with the parallel model of type 1 except some coefficients having different formu-

lations. Correspondingly, the constitutive laws of serial model of type 2 also has

the same form with the parallel model of type 2 by replacing the summation limit

n + 1 by n. Note that same constitutive laws yield same deformation behaviors.

Therefore, for simulating a certain behavior, we can use either a serial model or a

parallel model. Actually, for any type of physically-based model, which consists

of any numbers of basic elements connected in any configuration, we are always

able to find one pair of serial and parallel models which are corresponding to

each other and yield the same behaviors. This allows us to investigate only one

kind of model instead of both for simulating a certain behaviors of deformable

objects. In this dissertation, we mainly investigate the parallel models. In ad-

dition, according to Eq. 2.2, if the total stress at the serial model is available,

Table 2.1: The constitutive laws of generalized serial and parallel models

Models Type The constitutive law

1
∑n

j=0 Bs1
j

∂jσ
∂tj

=
∑n+1

i=1 Ai−1
∂iǫ
∂ti

Serial
2

∑n+1
j=0 Bs2

j
∂jσ
∂tj

=
∑n+1

i=1 Ai−1
∂iǫ
∂ti

1
∑n

i=0 Ai
∂iσ
∂ti

=
∑n+1

j=1 Bp1
j

∂jǫ
∂tj

Parallel
2

∑n

i=0 Ai
∂iσ
∂ti

=
∑n

j=1 Bp2
j

∂jǫ
∂tj
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2.3 Analysis of Parallel Models

we can easily obtain the strain at each basic element by solving a series of or-

dinary differential equations and therefore have the total strain by summing up

the individual strain at each element. On the other hand, equation 2.15 indicates

that the convenient calculation of rheological stress can be achieved by using the

parallel models. This tells us how to choose a model between serial and parallel

models. If you are interested in the calculation of deformation, you should use

a serial model. On the contrary, you should go with parallel models if you have

more concern with force behaviors. In this dissertation, we choose parallel models

because the experimental measurements including continuous force responses and

static images of deformed shapes. We suppose that the continuous deformation

measurements are not available.

2.3 Analysis of Parallel Models

2.3.1 Experimental Rheological Behaviors

Typical rheological behaviors (force and deformed shapes) of commercial available

clay and Japanese sweets material are shown in Figs. 2.5 and 2.6. Clays were

bought from supermarket and were supposed to be played by children above 3

years old. The sweets materials were provided by OIMATU, a sweets company in

Kyoto. Detailed experimental setup and results will be presented in Chapter 6.

t

t

(a) (b)

Figure 2.5: Experimental measurements of commercial available clay: (a) force

response, and (b) deformed shapes.
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2.3 Analysis of Parallel Models

t

t

(a) (b)

Figure 2.6: Experimental measurements of Japanese sweets material: (a) force

response, and (b) deformed shapes.

Our target is to find an appropriate model to simulate the rheological behaviors

of these objects. Normally, physical parameters of an object should keep the same

even though its size may change or it may be deformed in different ways. This

feature allows us to use a regular shaped object with simple tests to estimate the

properties of the object. Such tests include the uniaxial compressive and tensile

tests as used in material engineering. In our study, we conducted a compressive

test with a pushing-holding-releasing procedure. We fashioned a 2D rheological

object with a flat-squared shape. We firstly pushed the entire top surface of the

object with a constant velocity to reach a desired displacement during time 0 to

tp, which was called pushing phase (Figs. 2.5a and 2.6a). During this phase, force

was increasing with the deformation increasing. Before releasing, the deformed

shape was maintained from time tp to tp +th. This time period was called holding

phase and the deformed shape during this phase was called held-shape (Figs. 2.5b

and 2.6b). In the holding phase, rheological force was decreasing (called force

relaxation) in a nonlinear manner. After unloading, however, rheological force

went to zero and the deformed shape were partially recovered. Figures 2.5 and 2.6

also indicate that rheological behaviors of different materials are quite different.

Comparing with clay, the force relaxation behavior of sweets material is slower and

the residual deformation is larger. Let us now investigate the ability of physically-

based models for reproducing the above-mentioned rheological behaviors.
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2.3 Analysis of Parallel Models

2.3.2 Analytical Expressions of Rheological Stresses

We take the parallel model of type 1 as an example to show the derivations

of analytical expressions of rheological stresses. During the pushing phase, the

strain rate is constant, i.e., ǫ̇ = p. By solving Eq. 2.15, we have the analytical

stress expression in the pushing phase as below:

σ(t) =
n

∑

i=1

cip
(

1 − e
−

Ei
ci

t)

+ cn+1p, (0 ≤ t ≤ tp). (2.20)

In the holding phase, solving Eq. (2.15) with ǫ̇ = 0 and initial condition of σi(tp),

we can formulate the analytical stress expression in this phase as:

σ(t) =
n

∑

i=1

cip
(

1 − e
−

Ei
ci

tp
)

e
−

Ei
ci

(t−tp)
, (tp ≤ t ≤ tp + th). (2.21)

2.3.3 Analytical Expression of Residual Strain

After unloading, we intuitively consider to solve the constitutive law Eq. 2.16

with σ = 0 to formulate the strain recovering profile over time. Unfortunately,

when the order of time derivative of strain ǫ exceeds two, it becomes impossible

to solve Eq. 2.16 because we have no information about the initial condition

of strain derivatives. Therefore, we turn our attention to focus on each viscous

element. Let ǫela
i (t) and ǫvis

i (t) be the strain at each elastic and viscous element,

respectively. Note that the stress at a Maxwell element is equal to the stress

at the elastic element and the viscous element as well. Thus, total stress after

unloading can be formulated as:

σ(t) =

n+1
∑

i=1

σi(t) =

n
∑

i=1

ciǫ̇
vis
i (t) + cn+1ǫ̇(t) = 0. (2.22)

Integrating the above equation from time tp + th to time infinite, we have

n
∑

i=1

ci

∫ ∞

tp+th

ǫ̇vis
i (t)dt + cn+1

∫ ∞

tp+th

ǫ̇(t)dt = 0, (2.23)

and thus
n

∑

i=1

ci

[

ǫvis
i (∞) − ǫvis

i (tp + th)
]

+ cn+1

[

ǫ(∞) − ǫ(tp + th)
]

= 0. (2.24)
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2.4 Discussions of Physically-Based Models

It is important to note that the residual strain at every viscous element in a

parallel model should be the same and equal to the total residual strain when time

goes to infinite, i.e., ǫvis
1 (∞)=ǫvis

2 (∞)=· · ·=ǫvis
n (∞)=ǫ(∞), because all elastic

elements completely recovered from the deformation. Thus, equation 2.24 yields

ǫ(∞) =
n

∑

i=1

ciǫ
vis
i (tp + th)
∑n+1

j=1 cj

+
cn+1ǫ(tp + th)

∑n+1
j=1 cj

. (2.25)

In addition, each viscous element has its own constitutive law as σi=ciǫ̇
vis
i . Inte-

grating it through time 0 to time tp + th and rearranging it, we have

ǫvis
i (tp + th) =

1

ci

∫ tp+th

0

σi(t)dt. (2.26)

Substituting Eq. 2.26 into Eq. 2.25 and considering σ(t) =
∑n+1

i=1 σi(t), we finally

end up with the expression of total residual strain as:

ǫ(∞) =
1

∑n+1
i=1 ci

∫ tp+th

0

σ(t)dt. (2.27)

This equation indicates that the final residual strain in a parallel model is dom-

inated by the summation of viscous moduli and the integration of force through

the pushing and holding phase.

For the parallel model of type 2, we can obtain the same formulation of stress

expression in the holding phase and the same formulation of final residual strain

with the summation limit n+1 replaced by n in Eq. 2.27. The only difference of

the parallel model of type 2 is the stress expression in the pushing phase, which

is

σ(t) =
n

∑

i=1

cip
(

1 − e
−

Ei
ci

t)

, (0 ≤ t ≤ tp). (2.28)

2.4 Discussions of Physically-Based Models

Typical simulation results of rheological stress and strain were shown in Fig.

2.7 by using a five-element model (the last row of Fig. 2.2b) and a two-layered

Maxwell model (the middle row of Fig. 2.2b). According to Eqs. 2.20, 2.21, and

2.28, we find that the stress curve can be determined by viscous moduli ci and
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Holding

tp tp+th

Pushing
( )p ht tσ +

( )ptσ

1 1n nc pσ + +=

( )ε ∞

(a)

Holding

tp tp+th

Pushing ( )p ht tσ +

( )ptσ

( )ε ∞

(b)

Figure 2.7: Typical simulation results of rheological behaviors by using: (a) 5-

element model, and (b) 2-layered Maxwell model.

time coefficients Ei/ci of exponential functions. The coefficients Ei/ci dominate

the stress relaxation behavior during the holding phase, as formulated in Eq. 2.21

and shown in Fig. 2.7. In order to obtain similar force relaxation curves with

real materials as shown in Figs. 2.5 and 2.6, at least two exponential terms are

needed [Wang & Hirai (2009)], one with large value of Ei/ci and another one

with small Ei/ci. The large Ei/ci describes the rapid relaxation in force and the

small one denotes the slow decreasing. For example, figure 2.8 shows the curve

fitting results of force relaxation behaviors of commercial clay material by using

a force expression with one and two exponential terms, respectively. We can see

that two exponential terms are enough to achieve a good reproduction of force

relaxation behavior. The values of Ei/ci used in Fig 2.8b were E1/c1 = 0.2514

and E2/c2 = 0.00213. After determining Ei/ci and substituting into Eq. 2.20,

we find that the viscous moduli ci will dominate peak stress at time tp. Note

that there is a sudden drop in stress (Fig. 2.7a) at the end of pushing phase for

five-element model (parallel type 1). This sudden drop is denoted by σ = cn+1p.

Figure 2.7b showed that the two-layered Maxwell model(parallel type 2) results

in attenuated vibrations in both stress and strain curves after unloading. Based

on the above discussions, we can say that the physically-based models with at

least two exponential terms in force expressions have the ability to accurately
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Figure 2.8: Curve fitting of force relaxation behaviors by using expressions with:

(a) one exponential term, and (b) two exponential terms.

reproduce rheological force behaviors. Our work [Wang & Hirai (2009)] has shown

good reproductions of rheological forces for commercial clay. However, we failed

to reproduce the final recovered shape at the same time. Let us now discuss the

reason of this failure.

According to Eq. 2.27, the residual strain is dominated by the summation
∑n+1

i=1 ci. On the other hand, parameters ci also strongly affect stress amplitude

as formulated in Eqs. 2.20, 2.21, and 2.28. This causes a contradiction between

the reproductions of stress and residual strain. For example, if we determine

the parameters ci from stress, the summation of ci will therefore yields a certain

residual strain. We are unable to change this residual strain to another desired

one. On the contrary, if we firstly calculate the summation of ci based on Eq. 2.27,

we have an upper limit (
∑n+1

i=1 ci) for each modulus ci and we have to keep each

ci under this limit during the reproduction of stress. For some materials, we may

be able to achieve a good reproduction of stress with ci under this limit, as will

be presented in Chapter 6. For most materials, however, this limit always will be

broken in order to well capture the stress. The above discussions suggest that the

physically-based models have some difficulties to reproduce both rheological force

and deformation, especially residual deformation, simultaneously. The reason of

this difficulty is the linearity of the physically-based models, especially, the linear

viscous elements, which dominated both residual strain and stress behaviors.

To solve this problem, the first idea come to our mind is to change the

physically-based models. We can add more elements to the physical model or
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2.5 Dual-Moduli Viscous Element

change the configurations of the basic elements. However, this will not work well.

Actually, we are able to find a corresponding parallel model for any physical model

no matter how many elements are involved and how these elements are connected.

We have already discussed that a contradiction phenomenon always exist for ar-

bitrary parallel model. Therefore, we are unable to solve this problem by adding

more elements or changing the elements connections in physically-based models.

The second idea for solving this problem is to introduce some nonlinear physi-

cal models. From textbooks or literatures, we can find some nonlinear physical

models, such as the followings:

Wertheim (1847) ǫ2 = aσ2 + bσ,

Morgan (1960) ǫ = aσn,

Kenedi et al. (1964) σ = kǫd, and σ = B [ems − 1] ,

Ridge and Wright (1964) ǫ = C + kσb, and ǫ = x + ylogσ.

(2.29)

Unfortunately, most of these nonlinear models cannot be extended to 2D/3D FE

models. Even some of them may be able to be extended to 2D/3D models, the FE

simulation will be very time consuming and it may be impossible to estimate all

the parameters. We have tried to introduce some nonlinear models into our FE

simulation, but we did not obtain any good result for reproducing both rheological

force and residual deformation simultaneously so far. We have therefore turn to

another idea which will be introduced in the next section.

2.5 Dual-Moduli Viscous Element

According to the above discussions, we found that the summation
∑n

i=1 ci domi-

nates both rheological forces and residual deformation simultaneously. Therefore,

it is difficult to use one set of ci to capture both force and residual deformation

simultaneously. In addition, we found that one set of ci is enough to capture both

force and deformation behaviors during operations, such as pushing and holding

phase. However, this set of parameter ci cannot guarantee good reproduction of

residual deformation. It is also clear that the force response goes to zero imme-

diately after releasing. During deformation recovery, we do not concern about

force any more. Therefore, we are able to use another set of ci to capture residual
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(b)

cκ α,  ,  

(a)

E1

E2

c3

cκ α1 1,  ,  

cκ α2 2,  ,  

Figure 2.9: (a) the dual-moduli viscous element and (b) parallel 5-element model

with two dual-moduli viscous elements.

deformation. We can switch these two sets of parameters during simulation when

the deformation starts to recover. We have therefore introduced a dual-moduli

viscous element, as shown in Fig. 2.9a into our physically-based model in order to

reproduce both rheological force and deformation, especially residual deformation

simultaneously. The governing equation for the dual-moduli viscous element can

be formulated as

σ(t) = (κα + c)ǫ̇(t), (2.30)

where scalars α and c were parameters to be determined. Switch function κ takes

the following values:

κ =
{ 1 Criterion is satisfied,

−1 Otherwise.
(2.31)

This dual-moduli viscous element has an ability to switch the parameters from

one to the other during simulation. The physical meaning of this element can

be explained as the property changing of a material during operation and re-

covery. For example, some elastic materials experience a hysteresis phenomenon

during loading and unloading operations. The material properties are slightly

changed during hysteresis. In addition, some metal materials also demonstrate

strain hardening behavior when they are strained beyond the yield point. In this

case, the properties of the materials are also changed during the operation. For

rheological materials, both hysteresis and strain hardening may also happen and

may be in more stronger way. This causes the material properties changing sig-

nificantly during loading and the materials therefore behave in another way after
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unloading. In other words, the physical parameters of rheological objects may

be continuously changing during operations and reach another set of values when

operations are finished. Unfortunately, continuous change of parameters during

operation brings troubles in implement of parameter estimation. In our work,

therefore, we suppose that the parameters are kept constants during operation

and change to another set when the operation is finished.

The criterion used in Eq. 2.31 has different options depending on different

applications. If the operation time is available before simulation, the simulation

time can be a perfect criterion to trigger the parameter switching. In some ap-

plications such as surgical training and virtual reality, the simulation time may

be not available in advance. Fortunately in such cases, an interaction often hap-

pens between the object and external instruments. This interaction can provide

a good criterion for the parameter switching since the deformation recovery nor-

mally happens after the interaction was finished. This will be further investigated

in Chapter 4. By introducing two dual-moduli viscous elements into a parallel

five-element model, we can formulate an effective model (Fig. 2.9b) for capturing

both rheological forces and deformation behaviors.

2.6 Concluding Remarks

In this chapter, the physically-based models for simulating rheological behaviors

were summarized. We categorized such models into two groups: serial and paral-

lel models. The constitutive laws for both generalized serial and parallel models

were derived. We surprisingly found that the serial and parallel models are cor-

responding to each other and can be replaced by each other. This allowed us

to focus on one group only and save us much time to go over various kinds of

physically-based models. We also found that the serial models yield easy cal-

culation of strain while the parallel models result in convenient calculation of

stress. This suggested us how to choose the models between both groups depend-

ing on our applications. Analytical expressions of rheological stress and residual

strain were derived and compared with rheological behaviors of real material. We

found that at least two exponential terms in stress expressions are required to

accurately reproduce the rheological stress behaviors. We also found the value
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of summation
∑n

i=1 ci dominates the residual strain and strongly affect the force

amplitude as well. There is a contradiction between the reproductions of rheo-

logical forces and residual deformation. The linear physically-based models have

troubles to capture both rheological forces and deformation behaviors simulta-

neously. We have therefore introduced a dual-moduli viscous element into our

physically-based model to cope with this problem. This model has an ability to

switch parameters from one to the other during simulation and each set of pa-

rameters was responsible for capturing rheological forces and residual deformation

respectively. The physical meaning of this element can be explained as hysteresis

and strain hardening behaviors of rheological objects. In the following chapters,

the FE dynamic models, parameter estimation methods, and experimental results

will be addressed.
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Chapter 3

2D/3D FE Dynamic Model

FEM is the most successful method for numerical computation of object deforma-

tion. In FE modeling, an object is described by a set of elements (e.g., triangles

in 2D case or tetrahedra in 3D case). Dynamic behaviors of the object are then

determined by analyzing the behaviors of individual element. In this chapter, we

formulate the 2D/3D dynamic model of deformable objects based on the linear

Cauchy and nonlinear Green strain tensors, respectively. We firstly derive the

FE model of elastic material and then extended to rheological material.

3.1 FE Formulation with Cauchy Strain Tensor

3.1.1 2D Elastic Model

Linear elastic material (e.g., a linear spring) in 1D deformation satisfies the fol-

lowing equation:

σ = Eǫ, (3.1)

where σ and ǫ are stress and strain. Constant E denotes Young’s modulus.

According to the Hooke’s law, the above 1D relationship can be extended to 2D

deformation for an isotropic material as

σ = (λIλ + µIµ)ǫ, (3.2)

where σ = [σxx, σyy, σxy]
T and ǫ = [ǫxx, ǫyy, ǫxy]

T are 2D stress and linear Cauchy

strain tensors. Scalars λ and µ denote Lamé’s constants, which can be calculated
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3.1 FE Formulation with Cauchy Strain Tensor

by Young’s modulus E and Poisson’s ratio γ as follows:

λ =
γE

(1 + γ)(1 − 2γ)
, µ =

E

2(1 + γ)
. (3.3)

Constant matrices Iλ and Iµ have the forms of

Iλ =





1 1 0
1 1 0
0 0 0



 , Iµ =





2 0 0
0 2 0
0 0 1



 . (3.4)

Let S be a region of a 2D elastic object. Assuming that the object is composed

of linear elastic material, strain energy of the object is formulated as follows:

U =

∫

S

1

2
ǫT (λIλ + µIµ) ǫh dS.

Partitioning region S into a set of triangles, strain energy is described as

U =
∑

△PiPjPk

Ui,j,k,

where

Ui,j,k =

∫

△PiPjPk

1

2
ǫT (λIλ + µIµ) ǫh dS. (3.5)

In the region of △PiPjPk, displacement vector uP = [u, v]T at arbitrary point P

inside △PiPjPk can be approximated by a linear combination of nodal displace-

ments ui = [ui, vi]
T, uj = [uj, vj]

T, and uk = [uk, vk]
T as follows:

u = uiNi,j,k + ujNj,k,i + ukNk,i,j,

v = viNi,j,k + vjNj,k,i + vkNk,i,j,
(3.6)

where Ni,j,k, Nj,k,i, and Nk,i,j are the interpolating shape functions. Each of them

has a value of 1 at each nodal point Pi, Pj , or Pk, respectively and zeros at all

other nodal points. Taking partial derivatives of u and v relative to x and y

respectively, we have

∂u

∂x
= ui

∂Ni,j,k

∂x
+ uj

∂Nj,k,i

∂x
+ uk

∂Nk,i,j

∂x
,

∂u

∂y
= ui

∂Ni,j,k

∂y
+ uj

∂Nj,k,i

∂y
+ uk

∂Nk,i,j

∂y
,

∂v

∂x
= vi

∂Ni,j,k

∂x
+ vj

∂Nj,k,i

∂x
+ vk

∂Nk,i,j

∂x
,

∂v

∂y
= vi

∂Ni,j,k

∂y
+ vj

∂Nj,k,i

∂y
+ vk

∂Nk,i,j

∂y
.

(3.7)
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3.1 FE Formulation with Cauchy Strain Tensor

Let [ξi, ηi]
T, [ξj, ηj ]

T, and [ξk, ηk]
T be initial coordinates of nodal points Pi, Pj,

and Pk, respectively. Partial derivatives of shape functions in Eq. 3.7 can be

calculated as:

Nix =
∂Ni,j,k

∂x
=

ηj − ηk

2△
, Niy =

∂Ni,j,k

∂y
= −

ξj − ξk

2△
,

Njx =
∂Nj,k,i

∂x
=

ηk − ηi

2△
, Njy =

∂Nj,k,i

∂y
= −

ξk − ξi

2△
,

Nkx =
∂Nk,i,j

∂x
=

ηi − ηj

2△
, Nky =

∂Nk,i,j

∂y
= −

ξi − ξj

2△
,

(3.8)

where △ denotes the signed area of triangle △PiPjPk and was given by

△PiPjPk =
1

2
[ξi ξj ξk]





ηj − ηk

ηk − ηi

ηi − ηj



 .

Note that the Cauchy strain tensor ǫ = [ǫxx, ǫyy, ǫxy]
T was formulated as

ǫxx =
∂u

∂x
,

ǫyy =
∂v

∂y
,

2ǫxy =
∂u

∂y
+

∂v

∂x
.

(3.9)

Substituting Eqs. 3.7 and 3.8 into Eq. 3.9 and then substituting the consequential

Cauchy strain tensor into Eq. 3.5, we have

Ui,j,k =
1

2

[

uT
i uT

j uT
k

]

Ki,j,k





ui

uj

uk



 , (3.10)

where stiffness matrix Ki,j,k can be decomposed into two as follows:

Ki,j,k = λJi,j,k
λ + µJi,j,k

µ . (3.11)

Matrices Ji,j,k
λ and Ji,j,k

µ have the following forms:

Ji,j,k
λ =

h

4△PiPjPk





Aj,k; j,k Aj,k;k,i Aj,k; i,j

Ak,i; j,k Ak,i;k,i Ak,i; i,j

Ai,j; j,k Ai,j;k,i Ai,j; i,j



 ,

Ji,j,k
µ =

h

4△PiPjPk





2Bj,k; j,k + Cj,k; j,k 2Bj,k;k,i + Cj,k;k,i 2Bj,k; i,j + Cj,k; i,j

2Bk,i; j,k + Ck,i; j,k 2Bk,i;k,i + Ck,i;k,i 2Bk,i; i,j + Ck,i; i,j

2Bi,j; j,k + Ci,j; j,k 2Bi,j;k,i + Ci,j;k,i 2Bi,j; i,j + Ci,j; i,j



 ,

(3.12)
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3.1 FE Formulation with Cauchy Strain Tensor

where

Ai,j; l,m ,

[

(ηi − ηj)(ηl − ηm) −(ηi − ηj)(ξl − ξm)
−(ξi − ξj)(ηl − ηm) (ξi − ξj)(ξl − ξm)

]

,

Bi,j; l,m ,

[

(ηi − ηj)(ηl − ηm) 0
0 (ξi − ξj)(ξl − ξm)

]

,

Ci,j; l,m ,

[

(ξi − ξj)(ξl − ξm) −(ξi − ξj)(ηl − ηm)
−(ηi − ηj)(ξl − ξm) (ηi − ηj)(ηl − ηm)

]

.

(3.13)

Note that matrices Ji,j,k
λ and Ji,j,k

µ depend on geometric quantities, say, coordi-

nates of nodal points alone. As a result, the global stiffness matrix K also can

be decomposed into two terms as follows:

K = λJλ + µJµ, (3.14)

where Jλ and Jµ are referred to as connection matrices. Both matrices also depend

on geometric quantities alone and can be calculated by incorporating matrices

Ji,j,k
λ and Ji,j,k

µ of each triangles based on the contribution of each triangle to the

whole triangle mesh. Let N be the number of nodal points in an FE triangle

mesh. The dimensions of both connection matrices are 2N × 2N .

After having the global stiffness matrix K, strain energy of the object was

formulated by

U =
1

2
uT

NKuN , (3.15)

where uN represents the nodal displacement vector. Taking the derivative of the

above strain energy relative to vector uN , we have the formulation of a set of

elastic forces generated on all nodal points as

Fela
2D = KuN = (λJλ + µJµ)uN . (3.16)

Comparing Eqs. 3.1, 3.2, and 3.16, we found that the 2D stress-strain relation

Eq. 3.2 can be obtained from 1D relation Eq. 3.1 by replacing Young’s modulus

E by a matrix with two Lamé’s constants λ and µ. Furthermore, the 2D FE force-

displacement relationship Eq. 3.16 can be obtained from 2D stress-strain relation

Eq. 3.2 by replacing σ by Fela
2D, ǫ by uN , Iλ by Jλ, and Iµ by Jµ, respectively.

In the next section, we extend the 2D elastic formulation to a 2D rheological

formulation.
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3.1 FE Formulation with Cauchy Strain Tensor

3.1.2 2D Rheological Model

A Maxwell model, as shown in Fig. 2.1(c), is a simplest physical model for

simulating rheological behaviors. The Maxwell model consists of an elastic and

a viscous elements connected in serial. The 1D stress-strain relationship of the

Maxwell model can be formulated as

σ̇ = −
E

c
σ + Eǫ̇, (3.17)

Solving the above ordinary differential equation yields:

σ(t) =

∫ t

0

R(t − t′)ǫ̇(t′)dt′, (3.18)

where R(t−t′) = Ee−
E
c
(t−t′) is referred as a relaxation function, which determines

the nature of rheological deformation. Replacing two elastic constants λ and µ

in Eq. 3.2 by two relaxation functions yields a relaxation matrix in 2D isotropic

deformation of the Maxwell model:

R(t − t′) = rλ(t − t′)Iλ + rµ(t − t′)Iµ, (3.19)

where

rλ(t − t′) = λe−
E
c
(t−t′), rµ(t − t′) = µe−

E
c

(t−t′). (3.20)

Replacing R(t − t′) in Eq. 3.18 by Eq. 3.19, we have the 2D stress-strain rela-

tionship of the Maxwell model as

σ(t) =

∫ t

0

[rλ(t − t′)Iλ + rµ(t − t′)Iµ] ǫ̇(t′)dt′. (3.21)

From the above equation, replacing σ(t) by FMax
2D (t), ǫ by uN , Iλ by Jλ, Iµ by Jµ,

we have the 2D force-displacement relationship of the Maxwell model as

FMax
2D (t) =

∫ t

0

[

λe−
E
c
(t−t′)Jλ + µe−

E
c

(t−t′)Jµ

]

u̇N (t′)dt′. (3.22)

Differentiating the above equation, we finally have

ḞMax
2D = −

E

c
FMax

2D + (λJλ + µJµ)u̇N , (3.23)
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3.1 FE Formulation with Cauchy Strain Tensor

Comparing Eq. 3.17 and Eq. 3.23, we find that the 1D constitutive law of Maxwell

model can be easily extended to 2D case by simple replacements as performed

above.

Then, let us investigate the formulation of a parallel five-element model, as

shown in the last row of Fig. 2.2(b). The parallel five-element model consists of

two Maxwell models and one viscous element connected in parallel. Let σ1, σ2,

and σ3 be the stress at the first, the second Maxwell models, and the third viscous

element, respectively. Let σ and ǫ be the stress and strain at the five-element

model. Due to the parallel configuration, the 1D stress-strain relationship can be

formulated as:

σ̇1 +
E1

c1
σ1 = E1ǫ̇,

σ̇2 +
E2

c2
σ2 = E2ǫ̇,

σ3 = c3ǫ̇,

σ = σ1 + σ2 + σ3.

(3.24)

Following the same replacing procedures presented above, we can easily extend

the 1D stress-strain relation Eq. 3.24 to 2D force-displacement relation as:

Ḟ1 +
E1

c1
F1 = (λela

1 Jλ + µela
1 Jµ)u̇N ,

Ḟ2 +
E2

c2
F2 = (λela

2 Jλ + µela
2 Jµ)u̇N ,

F3 = (λvis
3 Jλ + µvis

3 Jµ)u̇N ,

Frheo
2D = F1 + F2 + F3,

(3.25)

where F1, F2, F3, and Frheo
2D are force vectors corresponding to stress vectors σ1,

σ2, σ3, and σ, respectively. Parameters λela
1 , µela

1 , λela
2 , and µela

2 are Lamé constants

corresponding to E1 and E2 and can be calculated by Eq. 3.3. Parameters λvis
3

and µvis
3 described the model’s viscosity and are defined as

λvis
3 =

c3γ

(1 + γ)(1 − 2γ)
, µvis

3 =
c3

2(1 + γ)
. (3.26)

Supposing that a 2D object is fixed on the ground and the top surface of the

object is pushed downward with a displacement function of d(t). These two
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3.1 FE Formulation with Cauchy Strain Tensor

constraints can be formulated as follows by using constraint stabilization method

(CSM) [Baumgarte (1972)].

AT üN + AT (2ωu̇N + ω2uN ) = 0,

BT (üN − d̈) + BT [2ω(u̇N − ḋ) + ω2(uN − d)] = 0,
(3.27)

where matrices A and B denote which nodal points should be constrained on

the bottom and top surface, respectively. Scalar ω is a predetermined angular

frequency and is set to 2000 for both constraints.

Let M be an inertia matrix and ℓ1 and ℓ2 be the Lagrange multipliers which

denote a set of constraint forces corresponding to both geometric constraints.

Using the Lagrange dynamic method, dynamic equations of the nodal points are

given by

− Frheo
2D + Aℓ1 + Bℓ2 −MüN = 0. (3.28)

Combining Eqs. 3.25, 3.27, 3.28, and considering vN = u̇N , we have a set of

differential equations for simulating the 2D FE dynamic behaviors of a rheological

object under a pushing or pulling operations. In the next section, the 2D FE

model will be extended to 3D model by changing the triangle mesh to tetrahedral

mesh and adding the z-axis components in all the matrices and vectors. Figure

3.1 demonstrates 2D simulation results of rheological behaviors. The center part

of the top surface of a 2D rheological object was pushed downward from 0 s

to 20 s with a constant velocity. The deformation was then maintained for 20

seconds. From 40 s, the deformation started to recover. Figure 3.1f shows the

force responses on the bottom surface of the object.

3.1.3 3D FE Model of Rheological Object

In our 3D FE formulation, an object is constructed by a set of tetrahedra. Let Pi

be a nodal point of a tetrahedron and [ξi, ηi, ζi]
T be coordinates of point Pi. Let

♦PiPjPkPl be a tetrahedron consisting of nodal points Pi, Pj , Pk, and Pl. Note

that linear isotropic elastic material satisfies

σ = Dǫ, (3.29)
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3.1 FE Formulation with Cauchy Strain Tensor

(a) 0 s (b) 10 s (c) 20 s

(d) 50 s (e) 60 s (f) force response

Figure 3.1: Simulation behaviors of a 2D rheological object: initial shape (a),

deformed shape (b) at time 10 s, (c) at 20 s, (d) at 50 s, (e) at 60 s, and (f) force

response on the bottom surface.

where

D =

















λ + 2µ λ λ 0 0 0
λ λ + 2µ λ 0 0 0
λ λ λ + 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ

















.

Stress vector σ and linear strain vector ǫ in 3D case are defined as

σ = [σξξ, σηη, σζζ, σηζ , σζξ, σξη]
T ,

ǫ = [ǫξξ, ǫηη, ǫζζ, 2ǫηζ , 2ǫζξ, 2ǫξη]
T .

Performing similar derivation as presented in 2D elastic deformation, we can

obtain a stiffness matrix Ki,j,k,l for a tetrahedron ♦PiPjPkPl as follows:

Ki,j,k,l = λJi,j,k,l
λ + µJi,j,k,l

µ , (3.30)
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3.1 FE Formulation with Cauchy Strain Tensor

where

Ji,j,k,l
λ =

1

36♦









Aj,k,l; j,k,l −Aj,k,l;k,l,i Aj,k,l; l,i,j −Aj,k,l; i,j,k

−Ak,l,i; j,k,l Ak,l,i;k,l,i −Ak,l,i; l,i,j Ak,l,i; i,j,k

Al,i,j; j,k,l −Al,i,j;k,l,i Al,i,j; l,i,j −Al,i,j; i,j,k

−Ai,j,k; j,k,l Ai,j,k;k,l,i −Ai,j,k; l,i,j Ai,j,k; i,j,k









,

Ji,j,k,l
µ =

1

36♦









2Bj,k,l;j,k,l −2Bj,k,l;k,l,i 2Bj,k,l; l,i,j −2Bj,k,l; i,j,k

−2Bk,l,i; j,k,l 2Bk,l,i;k,l,i −2Bk,l,i; l,i,j 2Bk,l,i; i,j,k

2Bl,i,j; j,k,l −2Bl,i,j;k,l,i 2Bl,i,j; l,i,j −2Bl,i,j; i,j,k

−2Bi,j,k; j,k,l 2Bi,j,k;k,l,i −2Bi,j,k; l,i,j 2Bi,j,k; i,j,k









+
1

36♦









Cj,k,l; j,k,l −Cj,k,l;k,l,i Cj,k,l; l,i,j −Cj,k,l; i,j,k

−Ck,l,i; j,k,l Ck,l,i;k,l,i −Ck,l,i; l,i,j Ck,l,i; i,j,k

Cl,i,j; j,k,l −Cl,i,j;k,l,i Cl,i,j; l,i,j −Cl,i,j; i,j,k

−Ci,j,k; j,k,l Ci,j,k;k,l,i −Ci,j,k; l,i,j Ci,j,k; i,j,k









.

(3.31)

The signed volume of tetrahedron ♦ = ♦PiPjPkPl is given by

♦PiPjPkPl = ♦OPjPkPl + ♦PiOPkPl + ♦PiPjOPl + ♦PiPjPkO

= ♦OPjPkPl + ♦OPkPlPi + ♦OPlPiPj + ♦OPiPjPk,
(3.32)

where the signed volume of tetrahedron ♦OPiPjPk is defined as follows:

♦OPiPjPk =
1

2

1

3

∣

∣

∣

∣

∣

∣

ξi ξj ξk

ηi ηj ηk

ζi ζj ζk

∣

∣

∣

∣

∣

∣

. (3.33)

The matrices Ai,j,k; l,m,n, Bi,j,k; l,m,n, and Ci,j,k; l,m,n in Eq. 3.31 are defined as:

Ai,j,k; l,m,n ,





ai,j,kal,m,n ai,j,kbl,m,n ai,j,kcl,m,n

bi,j,kal,m,n bi,j,kbl,m,n bi,j,kcl,m,n

ci,j,kal,m,n ci,j,kbl,m,n ci,j,kcl,m,n



 ,

Bi,j,k; l,m,n ,





ai,j,kal,m,n 0 0
0 bi,j,kbl,m,n 0
0 0 ci,j,kcl,m,n



 ,

Ci,j,k; l,m,n ,




bi,j,kbl,m,n + ci,j,kcl,m,n bi,j,kal,m,n ci,j,kal,m,n

ai,j,kbl,m,n ci,j,kcl,m,n + ai,j,kal,m,n ci,j,kbl,m,n

ai,j,kcl,m,n bi,j,kcl,m,n ai,j,kal,m,n + bi,j,kbl,m,n



 ,

(3.34)
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3.1 FE Formulation with Cauchy Strain Tensor

where

ai,j,k =

∣

∣

∣

∣

ηi ηj

ζi ζj

∣

∣

∣

∣

+

∣

∣

∣

∣

ηj ηk

ζj ζk

∣

∣

∣

∣

+

∣

∣

∣

∣

ηk ηi

ζk ζi

∣

∣

∣

∣

,

bi,j,k =

∣

∣

∣

∣

ζi ζj

ξi ξj

∣

∣

∣

∣

+

∣

∣

∣

∣

ζj ζk

ξj ξk

∣

∣

∣

∣

+

∣

∣

∣

∣

ζk ζi

ξk ξi

∣

∣

∣

∣

,

ci,j,k =

∣

∣

∣

∣

ξi ξj

ηi ηj

∣

∣

∣

∣

+

∣

∣

∣

∣

ξj ξk

ηj ηk

∣

∣

∣

∣

+

∣

∣

∣

∣

ξk ξi

ηk ηi

∣

∣

∣

∣

.

(3.35)

After having stiffness matrix on each tetrahedron as given in Eq. 3.30, we can

calculate the global stiffness matrix as follows by incorporating the contribution

of each tetrahedron:

K3D = λJ3D
λ + µJ3D

µ , (3.36)

The dimensions of connection matrices J3D
λ and J3D

µ are 3N × 3N . Therefore, a

set of elastic forces Fela
3D can be formulated as:

Fela
3D = K3Du3D

N =
(

λJ3D
λ + µJ3D

µ

)

u3D
N , (3.37)

where vectors Fela
3D and u3D

N consist of x-, y-, and z-axis components of all nodal

points and the dimensions of both vectors are 3N × 1. Comparing the above

equation and Eq. 3.16, the difference between 2D and 3D FE formulation is the

calculation of connection matrices and the configuration of force and displacement

vectors. In 3D deformation, the object is constructed with a set of tetrahedra and

all the matrices and vectors include the z-axis components in their formulations.

Similarly, we can extend 2D rheological FE formulation to 3D case. Replacing

the 2D matrices and vectors in Eqs. 3.25, 3.27, 3.28 and considering v3D
N = u̇3D

N ,
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3.1 FE Formulation with Cauchy Strain Tensor

we have 3D FE formulation of rheological deformation as follows:

u̇3D
N = v3D

N ,

M3Dv̇3D
N = A3Dℓ3D

1 + B3Dℓ3D
2 − Frheo

3D + Fext
3D ,

−AT
3Dv̇3D

N = AT
3D

(

2ωv3D
N + ω2u3D

N

)

,

−BT
3Dv̇3D

N = BT
3D

[

2ω
(

v3D
N − ḋ3D

)

+ ω2
(

u3D
N − d3D

)

]

− d̈3D,

Ḟ3D
1 = −

E1

c1
F3D

1 +
(

λela
1 J3D

λ + µela
1 J3D

µ

)

u̇3D
N ,

Ḟ3D
2 = −

E2

c2
F3D

2 +
(

λela
2 J3D

λ + µela
2 J3D

µ

)

u̇3D
N ,

F3D
3 =

(

λvis
3 J3D

λ + µvis
3 J3D

µ

)

v3D
N ,

Frheo
3D = F3D

1 + F3D
2 + F3D

3 .

(3.38)

Note that the above linear equations are solvable since the coefficient matrix

is regular, implying that we can compute u̇3D
N , v̇3D

N , Ḟ3D
1 , and Ḟ3D

2 . Thus, we

can obtain the integrals of these variables using the Runge-Kutta method and

finally compute 3D rheological deformation and force behaviors. For example,

Fig. 3.2 demonstrates simulated behaviors of a 3D cube. The entire top surface

of the cube was compressed downward with a constant velocity from time 0 s to

20 s. Before releasing, the deformed object was maintained for 20 seconds. Then,

the deformation was partially recovered until time 50 s. The rheological force

behavior is also given in Fig. 3.2d. In addition, our FE model is not limited to

regular-shaped objects. It can be used to simulate objects with arbitrary shape

as long as tetrahedra mesh is available. For example, the deformation of a 3D

index finger pushed by an external cube was performed as shown in Fig. 3.3.

Both 2D and 3D views are given for the convenience of comparison. The contact

modeling used in this example will be discussed in Chapter 4.

The FE models presented so far are based on linear Cauchy strain tensor.

Linear FE formulation has an advantage of constant connection matrices Jλ and

Jµ, which can be prepared before performing simulation. This results in more

efficient simulation comparing with nonlinear FE formulation. However, linear

FE models cannot cover large deformation and cannot simulate deformation with

rotation motion, which may frequently happen in many applications, such as

surgical simulation and food products manipulation. We will therefore introduce
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3.2 FE Formulations with Green Strain Tensor

(d) force response

(a) 0 s (b) 20 s

(c) 50 s

Figure 3.2: Simulation behaviors of a 3D rheological object: initial shape (a),

deformed shape (b) at time 20 s, (c) at 50 s, and (d) force response on the bottom

surface.

the nonlinear Green strain tensor into our FE model in the next section to deal

with this problem.

3.2 FE Formulations with Green Strain Tensor

3.2.1 2D Elastic Model

The Green strain tensor is a nonlinear strain measure which can handle large

deformation and rotation. For 2D elastic material, the components of Green

40

Chapter2/Chapter2Figs/figure3p2.eps


3.2 FE Formulations with Green Strain Tensor

Figure 3.3: Simulation behaviors of a 3D finger pushed by an external cube: (a)

initial shape in 2D view, (b) deformed shape at 0.3 s in 2D view, (c) initial shape

in 3D view, and (d) deformed shape at 0.3 s in 3D view.

strain tensor ǫg are formulated as:

ǫg
xx =

∂u

∂x
+

1

2

[

(

∂u

∂x

)2

+

(

∂v

∂x

)2
]

,

ǫg
yy =

∂v

∂y
+

1

2

[

(

∂u

∂y

)2

+

(

∂v

∂y

)2
]

,

2ǫg
xy =

(

∂u

∂y
+

∂v

∂x

)

+

(

∂u

∂x

∂u

∂y
+

∂v

∂x

∂v

∂y

)

,

(3.39)
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3.2 FE Formulations with Green Strain Tensor

where u(x, y) and v(x, y) denote the displacement of arbitrary point P(x, y) along

x-axis and y-axis respectively. Note that neglecting the quadratic part from the

right side of the above equation yields the linear Cauchy strain tensor. Again

assuming a 2D object composed of elastic material and constructed by a set of

triangles, the strain energy of arbitrary triangle △PiPjPk can be formulated as

Ui,j,k =

∫

△PiPjPk

1

2
(ǫg)T (λIλ + µIµ) ǫgh dS. (3.40)

Substituting Eq. 3.4 into the above equation and considering ǫg =
[

ǫg
xx, ǫ

g
yy, 2ǫ

g
xy

]T
,

we have

Ui,j,k = Uλ
i,j,k + Uµ

i,j,k, (3.41)

where

Uλ
i,j,k =

∫

△PiPjPk

1

2
λ

(

ǫg
xx + ǫg

yy

)2
h dS,

Uµ
i,j,k =

∫

△PiPjPk

1

2
µ

[

2 (ǫg
xx)

2 + 2
(

ǫg
yy

)2
+

(

2ǫg
xy

)2
]

h dS.

(3.42)

In the region of △PiPjPk, displacement vector uP = [u, v]T at arbitrary point P

inside △PiPjPk can be approximated by a linear combination of nodal displace-

ments ui = [ui, vi]
T, uj = [uj, vj]

T, and uk = [uk, vk]
T as follows:

u = uiNi,j,k + ujNj,k,i + ukNk,i,j,

v = viNi,j,k + vjNj,k,i + vkNk,i,j,
(3.43)

where Ni,j,k, Nj,k,i, and Nk,i,j are the interpolating shape functions. Each of them

has a value of 1 at each nodal point Pi, Pj , or Pk, respectively and zeros at all

other nodal points. Taking partial derivatives of u and v relative to x and y

respectively, we have

∂u

∂x
= ui

∂Ni,j,k

∂x
+ uj

∂Nj,k,i

∂x
+ uk

∂Nk,i,j

∂x
,

∂u

∂y
= ui

∂Ni,j,k

∂y
+ uj

∂Nj,k,i

∂y
+ uk

∂Nk,i,j

∂y
,

∂v

∂x
= vi

∂Ni,j,k

∂x
+ vj

∂Nj,k,i

∂x
+ vk

∂Nk,i,j

∂x
,

∂v

∂y
= vi

∂Ni,j,k

∂y
+ vj

∂Nj,k,i

∂y
+ vk

∂Nk,i,j

∂y
.

(3.44)
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3.2 FE Formulations with Green Strain Tensor

Let [ξi, ηi]
T, [ξj, ηj ]

T, and [ξk, ηk]
T be initial coordinates of nodal points Pi, Pj,

and Pk, respectively. Partial derivatives of shape functions in Eq. 3.44 can be

calculated as:

Nix =
∂Ni,j,k

∂x
=

ηj − ηk

2△
, Niy =

∂Ni,j,k

∂y
= −

ξj − ξk

2△
,

Njx =
∂Nj,k,i

∂x
=

ηk − ηi

2△
, Njy =

∂Nj,k,i

∂y
= −

ξk − ξi

2△
,

Nkx =
∂Nk,i,j

∂x
=

ηi − ηj

2△
, Nky =

∂Nk,i,j

∂y
= −

ξi − ξj

2△
,

(3.45)

where △ denotes the area of triangle △PiPjPk. Substituting Eqs. 3.44 and 3.45

into Eq. 3.39, we have

ǫg
xx = αTq,

ǫg
yy = βTq,

2ǫg
xy = ζTq,

(3.46)

where

α =



































































Nix

0
Njx

0
Nkx

0
1
2
(Nix)

2

1
2
(Nix)

2

1
2
(Njx)

2

1
2
(Njx)

2

1
2
(Nkx)

2

1
2
(Nkx)

2

NjxNkx

NjxNkx

NkxNix

NkxNix

NixNjx

NixNjx



































































, β =



































































0
Niy

0
Njy

0
Nky

1
2
(Niy)

2

1
2
(Niy)

2

1
2
(Njy)

2

1
2
(Njy)

2

1
2
(Nky)

2

1
2
(Nky)

2

NjyNky

NjyNky

NkyNiy

NkyNiy

NiyNjy

NiyNjy



































































, ζ =

































































Niy

Nix

Njy

Njx

Nky

Nkx

NixNiy

NixNiy

NjxNjy

NjxNjy

NkxNky

NkxNky

NjxNky + NkxNjy

NjxNky + NkxNjy

NkxNiy + NixNky

NkxNiy + NixNky

NixNjy + NjxNiy

NixNjy + NjxNiy

































































,q =



































































ui

vi

uj

vj

uk

vk

(ui)
2

(vi)
2

(uj)
2

(vj)
2

(uk)
2

(vk)
2

ujuk

vjvk

ukui

vkvi

uiuj

vivj



































































.

(3.47)

Substituting Eq. 3.46 into Eq. 3.42 and taking the partial derivative of Eq. 3.41

relative to displacement vector ui,j,k = [ui, vi, uj, vj, uk, vk]
T, we have the elastic
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3.2 FE Formulations with Green Strain Tensor

force formulation with Green strain tensor as:

Fi,j,k

ela(g) = Fi,j,k

λ(g) + Fi,j,k

µ(g), (3.48)

where

Fi,j,k

λ(g) = λh△
(

αTq + βTq
)





















αT ∂q

∂ui
+ βT ∂q

∂ui

αT ∂q

∂vi
+ βT ∂q

∂vi

αT ∂q

∂uj
+ βT ∂q

∂uj

αT ∂q

∂vj
+ βT ∂q

∂vj

αT ∂q

∂uk
+ βT ∂q

∂uk

αT ∂q

∂vk
+ βT ∂q

∂vk





















,

Fi,j,k

µ(g) = µh△





























2
(

αTq
)

(

αT ∂q

∂ui

)

+ 2
(

βTq
)

(

βT ∂q

∂ui

)

+
(

ζTq
)

(

ζT ∂q

∂ui

)

2
(

αTq
)

(

αT ∂q

∂vi

)

+ 2
(

βTq
)

(

βT ∂q

∂vi

)

+
(

ζTq
)

(

ζT ∂q

∂vi

)

2
(

αTq
)

(

αT ∂q

∂uj

)

+ 2
(

βTq
)

(

βT ∂q

∂uj

)

+
(

ζTq
)

(

ζT ∂q

∂uj

)

2
(

αTq
)

(

αT ∂q

∂vj

)

+ 2
(

βTq
)

(

βT ∂q

∂vj

)

+
(

ζTq
)

(

ζT ∂q

∂vj

)

2
(

αTq
)

(

αT ∂q

∂uk

)

+ 2
(

βTq
)

(

βT ∂q

∂uk

)

+
(

ζTq
)

(

ζT ∂q

∂uk

)

2
(

αTq
)

(

αT ∂q

∂vk

)

+ 2
(

βTq
)

(

βT ∂q

∂vk

)

+
(

ζTq
)

(

ζT ∂q

∂vk

)





























.

(3.49)

Substituting vectors α, β, ζ , and q of Eq. 3.47 into the above equation and

performing a series of transformations, we can end up with a formulation of

elastic forces with green strain as follows, which has a similar form with Eq. 3.16:

Fi,j,k

ela(g) =
(

λJi,j,k

λ(g) + µJi,j,k

µ(g)

)

ui,j,k, (3.50)

where

Ji,j,k

λ(g) = Jcons
λ + Jvar1

λ + Jvar2
λ ,

Ji,j,k

µ(g) = Jcons
µ + Jvar1

µ + Jvar2
µ ,

(3.51)
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3.2 FE Formulations with Green Strain Tensor

with constant matrices Jcons
λ and Jcons

µ given by:

Jcons
λ = h△

















N2
ix NixNiy NixNjx NixNjy NixNkx NixNky

NiyNix N2
iy NiyNjx NiyNjy NiyNkx NiyNky

NjxNix NjxNiy N2
jx NjxNjy NjxNkx NjxNky

NjyNix NjyNiy NjyNjx N2
jy NjyNkx NjyNky

NkxNix NkxNiy NkxNjx NkxNjy N2
kx NkxNky

NkyNix NkyNiy NkyNjx NkyNjy NkyNkx N2
ky

















,

Jcons
µ = h△

















2N2
ix + N2

iy NiyNix 2NixNjx + NiyNjy

NixNiy 2N2
iy + N2

ix NixNjy

2NjxNix + NjyNiy NjyNix 2N2
jx + N2

jy

NjxNiy 2NjyNiy + NjxNix NjxNjy

2NkxNix + NkyNiy NkyNix 2NkxNjx + NkyNjy

NkxNiy 2NkyNiy + NkxNix NkxNjy

NiyNjx 2NixNkx + NiyNky NiyNkx

2NiyNjy + NixNjx NixNky 2NiyNky + NixNkx

NjyNjx 2NjxNkx + NjyNky NjyNkx

2N2
jy + N2

jx NjxNky 2NjyNky + NjxNkx

NkyNjx 2N2
kx + N2

ky NkyNkx

2NkyNjy + NkxNjx NkxNky 2N2
ky + N2

kx

















.

(3.52)
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3.2 FE Formulations with Green Strain Tensor

Time-varying matrices Jvar1
λ and Jvar1

µ have the following symmetrical forms:

Jvar1
λ = h△

(

αTq + βTq
)























N2
ix + N2

iy 0 2NixNjx + NiyNjy

0 N2
iy + N2

ix 0

NjxNix + NjyNiy 0 N2
jx + N2

jy

0 NjyNiy + NjxNix 0

NkxNix + NkyNiy 0 NkxNjx + NkyNjy

0 NkyNiy + NkxNix 0

0 NixNkx + NiyNky 0

NiyNjy + NixNjx 0 NiyNky + NixNkx

0 NjxNkx + NjyNky 0

N2
jy + N2

jx 0 NjyNky + NjxNkx

0 N2
kx + N2

ky 0

NkyNjy + NkxNjx 0 N2
ky + N2

kx























.

Jvar1
µ = 2h△

(

αTq
)























N2
ix 0 NixNjx 0 NixNkx 0

0 N2
ix 0 NixNjx 0 NixNkx

NjxNix 0 N2
jx 0 NjxNkx 0

0 NjxNix 0 N2
jx 0 NjxNkx

NkxNix 0 NkxNjx 0 N2
kx 0

0 NkxNix 0 NkxNjx 0 N2
kx























+ 2h△
(

βTq
)























N2
iy 0 NiyNjy 0 NiyNky 0

0 N2
iy 0 NiyNjy 0 NiyNky

NjyNiy 0 N2
jy 0 NjyNky 0

0 NjyNiy 0 N2
jy 0 NjyNky

NkyNiy 0 NkyNjy 0 N2
ky 0

0 NkyNiy 0 NkyNjy 0 N2
ky























+ h△
(

γTq
)























2NixNiy 0 NixNjy + NjxNiy

0 2NixNiy 0

NjxNiy + NixNjy 0 2NjxNjy

0 NjxNiy + NixNjy 0

NkxNiy + NixNky 0 NkxNjy + NjxNky

0 NkxNiy + NixNky 0

0 NixNky + NkxNiy 0

NixNjy + NjxNiy 0 NixNky + NkxNiy

0 NjxNky + NkxNjy 0

2NjyNjx 0 NjxNky + NkxNjy

0 2NkxNky 0

NkxNjy + NjxNky 0 2NkxNky























.

(3.53)
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Time-varying matrices Jvar2
λ and Jvar2

µ have the following unsymmetrical forms:

Jvar2
λ =

h△

2























Nix(Hα
1 + H

β
1 )Tui,j,k Nix(Hα

2 + H
β
2 )Tui,j,k Nix(Hα

3 + H
β
3 )Tui,j,k

Niy(H
α
1 + H

β
1 )Tui,j,k Niy(H

α
2 + H

β
2 )Tui,j,k Niy(H

α
3 + H

β
3 )Tui,j,k

Njx(H
α
1 + H

β
1 )Tui,j,k Njx(H

α
2 + H

β
2 )Tui,j,k Njx(H

α
3 + H

β
3 )Tui,j,k

Njy(H
α
1 + H

β
1 )Tui,j,k Njy(H

α
2 + H

β
2 )Tui,j,k Njy(H

α
3 + H

β
3 )Tui,j,k

Nkx(H
α
1 + H

β
1 )Tui,j,k Nkx(H

α
2 + H

β
2 )Tui,j,k Nkx(H

α
3 + H

β
3 )Tui,j,k

Nky(H
α
1 + H

β
1 )Tui,j,k Nky(H

α
2 + H

β
2 )Tui,j,k Nky(H

α
3 + H

β
3 )Tui,j,k

Nix(Hα
4 + H

β
4 )Tui,j,k Nix(Hα

5 + H
β
5 )Tui,j,k Nix(Hα

6 + H
β
6 )Tui,j,k

Niy(H
α
4 + H

β
4 )Tui,j,k Niy(H

α
5 + H

β
5 )Tui,j,k Niy(H

α
6 + H

β
6 )Tui,j,k

Njx(Hα
4 + H

β
4 )Tui,j,k Njx(H

α
5 + H

β
5 )Tui,j,k Njx(H

α
6 + H

β
6 )Tui,j,k

Njy(H
α
4 + H

β
4 )Tui,j,k Njy(H

α
5 + H

β
5 )Tui,j,k Njy(H

α
6 + H

β
6 )Tui,j,k

Nkx(Hα
4 + H

β
4 )Tui,j,k Nkx(Hα

5 + H
β
5 )Tui,j,k Nkx(H

α
6 + H

β
6 )Tui,j,k

Nky(H
α
4 + H

β
4 )Tui,j,k Nky(H

α
5 + H

β
5 )Tui,j,k Nky(H

α
6 + H

β
6 )Tui,j,k























,

Jvar2
µ =

h△

2























2Nix(Hα
1 )Tui,j,k + Niy(H

ζ
1)

Tui,j,k 2Nix(Hα
2 )Tui,j,k + Niy(H

ζ
2)

Tui,j,k

2Niy(H
β
1 )Tui,j,k + Nix(Hζ

1)
Tui,j,k 2Niy(H

β
2 )Tui,j,k + Nix(Hζ

2)
Tui,j,k

2Njx(H
α
1 )Tui,j,k + Njy(H

ζ
1)

Tui,j,k 2Njx(Hα
2 )Tui,j,k + Njy(H

ζ
2)

Tui,j,k

2Njy(H
β
1 )Tui,j,k + Njx(Hζ

1)
Tui,j,k 2Njy(H

β
2 )Tui,j,k + Njx(H

ζ
2)

Tui,j,k

2Nkx(H
α
1 )Tui,j,k + Nky(H

ζ
1)

Tui,j,k 2Nkx(Hα
2 )Tui,j,k + Nky(H

ζ
2)

Tui,j,k

2Nky(H
β
1 )Tui,j,k + Nkx(Hζ

1)
Tui,j,k 2Nky(H

β
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From the above derivations we found that the connection matrices Ji,j,k

λ(g) and
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3.2 FE Formulations with Green Strain Tensor

Ji,j,k

µ(g) are no longer constant and depend on the time-varying displacement vector

ui,j,k. We were not able to prepare those two matrices before simulation and we

have to calculate them at every time step.

3.2.2 2D Rheological Model

Following the same replacement procedure presented in Section 3.1, we can ex-

tend the above elastic model to a rheological model. Performing a series of

replacements to Eq. 3.25, we have

Ḟg
1 +

E1

c1
Fg

1 = (λela
1 Jg

λ + µela
1 Jg

µ)u̇N ,

Ḟg
2 +

E2

c2
Fg

2 = (λela
2 Jg

λ + µela
2 Jg

µ)u̇N ,

Fg
3 = (λvis

3 Jg
λ + µvis

3 Jg
µ)u̇N ,

Frheo
2D(g) = Fg

1 + Fg
2 + Fg

3,

(3.56)

where superscript g denotes the variables with a formulation of Green strain

tensor. Total connection matrices Jg
λ and Jg

µ were calculated by incorporating the

matrices Ji,j,k

λ(g) and Ji,j,k

µ(g) of each triangles based on the contribution of each triangle

to the whole triangle mesh. Vector Frheo
2D(g) is the rheological forces generated on

each nodal point.

For performing an operation on a virtual object, boundary constraints need

to be formulated. For example, we suppose a 2D object was fixed on the ground

and the top edge or some nodal points were pushed down or pulled up with a

displacement function of d(t). Two boundary constraints on both top and bottom

edges can be formulated as given in Eq. 3.27:

Let M be the inertia matrix of the object and ℓ1 and ℓ2 be the Lagrange

multipliers which denote a set of constraint forces corresponding to both boundary

constraints. Using the Lagrange dynamic method, a set of dynamic equations of

all nodal points is formulated as

− Frheo
2D(g) + Aℓ1 + Bℓ2 − MüN = 0. (3.57)

Combining Eqs. 3.56, 3.27, 3.57, and considering vN = u̇N , we can end up

with a set of differential equations which describe the 2D dynamic behaviors of a
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3.2 FE Formulations with Green Strain Tensor

rheological object formulated with nonlinear Green strain tensor. By numerically

solving these equations, we can calculate the deformation and forces at each nodal

points of the object.

3.2.3 Simulation Comparisons Between FE Models with

Cauchy and Green Strain Tensors

In order to show the difference between the linear Cauchy strain and nonlin-

ear Green strain, several FE simulations were performed with formulations of

both strain tensors. The first simulation is under an input of constant veloci-

ties. Within the first 2 seconds, 3 nodal points on the top surface of the objects

were pushed downward to a desired displacement of 0.01 m, 0.02 m, 0.03 m, and

0.04 m respectively, as shown in Fig. 3.4a. The deformed shapes were then held

unchange for 2 seconds before releasing. The final recovered shapes and force

responses from FE models with both strain tensors were shown in Fig. 3.4b and

3.4c. The second simulation was performed with different force inputs acting on

the top right corner of the object, as shown in Fig. 3.5a. The force input can be

easily incorporated with the above-mentioned FE model by adding an external

force vector Fext into Eq. 3.57. In this simulation, the top right corners of the

objects were pulled upward with constant forces for 2 seconds. The deformed ob-

jects were then released with 2 seconds for recovery. The deformed and recovered

shapes for both strain tensors were shown in Fig. 3.5b and 3.5c respectively.

From Figs. 3.4b and 3.5b we find that linear model with Cauchy strain tensor

always yields linear behaviors, i.e., the output is always proportional to the input

and no matter the input is force or displacement. However, such behaviors will not

happen in real rheological objects when the deformation is getting large. This is

the limitation of the linear model. The nonlinear modeling is therefore necessary

to cover such large deformation. Figures 3.4c and 3.5c show that output behaviors

simulated with Green strain tensor do not have the proportional relationship with

the inputs of both forces and displacements. When the inputs take small values

(e.g., Dis=0.01 m in Fig. 3.4 and F=0.01 N in Fig. 3.5), the outputs behaviors

simulated by Cauchy and Green strain tensors have small differences. However,

the differences increased with the increase of input values as shown in Fig. 3.4
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3.2 FE Formulations with Green Strain Tensor

Figure 3.4: FE simulations of rheological behaviors under an input of different

displacements, where the FE models were formulated with (b) Cauchy and (c)

Green strain tensors.

and 3.5. Apparently, the simulation results with nonlinear Green strain tensor

demonstrate more natural behaviors when the deformation becomes large.

In order to further compare the ability of both models for handling defor-

mation with rotation motion, pushing and rolling simulations with both models

were performed. An object with circular shape is pushed downward by an exter-

nal instrument for 5 seconds with a constant velocity of 0.01 m/s and then the

instrument starts to move left for another 5 seconds with the same velocity. The

instrument is then moved upward and let the deformation to recover. The total

simulation time is 15 seconds. The material properties of the object are repre-

sented by a parallel five-element physical model with parameters: E1 = 200 Pa,

E2 = 500 Pa, c1 = 8000 Pa·s, c2 = 5000 Pa·s, and c3 = 100 Pa·s. Several simu-

lation snapshots using both models are given in Figs. 3.6 and 3.7, respectively.

From Fig. 3.6, we find that linear Cauchy strain tensor results in some strange

51

Chapter2/Chapter2Figs/figure3p4.eps


3.2 FE Formulations with Green Strain Tensor

Figure 3.5: FE simulations of rheological behaviors under an input of different

forces, where the FE models were formulated with (b) Cauchy and (c) Green

strain tensors.

behaviors when simulating deformation with rotation motion. The triangular

mesh of the object is expanded during rolling motion which should not happen

in a real world object. After recovery, the object become much bigger (Fig. 3.6d)

comparing with the initial shape (Fig. 3.6a). On the other hand, the object

simulated with nonlinear Green strain does not show such strange behaviors, as

shown in Fig. 3.7. We therefore conclude that the nonlinear Green strain tensor

provide more natural deformation behaviors comparing with linear Cauchy strain

tensor for dealing with large deformation and rotation. The modeling of contact

between a rheological object and an external instrument shown in Figs. 3.6 and

3.7 will be introduced in the next chapter.
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Figure 3.6: Simulation snapshots of a rheological object pushed and rolled by

an external instrument, where the model of the object was formulated by linear

Cauchy strain tensor.

3.3 FE Formulation with the Dual-Moduli Vis-

cous Elements

As presented in Chapter 2, a five-element physically-based model with two dual-

moduli viscous elements can yield simultaneous reproductions of both rheological

forces and deformation behaviors. Now, let us extend the 1D physically-based

model to a 2D FE dynamic model.

Recall that a stress-strain relationship in a Maxwell model is described by

Eq. 3.17. Thus, replacing viscous coefficient c by dual-moduli viscous coefficient

κα + c, we have the stress-strain relationship in a Maxwell model with a dual-

moduli viscous element as:

σ̇ = −
E

κα + c
σ + Eǫ̇. (3.58)

Then, by performing the same replacements for deriving 2D FE model (Eq. 3.25),

we have a 2D FE formulation with a physically-based model including two dual-
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Figure 3.7: Simulation snapshots of a rheological object pushed and rolled by an

external instrument, where the model of the object was formulated by nonlinear

Green strain tensor.

moduli viscous elements shown in Fig. 2.9b as:

Ḟ1 +
E1

κα1 + c1

F1 = (λela
1 Jλ + µela

1 Jµ)u̇N ,

Ḟ2 +
E2

κα2 + c2

F2 = (λela
2 Jλ + µela

2 Jµ)u̇N ,

F3 = (λvis
3 Jλ + µvis

3 Jµ)u̇N ,

Frheo
2D = F1 + F2 + F3,

(3.59)

This formulation also can be easily extended to 3D cases and models with the

Green strain tensor as well by performing similar replacements as we did here.

3.4 Concluding Remarks

In this chapter, the formulations of FE dynamic models for simulating rheologi-

cal behaviors were presented. We started from a 2D formulation of elastic model

based on generalized Hooke’s law and linear Cauchy strain tensor. The FE for-

mulation of elastic deformation was then extended to 2D rheological model and
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further extended to handle 3D rheological deformation. Simulation results were

given. In FE model with linear Cauchy strain tensor, the connection matrices are

constant and can be prepared in advance which can yield more efficient calcula-

tions comparing with nonlinear models. However, FE model with linear Cauchy

strain tensor is not suitable for simulating large deformation and rotation. We

have therefore introduced nonlinear Green strain tensor to model large deforma-

tion and rotation. The derivation of FE model with Green strain tensor was

presented. It also starts from the formulation of elastic deformation and further

extended to rheological deformation by performing a series of replacements. Sim-

ulation results using FE models with Cauchy and Green strain tensors were then

given to compare the differences between both models. We found that the FE

model with nonlinear Green strain tensor yields more natural behaviors when

dealing with large deformation and rotation. However, since the connection ma-

trices are no longer constant, we are not able to prepare these matrices in advance

and have to calculate them in every time step. This makes the FE simulation with

nonlinear Green strain tensor very time-consuming. At last, we also presented

FE model with a five-element physical model which includes two dual-moduli

viscous elements.
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Chapter 4

Modeling of Non-Uniform Object

and Contact Interaction

The FE dynamic models presented in the last chapter are basically used to sim-

ulate uniform and isotropic objects. However most objects in the real world

are not uniform and may include several different layers with different material

properties. In addition, a contact interaction between an object and an external

instrument may often happen during handling or manipulation. We therefore

investigate the modeling of non-uniform layered objects and contact interaction

between a rheological object and external instruments in this chapter.

4.1 FE Modeling of Non-Uniform Layered Ob-

ject

When we started to model non-uniform objects, the first idea came to our mind is

to set different parameters to each triangle. However, this idea does not work well.

If we look at the dynamic equations presented in the last chapter, for instance, Eq.

3.25, we find that all the parameters are associated with nodal points rather than

triangles. In other words, the physical parameters in our FE models are point-

wise instead of triangle-wise, which makes the difficulty of choosing appropriate

parameters for the boundary nodal points between two layers when dealing with
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Figure 4.1: Modeling strategy for non-uniformed layered object.

layered objects. We have therefore proposed the following idea for modeling non-

uniform layered objects.

Considering a two-layered object with different material properties in each

layer, we artificially separate this non-uniform layered object into two uniform

objects with their own properties during simulation, as shown in Fig. 4.1. Note

that the boundary nodal points on both layers (i.e., the hollow nodes on the top

layer and the solid nodes on the bottom layer) always have the same displacements

(as they are in fact the same points), i.e.:

ubott = utop. (4.1)

The modeling of this layered object can therefore be divided into the modeling of

two uniform objects with a displacement constraint on the boundary nodal points.

As shown in Fig. 4.1, we imposed the displacements of the top boundary points

onto the bottom boundary points during simulation by applying a displacement

constraint of Eq. 4.1. Using the CSM, this constraint can be formulated as:

(übott − ütop) + 2ω(u̇bott − u̇top) + ω2(ubott − utop) = 0. (4.2)
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Soft 

layer

Hard 

layer

Figure 4.2: Deformed shape of a two-layered object with soft material in the top

layer.

Accordingly, the constraint forces generated on the bottom boundary points are

reacted back to the top boundary points, i.e., Ftop = −Fbott. By integrating Eq.

4.2 into the dynamic equations of the object on the bottom layer and substituting

Ftop as an external force into the dynamic equations of the object on the top layer,

we can derive an FE model for simulating rheological behaviors of a non-uniform

layered object. A typical deformation behavior of a two-layered object is shown

in Fig. 4.2, where the top layer is three times softer (all parameters are three

times smaller) than the bottom layer. Another example, as shown in Fig. 4.3, is

a semi-spherical object made of two types of materials (denoted by solid and dash

line, respectively) grasped by a robot hand. We can see that our modeling method

demonstrated natural behaviors of non-uniform layered objects. In addition, this

2D FE model can be easily extended to a 3D case by changing the triangular

meshes to tetrahedral meshes and adding z-axis components to all the vectors

and matrices.

4.2 Contact Modeling

The contact modeling is always required when dealing with interactions between a

deformable object and an external instrument and is important for many applica-
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(a) Initial shape

(c) Final-shape

(b) Held-shape

Figure 4.3: Deformation behaviors of a semi-spherical object made of two types

of materials grasped by a robot hand.

tions, such as food manufacturing simulation and surgical operation. Depending

on the contact area between the object and the external instrument, we roughly

divide contact models into two categories, as shown in Fig. 4.4. The modeling

of these two kinds of contacts, however, is quite different. In wide area contact

(Fig. 4.4a), contact modeling only requires a detection of contact moment and

a constraint condition between the instrument and the object can then be im-

posed. On the other hand, in small area contact (Fig. 4.4b), the object needs a

remeshing or at least a local remeshing to ensure that the contact nodes on the

instrument are coincided with some nodes on the object. Otherwise, the instru-

ment and the object may penetrate each other in some regions. In the following

subsections, we will investigate the contact modeling of both categories.

4.2.1 Wide Area Contact

In the modeling of wide area contact, we should keep the object mesh unchange

and only focus on the detection of contact moment, losing contact moment, and

imposing constraints on the contact nodes.
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Figure 4.4: Two kinds of contact models: (a) wide area contact, and (b) narrow

area contact.

4.2.1.1 Contact Moment Detection

As shown in Fig. 4.4a, the object and the instrument are constructed by trian-

gular meshes. Since the instrument is assumed to be rigid, we can use a simplest

mesh (only two triangles) for its modeling. During simulation, the instrument is

moving downward with a constant velocity to compress the object with a specific

displacement. We virtually connect one node P on the object with three nodes

of a triangle (△ABC) on the instrument to construct three triangles: △PAB,

△PBC, and △PCA. Let △PiPjPk be an arbitrary triangle with three vertices:

Pi, Pj , and Pk. Coordinates of these vertices are [xi, yi], [xj , yj], and [xk, yk],

respectively. We define a signed area of a triangle as:

△ PiPjPk =
1

2
[xi, xj, xk]





yj − yk

yk − yi

yi − yj



 . (4.3)

This signed area is positive if the triangular loop (the order of the three vertices

of a triangle) is counter clockwise while is negative if the loop is clockwise. Now,

let us check the signed areas of the triangles △PAB, △PBC, and △PCA shown

in Fig. 4.4a, we find that the area of △PAB is negative. However, once the nodal

point P is located on any edge or inside of the triangle △ABC, each signed area of
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above three triangles will became zero or positive. This can serve as a criterion to

detect the contact moment and start the contact constraint. In every time step,

we check all the nodal points on the object to see if any of them is in contact

with the instrument or not. The algorithm can be roughly described as follows:

In each time step

for loop: each nodal point on the object (node P for instance)

for loop: each triangle on the instrument (△ABC for instance)

if △PAB ≥ 0 and △PBC ≥ 0 and △PCA ≥ 0

Start contact;

end if, for.

4.2.1.2 Constraints for Contact Nodes

Once the instrument was in contact with the object, the contact points on both

instrument and object would have the same displacement and velocity. Let vins
c ,

vobj
c , uins

c , and uobj
c be the velocity and displacement vectors of the contact points

on the instrument and object respectively after contact moment. Using CSM, a

set of constraint equations are formulated as:

CT (v̇obj
c − v̇ins

c ) + CT [2ω(vobj
c − vins

c ) + ω2(uobj
c − uins

c )] = 0, (4.4)

where constant matrix C denotes which nodal points on the object are in con-

tact. Note that vectors vins
c and uins

c of arbitrary point on edge AB (Fig. 4.4a)

can be obtained from velocities and displacements of vertices A and B by using

interpolation. Combining Eq. 4.4 with the FE model presented in Chapter 3, we

are able to simulate the contact interaction between a rheological object and an

external instrument.
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4.2.1.3 Losing Contact and Switching Parameters

Once the instrument started to move back after pushing and holding operations,

we at first thought that it is necessary to determine the losing contact moment

and then release the constraint accordingly. However, we found out that we do

not have to do that and our contact model has an ability to automatically lose

the contact as long as the instrument started to leave the object. Let us recall

the idea of our contact model and dig a little bit deeper. During each time step in

simulation, if any nodal point on the object is located inside the instrument, it will

be pushed down to coincide with the instrument boundary after this time step due

to the CSM constraint. Note that this pushing down action will happen in next

time step but not in the current time step. In other word, the CSM constraints

for the points in contact are always performed one time step later than the time

step where the contact happens. Now, let us consider the losing contact situation.

When the instrument started to move back, the object will also start to recover.

If the recovery rate of the object is faster than the rate of instrument moving

back, the contact is still in effect. However, the recovery rate of the object is

always decreasing with time. In a certain time step, once the recovery rate of the

object is slower than the moving back rate of the instrument, the nodal points

in contact will be located outside the instrument boundary. This separation will

happen because the CSM constraints are always one time step later than the

detection of contact as we just discussed above. Once the separation happens,

the contact constraint therefore will be automatically released. This made our

contact model much simple and natural.

According to the above discussion, the moment of in contact and losing contact

can be determined without explicitly using of simulation time. This can also

serve as a good criterion for dual-moduli viscous element to switch parameters,

as discussed in Section 2.5. We therefore use a flag to memorize the contact points

and to serve as the criterion. The algorithm for contact modeling now becomes:

In each time step

for loop: each nodal point on the object (node P for instance)

Initialize: flag(p)=0;
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for loop: each triangle on the instrument (△ABC for instance)

if △PAB ≥ 0 and △PBC ≥ 0 and △PCA ≥ 0

flag(p)=1;

Start contact;

end if, for

We will switch the parameters when all contacting points lose their contacts. The

switch function κ now becomes:

κ =
{

−1 flag(p) = 0 ∀p ∈ object,
1 otherwise.

(4.5)

Now, we are able to perform the contact simulation with the parameter switching

strategy to reproduce both rheological force and deformation behaviors. The next

subsection will demonstrate some simulation results to show the ability of our

contact model.

4.2.1.4 Contact Simulation

Using the proposed FE contact model, we are able to simulate deformation behav-

iors of the rheological objects undergoing a compressing, holding, and releasing

procedures. The first example is a semi-circular shaped object deformed by a flat

squared instrument. Total simulation time is 16 seconds. The instrument moves

down 25 mm in first 4 seconds with a constant velocity. Then, the instrument

stops pushing and maintains the deformed object for another 4 seconds. The

instrument then moves back to the original position within 4 seconds. After the

instrument moves back to the original position, the object still has 4 seconds to

recover. Some snapshots of simulation results are shown in Fig. 4.5, where the

FE model with dual-moduli viscous elements is employed. All the parameters

used here are estimated from real Japanese sweets materials and how to estimate

these parameters will be discussed in the next chapter. To compare the different

performance, simulation snapshots of FE model without dual-moduli viscous el-

ements are also given in Fig. 4.6. We can easily see the differences between Figs.

4.5 and 4.6. At simulation time 8.2 s, the instrument and object has lost contact
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(a) 0 s (b) 2 s (c) 4 s

(d) 8.2 s (e) 12 s (f) 16 s

Figure 4.5: Simulation snapshots of a semi-circular object pushed down by a flat

squared instrument with parameter switching strategy.

in Fig. 4.5d but still in contact in Fig. 4.6a. The final recovered shapes of both

cases are also quite different. The deformation recovery takes longer time if we

do not use the dual-moduli viscous elements.

The second example is a circular object operated by two external instruments

with one from the top and another one from the bottom, as shown in Fig. 4.7. The

bottom instrument is static and the top instrument is moving down to push the

object. Figure 4.7b showed that the object have already deformed and contacted

with the bottom instrument due to gravity before the top instrument touches

the object. The final recovered shape is also not symmetrical relative to the

horizontal axis due to the gravity. Figure 4.7 shows the simulation results of FE

model with dual-moduli viscous elements. Some snapshots of simulation results

without dual-moduli viscous elements are also given in Fig. 4.8 to show the

differences. In addition, simulation results of contact model also can be found in

Figs. 3.5 and 3.6 in the last chapter.
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(a) 8.2 s (b) 12 s (c) 16 s

Figure 4.6: Simulation snapshots of a semi-circular object pushed down by a flat

squared instrument without parameter switching strategy.

4.2.2 Narrow Area Contact

Different with wide area contact, the modeling of narrow area contact requires

either a global remeshing or a local remeshing because the contact area of the

instrument is smaller than the area of the object as shown in Fig. 4.4b. More-

over,same with wide area contact, narrow area contact also needs a detection

of contact moment, which will serve as a trigger to start the performance of

remeshing.

4.2.2.1 Object Remeshing

In order to generate triangular mesh automatically, we have employed a MAT-

LAB toolbox of 2D meshing routines named MESH2D, which allows automatic

generation of unstructured triangular meshes for general 2D geometry. For us-

ing MESH2D, one all need to do is to provide some boundary points which can

best describe the object shape (piecewise linear geometry input). By setting

some parameters, we also can control the mesh resolution or specify some special

nodal points and some special connections between some nodal points. In our

application, we only use the basic function and input several boundary points

into MESH2D. In every time step during integration, we perform the following

processes:

1. Perform the contact detection to see if the instrument and the object are

in contact or not. If it is not in contact, jump to step 2. If it is in contact,
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(a) 0 s (b) 2 s (c) 4 s

(d) 8.2 s (e) 12 s (f) 16 s

Figure 4.7: Simulation snapshots of a circular object operated by two instruments

with parameter switching strategy.

jump to step 3 and perform the steps followed.

2. Using the initial triangular meshes for both object and the instrument to

calculate all the variables and finish the calculation for this time step.

3. Remember the current coordinates of the contact points on the instrument.

These points and the initial boundary points will serve as a set of new

boundary points to generate the new mesh.

4. Perform the remeshing using MESH2D and recalculate all the required ma-

trices, such as the inertial matrix and connection matrices.
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(a) 8.2 s (b) 12 s (c) 16 s

Figure 4.8: Simulation snapshots of a circular object operated by two instruments

without parameter switching strategy.

5. Use the new mesh and new matrices to calculate all the variables needed

to be integrated and finish the calculation of the current time step.

Note that since the remeshing and calculations of connection matrices, which are

usually quite large, must be performed inside the time integration, this contact

simulation with remeshing is quite time-consuming.

4.2.2.2 Contact Simulation with Remeshing

A simulation was conducted to show the performance of narrow area contact

model with remeshing. A 2D squared object was deformed by a instrument whose

contact area is a quarter of the contact area of the object. The instrument and the

object have an initial distance of 0.2 m. The instrument was moved down 0.4 m

from the initial position in 2 seconds with a constant velocity. Before releasing, the

deformed object was maintained for 2 seconds. Then, the instrument was moved

back to its initial position in 2 seconds with a constant velocity. After this, the

deformed object still had another 2 seconds to recover. The total simulation time

is therefore 8 seconds. Several simulation snapshots are given in Fig. 4.9. We

can see that the instrument starts to contact with the object at the moment of

1 s and the two contact points in the instrument are not coincide with any nodal

point on the object. In the next time step, the object is remeshed and now two
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(a) 0 s (b) 1 s (before remeshing) (c) 1 s (after remeshing)

(d) 2 s (e) 3.1 s (f) 8 s

Figure 4.9: Simulation results of narrow area contact with remeshing.

new points on the object are generated and are coincided with the corresponding

nodes on the instrument. The constraints are then imposed on these contact

points to perform the contact simulation.

4.3 Concluding Remarks

In this chapter, the modeling of non-uniform layered objects and contact inter-

action between rheological object and external instrument were formulated. We

artificially separated a non-uniform layered object into several uniform ones and

performed the uniform simulation independently. The non-uniform behaviors

were then obtained by imposing a constraint on the nodal points of the boundary

between both layers. This idea works very well for different shaped objects. For

modeling of contact interaction, we roughly divided the contact models into two
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categories depending on the contact areas of the object and the instrument. For

wide area contact, the only thing we need to do is to detect the contact moment

and then impose constraints on the contacting points. However for narrow area

contact, we have to perform object remeshing or at least local remeshing during

the simulation. To conduct the remeshing, we need an automatic mesh genera-

tion during simulation. This can be done by using a MATLAB toolbox named

MESH2D. In each time step, the detection of contact moment is also performed.

Once the contact starts, the remeshing is performed and then the constraints are

also imposed on the contact nodal points. Simulation results were performed to

demonstrate the performance of both contact models.
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Chapter 5

Parameter Estimation

In order to accurately simulate the behaviors of real objects, the properties (phys-

ical parameters) have to be determined in advance. However, the estimation of

those parameters is a challenging work, especially for rheological objects which

always yield residual deformation after a loading-unloading operation. These es-

timated parameters have to be able to regenerate the rheological force, deformed

shape (e.g., the held-shape) during the operation and the final deformed shape

(the final-shape) after recovery as well. This chapter introduce the methods used

in our work to estimate physical parameters for simultaneous reproductions of

both rheological forces and deformation, especially the residual deformation be-

haviors. At first, let us investigate the contributions of mesh resolution and each

parameter to the rheological behaviors based on 2D FE simulation.

5.1 FE Simulation Analysis

Let us take the FE model presented in Section 3.1.2 as an example to perform the

simulation analysis. This 2D FE model includes 6 unknown physical parameters,

i.e., Young’s moduli E1, E2, viscous moduli c1, c2, c3, and Poisson’s ratio γ. We

suppose that a 2D flat-squared object with a size of 0.08 m×0.08 m was fixed on

the ground and the entire top surface was pushed down with a constant velocity

of 0.002 m/s during time 0 to 10 seconds. This time period is referred to as

pushing phase. The deformation was then held for 10 seconds before releasing.

Similarly, this time period is referred to as holding phase. The deformed shape
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in this phase is called held-shape accordingly. After releasing the constraint,

the deformed object still has 20 seconds to recover from the deformation. The

deformed shape in the end of simulation is referred as final-shape accordingly.

Therefore, the total simulation time is set to 40 seconds. Such pushing and

holding procedures are used throughout our simulation analysis and similar ones

are also employed in our experimental validations. One may ask why we use this

simple simulation or experimental setups. We believe that firstly the material

properties (physical parameters) will not differ even though the object may have

different sizes or shapes or may be subjected to different operations. Secondly, if

we could estimate all the parameters by using a simple setup, there would be no

problem to estimate them using more complicated setups. Now, let us see how

the mesh resolution and physical parameters will affect the simulation behaviors.

5.1.1 Contribution of Mesh Resolution

As we all known, mesh resolution in FE simulation significantly affects the sim-

ulation cost and the simulation accuracy as well. In a certain application, we

therefore have to compromise between time cost and simulation accuracy. Since

the objects with flat-squared shape are used in most of our simulations and ex-

perimental tests, it is necessary to investigate the influence of mesh resolution on

our applications. Simulation results with different mesh resolutions are given in

Fig. 5.1, where mesh resolution 2× 2 means the width and height sides are both

divided into two segments. From Fig. 5.1, we can see that the mesh resolution

of 4 × 4 is fine enough to simulate the behaviors for this simple setup. Finer

Figure 5.1: Simulation results with different mesh resolutions.
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mesh resolutions do not yield significant difference in both force and deformation

behaviors. We have therefore employed 4 × 4 mesh resolution throughout our

simulations and parameter estimation processes.

5.1.2 Contributions of Young’s Moduli

Figures 5.2 and 5.3 show simulation behaviors using different Young’s moduli E1

and E2, respectively. We can see that both elastic moduli have similar influences

on the rheological behaviors. Larger values of those moduli yield larger force

amplitudes in the pushing phase and faster decay in the holding phase. This

can be explained by Eqs. 2.20 and 2.21, where the value of Ei/ci determines the

increasing and decreasing speed of force amplitude during pushing and holding

phases respectively. Note that the held-shapes with different Young’s moduli

are exactly the same. On the other hand, the final-shapes are dependent on

these moduli. Larger values resulted in larger residual (permanent) deformation.

Considering the five-element physical model (the last row of Fig. 2.2b), during

pushing phase, all elastic elements (denoted by E1 and E2) and viscous elements

(denoted by c1, c2, and c3) are compressed with some deformation. During hold-

ing phase, the total deformation of the object is kept unchange. However, the

deformation generated in the elastic elements will change to the deformation of

viscous elements, which also yields the force relaxation (reduction) behavior in

holding phase. Larger elastic moduli (E1 or E2) therefore produce bigger defor-

mation changing rate and finally yield larger residual deformation in a certain

time period.

E

E

E

E

E

E

E

E

E

E

E

E

Figure 5.2: Simulation results with different Young’s modulus E1.
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Figure 5.3: Simulation results with different Young’s modulus E2.

5.1.3 Contributions of Viscous Moduli

Figures 5.4 and 5.5 show different simulation behaviors using different viscous

moduli c1 and c2, respectively. We can see that parameters c1 and c2 also have

similar influences on the rheological behaviors. Larger values of c1 and c2 yield

larger force amplitudes in pushing phase and slower decay in holding phase. Ex-

planations also can be obtained by looking at Eqs. 2.20 and 2.21. Similarly, both

parameters c1 and c2 do not affect deformed shapes during holding phase. How-

ever, larger values of c1 and c2 yield smaller residual (permanent) deformation.

During the holding phase, larger viscous moduli c1 and c2 actually will slow down

the deformation changing rate. Therefore, less deformation will be changed to

viscous element and more deformation will be recovered after releasing, which

results in less residual deformation.

Figure 5.6 shows different simulation results with different values of viscous

modulus c3. If we compare Eqs. 2.20 and 2.21 at time tp (10 s in this case),

c

c

c

c

c

c

c

c

c

c

c

c

Figure 5.4: Simulation results with different viscous modulus c1.
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Figure 5.5: Simulation results with different viscous modulus c2.

we find that cn+1 (c3 in this case) is responsible for the sudden drop in force

at time tp. The force behaviors in the holding phase are the same with different

parameter c3, as shown in Fig. 5.6a. Once again, the held-shape is not dependent

on parameter c3. However, c3 has a little effect on the final-shapes but not in

a significant way, as shown in Fig. 5.6c. Since parameter c3 does not affect

simulated behaviors in a significant way, one may ask why we have to include

this viscous element in our FE model. Actually, without using parameter c3, we

are still able to reproduce rheological force and deformation. However without

using c3, vibration always happens in both force and displacement curve after

releasing, as shown in Fig. 2.7b. A small value of parameter c3 can remove this

vibration and without changing the simulated behaviors significantly.

c

c

c

c

c

c

c

c

c

c

c

c

Figure 5.6: Simulation results with different viscous modulus c3.
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γ
γ
γ
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Figure 5.7: Simulation results with different Poisson’s ratio γ.

5.1.4 Contribution of Poisson’s Ratio

Figure 5.7 shows different simulated behaviors using different values of Poisson’s

ratios γ. We can see that parameter γ affects all the rheological behaviors: force,

held-shape, and final-shape. Larger parameter γ results in larger force responses

and larger transverse deformation behaviors but does not affect the normal de-

formation in both held-shape and final-shape. This coincides with the definition

of Poisson’s ratio, i.e., a ratio between the transverse strain and axial strain. We

summarize the influences of all physical parameters (five-element physical model

for instance) on rheological behaviors in Table 5.1. Interestingly, we find that only

Poisson’s ratio γ affect the held-shape and all the other parameters do not affect

this shape at all. This feature allows us to estimate Poisson’s ratio γ separately.

Table 5.1: Influences of physical parameters on rheological behaviors

Force in Force Held- Final-
Parameter

pushing relaxation shape shape

E1 © © × ©

E2 © © × ©

c1 © © × ©

c2 © © × ©

c3 © × × ©

γ © © © ©
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5.2 Parameter Estimation Based on Inverse FE

Optimization

Parameter estimation of deformable objects has been studied intensively, as pre-

sented in Chapter 1. One popular and robust method is based on optimization,

which aims at minimizing the difference between simulation or calculation re-

sults and experimental measurements. When the simulation or calculation is

performed by using FE model, this optimization process is usually called inverse

FE optimization (Fig. 1.3), i.e., the FE simulation or calculation is iterated with

updated physical parameters until the differences between the simulation and ex-

periment becomes minimal. In our work, this method was also used to determine

the physical parameters of rheological objects. However, due to the presence

of residual deformation, accurately reproductions of both rheological forces and

residual deformation are quite challenging and parameter estimation for captur-

ing both force and residual deformation is also quite difficult. In order to deal

with this problem, we firstly proposed a parameter estimation method with the

following three steps:

1. Minimize the held-shape to estimate Poisson’s ratio γ;

2. Calculate the summation
∑n

i=1 ci to approximate the final-shape;

3. Minimize the force differences to estimate the remaining parameters with a

constraint of summation
∑n

i=1 ci from the second step.

The details about each step will be presented in the following subsections.

5.2.1 Estimation of Poisson’s Ratio γ

As we discussed in the last section, only Poisson’s ratio γ affects the held-shape

and other parameters do not affect this shape at all. We can therefore estimate

γ separately by minimizing the difference of held-shapes between simulation and

experiments. The objective function used for this optimization is given by:

E(γ) =

m
∑

i=1

‖xsim
i (γ) − xexp

i ‖2, (5.1)
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where xsim
i (γ) and xexp

i are the displacement vectors from simulation and exper-

iment, respectively. Scalar m = 2N with N be the total number of nodal points

calculated in this optimization problem. The optimization is terminated when

the tolerance on the function value E(γ) is less than 1×10−12 or the tolerance on

parameter γ is less than 1 × 10−6. Optimization results will be presented in the

next chapter and we can find a global minimum for this optimization problem

actually.

5.2.2 Calculation of the Summation of Viscous Moduli

As we discussed in Section 2.3.3, we can calculate the residual strain by using

the integration of stress history and the summation of viscous moduli, as given

in Eq. 2.27. By extending this 1D equation to 2D case, we have

MγuN (∞) =
1

∑n+1
i=1 ci

∫ tp+th

0

F(t)dt. (5.2)

where

Mγ = γλJλ + γµJµ =
γ

(1 + γ)(1 − 2γ)
Jλ +

1

2(1 + γ)
Jµ.

Note that the residual displacements uN(∞) and force history F(t) can be ob-

tained from experimental measurements. Matrix Mγ can be prepared in advance

and it only depends on the initial geometrical coordinates and Poisson’s ratio

γ. Therefore, Eq. 5.2 allows us to calculate the summation of viscous moduli
∑n+1

i=1 ci and this summation can be used as a constraint during the estimation of

other parameters. Since the residual displacements uN(∞) was included in this

calculation, the calculated value of
∑n+1

i=1 ci would guarantee a good reproduction

of final-shape. Validation results will be presented in the next chapter.

5.2.3 Optimization of Force Differences Based on Itera-

tive FE Simulation

After the first two steps as presented in the above, we have estimated one pa-

rameter γ and one constraint of
∑n+1

i=1 ci. Considering the FE model with the

parallel five-element model as an example which totally includes 6 physical pa-

rameters, we still have 4 independent parameters to be determined. This can
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be accomplished by minimizing the difference in rheological forces between sim-

ulation results and experimental measurements. The objective function of this

optimization problem can be formulated as:

E(Θ) =

n
∑

i=1

‖fsim
i (Θ) − fexp

i ‖2, (5.3)

where vector Θ consists of the parameters to be determined. Vector fexp
i is

the force measurements from experiments at the i-th sampling time and vector

fsim
i (Θ) is the force response during simulation with parameter Θ. The threshold

used to terminate the optimization is the tolerance on E(Θ) or the tolerance on

Θ less than 1×10−6. In both optimizations presented in the first and third steps,

the optimization toolbox of MATLAB and “Nonlinear Least Squares” method

were employed to minimize the objective functions.

From Eq. 5.3, we can see that this optimization process involves iterative

FE simulations, which is usually time consuming. Based on our experiences, this

optimization process takes hours or days depending on the initial setting of the

parameters. However, this simulation-based optimization is quite robust. As long

as the simulation can be done, this optimization process can be performed as well

and it does not require any special treatments of the physical models. We have

tested this method with different physical models and it works well.

5.2.4 Optimization of Force Differences Based on Calcu-

lations

As presented in Section 2.3.2, the analytical expressions of stress in pushing and

holding phases can be formulated as given in Eqs. 2.20 and 2.21. Extending these

two equations from 1D to 2D case, we have

F(t) =
n

∑

i=1

ci

(

1 − e
−

Ei
ci

t)

Mγv
Push
N , (0 ≤ t ≤ tp), (5.4)

F(t) =
n

∑

i=1

ci

(

1 − e
−

Ei
ci

tp
)

e
−

Ei
ci

(t−tp)
Mγv

Push
N , (tp ≤ t ≤ tp + th), (5.5)

where vector vPush
N consists of velocities of all nodal points during pushing phase.

We assume that this is a constant vector which corresponding to the constant
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velocity p used in Eqs. 2.20 and 2.21. During the pushing phase, if we push the

top surface of the object with a constant velocity and if this pushing velocity

is not significantly big, this assumption can be satisfied. After we estimated the

Poisson’s ratio γ, vector vPush
N can be easily obtained by performing the simulation

in the pushing phase with all the other parameters taking arbitrary values since

these parameters do not affect the deformation behaviors during pushing phase.

Based on Eqs. 5.4 and 5.5, we are able to calculate the force responses during

both pushing and holding phases and these calculated forces can be then used in

Eq. 5.3 (instead of the simulated forces) to perform the force optimization. Since

now there is no iterative FE simulations involved in this optimization process, we

can obtain a optimal solution within only several seconds depending on the initial

setting of parameters. However, this method only can be used in parallel physical

models in which force expressions can be analytically derived. For other physical

models, such as serial models, this method cannot be used and we have to perform

simulation-based optimization instead, as proposed in the last subsection.

In some applications, if we only focus on reproducing force behaviors, the

second step proposed in Section 5.2.2 can be ignored and all parameters except

Poisson’s ratio γ should be included in the force optimization (the third step).

This will yield the best performance of force reproduction. But at the same time,

we have to sacrifice some accuracy of the reproduction of final-shape. Detailed

validation and discussions will be presented in the next chapter accompanying

with various experimental results and comparisons.

5.2.5 Parameter Estimation of FE Model with Dual-Moduli

Viscous Elements

In the above discussions, we supposed that only one set of parameters was used

in the FE model. However, due to the linearity of the physically based models

(e.g., the parallel five-element model), it is difficult to reproduce both rheological

forces and residual deformation simultaneously for most rheological objects. We

have therefore introduced a dual-moduli viscous element into our FE formulation,

as presented in Section 3.3. This dual-moduli viscous element has an ability to

switch two parameters from one to the other during simulation. It can successfully
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5.2 Parameter Estimation Based on Inverse FE Optimization

capture both rheological deformation and force behaviors simultaneously. We

have also proposed that the simulation time and losing contact moment can serve

as a criterion to start the parameter switching.

Note that we usually switch the parameters at the moment when the oper-

ation is finished and the external instrument start to leave the object. During

the operations (e.g., pushing and holding), the deformation only depends on the

Poisson’s ratio γ. This suggests that we can use the estimated parameters by

force optimization to reproduce both rheological force and deformation during

operations. However, this set of parameters cannot guarantee accurate reproduc-

tion of residual deformation at the same time. We have therefore employed the

dual-moduli viscous element to switch parameters when contact was lost. Since

parameters ci dominate the residual deformation as shown in Eq. 5.2, we only

need to switch parameters ci for capturing residual deformation. For example,

we suppose the viscous moduli estimated by force optimization as cload
i which will

be used during operation (loading). We named another set of viscous moduli as

cunload
i , which will be used after operation (unloading). Our idea is to use those

cunload
i as unknown parameters to optimize the difference of final-shapes between

experiments and simulation. Note that during this optimization the parameter

cload
i will be switched to cunload

i automatically when the deformation starts to re-

cover. The objective function of this optimization problem can be formulated

as:

E(cunload
i ) =

m
∑

i=1

‖xsim
i (cunload

i ) − xexp
i ‖2. (5.6)

After having cunload
i , we can easily determine the parameters used in the dual-

moduli viscous elements by using the following equations:

ci + αi = cload
i ,

ci − αi = cunload
i .

(5.7)

Estimation results of FE model with dual-moduli viscous elements for objects

made of Japanese sweets materials will be presented in the next chapter.
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5.3 Concluding Remarks

In this chapter, the parameter estimation methods were presented for capturing

both rheological forces and deformation behaviors simultaneously. At first, FE

simulations were performed with different mesh resolutions and physical parame-

ters to investigate the influence of these factors on the simulation behaviors. We

found that a 4×4 triangular mesh is fine enough for the simple setup used in our

parameter estimation procedures. We also found that only Poisson’s ratio γ affect

the held-shape and all the other parameters do not affect this shape at all. This

allows us to estimated Poisson’s ratio γ separately by minimizing the difference

of held-shapes between simulation results and experimental measurements. We

have therefore proposed a three-steps estimation method. Except estimating γ

(the first step), we also calculate the summation of viscous coefficients
∑n

i=1 ci

(the second step) by using the measured data of force and final-shape. This sum-

mation was then served as a constraint during estimating the other parameters

(the third step) by minimizing the force differences. Depending on the force re-

sults obtained from FE simulation or straightforward calculation, the third step

can be perform in two different ways. The simulation-based force optimization

is robust and can be used in any model, but it is time-consuming since iterative

FE simulations are involved. On the other hand, the calculation-based force opti-

mization method is very efficient but only can be used in parallel physical models.

In some applications, these two methods can be mixed to achieve the best esti-

mation results. At last, the parameter estimation method for FE model with

dual-moduli viscous elements was also presented based on the above-mentioned

methods.
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Chapter 6

Experiments and Validations

In the previous chapters, we have presented the FE models and parameter es-

timation methods for simulating rheological objects, especially focusing on the

simultaneous reproductions of both rheological forces and deformation behaviors.

In this chapter, we will demonstrate a series of experimental results and compar-

isons with simulation results for validating proposed FE models and parameter

estimation methods.

6.1 Experimental Setup

As we mentioned before, a pushing-holding-releasing operation has been employed

through out our discussions. Such kind of operation is frequently encountered in

real applications and provides enough information to estimate the physical pa-

rameters included in the FE model. We have therefore performed a series of

experiments on two different materials using this pushing-holding-releasing pro-

cedure. In order to perform such procedure, a testing device is necessary. At the

same time, the force measurements should be recorded for the follow-up parame-

ter estimation. Experimental setup used in our experiments is shown in Fig. 6.1.

A motorized stage (KX1250C-L, SURUGA SEIKI Co.) was used to perform the

pushing-holding-releasing operation. Force responses on the bottom surface of

the object were measured by a tactile sensor (I-SCAN100L, NITTA Co.). In ad-

dition, several static images including the initial, deformed, and recovered shapes,
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Figure 6.1: Experimental setup used for compressive tests.

were recorded by a camera (Canon Eos Kiss X2). These measurements were used

to estimate the rheological properties of the object.

6.2 Compression Experiments

Two kinds of rheological materials were tested in our experiments, which are

commercial available clay and Japanese sweets materials. These two materials

show typical rheological behaviors under a loading-unloading operation.

6.2.1 Commercial Available Clay

The commercial clay is available in supermarket and is supposed to be played

by kids (the one we used is supposed to be play by children over 3 years old, as

shown in Fig. 6.2a). The clay is made of flour, salt, and water mixed with a

special ratio. Several different colors are available and were used to distinguish
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6.2 Compression Experiments

(b) (c) (d)

(a)

Figure 6.2: Commercial available clay product (a) and flat-squared objects used

in experiments made of different colors: (b) red, (c) blue, and (d) yellow.

(a) v=0.1mm/s (b) v=0.2mm/s (c) v=0.5mm/s  

Figure 6.3: Flat-squared objects made of white colored clay were compressed

from the center part of top surfaces with different pushing velocities.

different pushing velocities in our experiments. Several flat-squared objects made

by different colored clays were prepared for compressive testing, as shown in Fig.

6.2b, 6.2c, and 6.2d. Some markers were drawn on the object surfaces for conve-
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6.2 Compression Experiments

Table 6.1: Detailed information of compression experiments with commercial clay

Object Object size Push Push Pushing time
Object

weight W H T velo. disp. tp th
color

(g) (mm) (mm) (mm) (mm/s) (mm) (s) (s)

red-06 37.75 52.0 52.5 12.0 6 12.07 303.78

red-08 43.36 60.5 60.0 10.5 0.5 8 16.10 304.78

red-10 45.01 58.0 61.0 10.5 10 20.12 311.82

blue-06 43.98 60.5 59.0 10.0 6 30.17 311.83

blue-08 45.04 61.0 59.5 10.0 0.2 8 40.24 321.88

blue-10 43.80 60.5 59.5 10.0 10 49.29 342.00

yellow-06 46.19 59.0 59.0 11.0 6 58.34 502.94

yellow-08 44.72 59.5 59.0 10.0 0.1 8 79.46 500.94

yellow-10 45.14 57.5 56.5 11.5 10 98.58 609.57

white-05 46.43 58.0 57.0 12.0 0.5 16.09 369.16

white-02 46.23 60.0 60.5 10.5 0.2 8 40.24 400.34

white-01 44.08 59.5 58.0 10.0 0.1 79.46 601.52

nient capturing of internal deformation. During testing, the entire top surfaces

of these objects were compressed downward with constant velocities. Different

colors denote different velocities, e.g., red color corresponding to the velocity of

0.5 mm/s, blue is 0.2 mm/s, and yellow is 0.1 mm/s. For each color, three ob-

jects were prepared and compressed with different displacements of 6 mm, 8 mm,

and 10 mm, respectively. Measurements of these 9 objects were then used to es-

timate the physical parameters. In order to evaluate the estimated parameters,

three white colored objects were prepared and compressed from the center part of

top surfaces with different pushing velocities but same displacement, as shown in

Fig. 6.3. Detailed information about these experiments with commercial clay was

given in Table 6.1. Experimental trials with different pushing velocities (0.1, 0.2,

and 0.5 mm/s) and different pushing displacements (6, 8, 10 mm) were performed

to investigate how the pushing velocity and displacement affect the parameter

estimation results.
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6.2 Compression Experiments

(a) material 1 (b) material 2 (c) material 3

Figure 6.4: Flat-squared objects made by different Japanese sweets materials.

(a-1) material 1+2 (a-2) material 2+3 (a-3) material 1+3

(a) layered objects compressed from the top surface

(b-1) material 1+2 (b-2) material 2+3

(b) layered objects compressed from the center of top surface

Figure 6.5: Non-uniform layered objects compressed over the entire or at the

center of the top surfaces.
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6.2 Compression Experiments

Table 6.2: Detailed information of compression experiments with Japanese sweets

materials

Object Object size Push Push Push Time

Material weight W H T type velo. disp. tp th

(g) (mm) (mm) (mm) (mm/s) (mm) (s) (s)

Mat. 1 52.43 58.0 59.5 12.0 28.87 182.06

Mat. 2 32.97 50.0 50.0 11.0 top 0.2 6 29.68 181.26

Mat. 3 34.99 50.0 50.0 11.0 29.97 181.46

Mat. 1+2 66.99 60.0 80.0 11.0 49.29 181.76

Mat. 2+3 69.12 60.0 80.0 11.0 top 0.2 10 49.49 181.47

Mat. 1+3 68.52 60.0 80.0 11.0 49.49 181.97

Mat. 1+2 66.99 60.0 80.0 11.0 center 0.2 10 49.69 181.86

Mat. 2+3 69.12 60.0 80.0 11.0 8 39.13 182.07

6.2.2 Japanese Sweets Materials

Three kinds of Japanese sweets materials were provided by OIMATU, a sweets

company in Kyoto. Each was made of flour, water, and bean powder mixed at

specific ratios. Three flat-squared objects, each composed of one material, were

prepared for the compression tests, as shown in Fig. 6.4. The entire top surfaces

of these objects were compressed at a constant velocity of 0.2 mm/s and with

a displacement of 6 mm. Several markers were drawn on the surfaces and force

responses and deformed images were recorded. These measurements were used

to estimate the rheological parameters of these sweets materials. In addition, to

validate the FE model and the estimated parameters, several non-uniform layered

objects(each made of three layers with two alternating materials) were compressed

over their entire or at the center of their top surfaces, as shown in 6.5a and 6.5b,

respectively. Detailed experimental information using Japanese sweets materials

is given in Table 6.2. Note that the pushing time tp was quite different between

uniform object (about 30 s) and layered objects (about 40 or 50 s) because they

were compressed with the same velocity (0.2 mm/s) but different displacements

(6, 8, and 10 mm). The holding time th, however, was quite similar (around 3
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minutes, as shown in the last column of Table 6.2) among these experimental tri-

als. During the experiments, we manually controlled the time th and concluded

that 3 minutes was sufficient to obtain adequate information on force relaxation

behaviors. In addition, the compressing displacements were chosen to be 6, 8,

and 10 mm (see the eighth column of Table 6.2) based on the small-deformation

assumption of generalized Hooke’s law. We used the same compressing displace-

ment (10 mm) for the three trials (middle three rows of Table 6.2) with layered

objects compressed over their entire top surfaces to investigate the performance of

our model with different material combinations. Additionally, two further trials

(the last two rows of Table 6.2) with layered objects compressed at the centers

of their top surfaces were performed to validate our FE model and estimated

parameters with different operations and different compressive displacements (8

and 10 mm).

6.3 Parameter Estimation Results

Generally, the material property of an object will not differ even though the ob-

ject is subjected to different operations or it has different shape or size. This

feature allows us to use regular shaped objects with simple pushing operations

to estimate their physical parameters. Then, the estimated parameters should

be able to simulate arbitrary shaped objects with any operations. In our ex-

periments, we used flat-squared objects pushed on the entire top surfaces with

constant velocities to estimate the parameters. As an example of our step-by-

step estimation method, we show the case of the object made by red colored clay

pushed with a displacement of 8 mm, denoted by red-08 in Table 6.1. A parallel

five-element model was employed to model the rheological behaviors of this ob-

ject. According to the discussions presented in section 5.1, parameter c3 in the

parallel five-element model was mainly responsible for eliminating the vibration

from the simulation. Based on our experience, a small value of c3 comparing

with c1 and c2 is enough to remove the vibration and without significant effect on

simulation results of force and deformation. Usually, parameter c1 and c2 of real

materials have a magnitude about 105 or 106 Pa·s. We have therefore set a value

of 100 Pa·s to parameter c3 in advance. Now, we have 5 unknown parameters to
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Table 6.3: Arbitrary values of E1, E2, c1, c2, and c3 for estimating γ

Case no. E1 (Pa) E2 (Pa) c1 (Pa·s) c2 (Pa·s) c3 (Pa·s)

trial 1 5 × 102 1 × 103 2 × 103 3 × 103 1 × 102

trial 2 5 × 103 1 × 104 2 × 104 3 × 104 1 × 102

trial 3 5 × 104 1 × 105 2 × 105 3 × 105 1 × 102

Table 6.4: Estimation results for Poisson’s ratio γ

Case Initial Final E(γ) Iteration Cost

number value x0 value x∗ (×10−6 m2) count (hr)

0.15 0.29023634 3.7546 4 0.26

trial 1 0.25 0.29023308 3.7546 3 0.20

0.35 0.29023665 3.7546 4 0.25

0.15 0.29024458 3.7546 4 0.37

trial 2 0.25 0.29022518 3.7546 3 0.32

0.35 0.29021075 3.7546 4 0.42

0.15 0.29023707 3.7546 4 1.55

trial 3 0.25 0.29023282 3.7546 3 1.25

0.35 0.29023569 3.7546 4 1.63

be estimated, i.e., Poisson’s ratio γ, Young’s moduli E1, E2, and viscous moduli

c1, and c2.

6.3.1 Estimation of Poisson’s Ratio γ

In the first step, we estimated the Poisson’s ratio γ by minimizing the differences

of held-shapes. Since other parameters do not affect held-shape, we therefore

assigned some arbitrary values to the other parameters. Three trials were per-

formed and the arbitrary values for other parameters are listed Table 6.3. The

optimization for minimizing the differences of held-shapes were then performed,

as discussed in section 5.2.1. Table 6.4 shows the estimated Poisson’s ratios γ

at different cases and different initial values. We find that parameter γ quickly

(only 3 or 4 iterations) converge to a global minimum of about γ = 0.2902. This

value will be used in the following calculation of
∑3

i=1 ci and force optimization.
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Table 6.5: Estimation results of E1, E2, and c1 using simulation-based optimiza-

tion
Trial Initial Final F (Θ) Iteration Cost

number
Parameter

value x0 value x∗ (N2) count (hr.)

E1 (Pa) 4 × 104 2.4722 × 104

trial 1 E2 (Pa) 6 × 104 5.0771 × 104 90.519 36 4.47

c1 (Pa·s) 8 × 106 8.1142 × 106

E1 (Pa) 8 × 104 5.5790 × 104

trial 2 E2 (Pa) 6 × 104 3.8065 × 104 27.383 43 5.77

c1 (Pa·s) 4 × 106 4.5349 × 105

E1 (Pa) 3 × 104 3.7607 × 104

trial 3 E2 (Pa) 8 × 104 7.6996 × 104 24.536 33 4.79

c1 (Pa·s) 9 × 106 9.1985 × 106

6.3.2 Calculation of Summation
∑3

i=1 ci

Using Eq. 5.2, we can easily calculate the value of summation
∑3

i=1 ci based

on experimental data on force and residual deformation. In this case, we found

that
∑3

i=1 ci = 9.6961 × 106Pa·s. Note that the value of
∑3

i=1 ci can guarantee

a good reproduction of final deformed shape since the residual deformation has

been considered during the calculation.

6.3.3 Estimation of Other Parameters

After estimating Poisson’s ratio γ and the value of
∑3

i=1 ci, the other parameters

can be then estimated by minimizing the difference of rheological forces with

a constraint of summation
∑3

i=1 ci. However, depending on the way obtaining

virtual force data, the estimation of other parameters can be divided into two

categories: simulation- and calculation-based methods, as discussed in Section

5.2.3 and 5.2.4 respectively.

6.3.3.1 Estimation Results of Simulation-Based Optimization

In simulation-based optimization, the FE simulations were iterated with updated

parameters until the differences between simulation results and experiment mea-
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Figure 6.6: Optimization curves of three trials given in Table 6.5.

surements becomes minimal. Three optimization trials were performed with dif-

ferent initial conditions. The estimation results associated with computation

costs were given in Table 6.5. We can see that the optimal solutions are quite

sensitive with the initial setting of parameter values. The optimization curves

(solution evolution) of these three trials were shown in Fig. 6.6. We are not able

to obtain a global solutions in this optimization problem. We only can pick one

local minimum by comparing the values of objective function F (Θ). In this case,

we pick the third trial as a solution. We also can see that the simulation-based

optimization took several hours to reach a local minimum even with a very close

setting of initial values (the third trial). Usually, it is quite hard to find the close

settings of initial values and we may have to perform a plenty of trials to finally

reach an acceptable solution. This method is time-consuming but quite robust

and widely applicable. It can be used in any model to estimate the parameters

as long as the simulation can be done.

6.3.3.2 Estimation Results of Calculation-Based Optimization

In calculation-based optimization, the force results were calculated using Eqs. 5.4

and 5.5 instead of running FE simulations. The calculated force results were then

used in optimization to minimize the force differences. Totally, five optimization

trials were performed for this case. The fist three trials used the same initial

conditions with simulation-based optimization (Table 6.5) for the convenience of

comparison. The last two trials were with other arbitrary initial values. The

estimation results associated with computation costs are given in Table 6.6. We

can see that all trials converged to the same solution and it seems like we can
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Table 6.6: Estimation results of E1, E2, and c1 using calculation-based optimiza-

tion
Trial Initial Final F (Θ) Iteration Cost

number
Parameter

value x0 value x∗ (N2) count (s)

E1 (Pa) 4 × 104 3.7730 × 104

trial 1 E2 (Pa) 6 × 104 8.0916 × 104 24.514 15 0.17

c1 (Pa·s) 8 × 106 9.2022 × 106

E1 (Pa) 8 × 104 8.0914 × 104

trial 2 E2 (Pa) 6 × 104 3.7730 × 104 24.514 20 0.20

c1 (Pa·s) 4 × 106 4.9375 × 105

E1 (Pa) 3 × 104 3.7730 × 104

trial 3 E2 (Pa) 8 × 104 8.0917 × 104 24.514 14 0.19

c1 (Pa·s) 9 × 106 9.2023 × 106

E1 (Pa) 2 × 103 8.0952 × 104

trial 4 E2 (Pa) 3 × 104 3.7731 × 104 24.514 23 0.23

c1 (Pa·s) 4 × 105 4.9381 × 105

E1 (Pa) 6 × 105 8.0917 × 104

trial 5 E2 (Pa) 4 × 105 3.7730 × 104 24.514 16 0.18

c1 (Pa·s) 2 × 105 4.9375 × 105

find the global minimum by using this method. The optimization curves of the

first three trials were shown in Fig. 6.7. Comparing Figs. 6.6 and 6.7, we found

that the values of objective function from both simulation- and calculation-based

optimization were start from the same value (because the initial parameter set-

ting are the same) but converged to the different minimal values in the end of

optimization. Figure 6.6 shows that the curves in simulation-based optimization

have more ladder-shaped regions which make the optimization easy to be trapped

into a local minimum. On the other hand, the curves from calculation-based op-

timization are appears more smooth. Smaller tolerance used to terminate the

optimization can yield better solutions, especially for simulation-based optimiza-

tion method. However, it will take much more computation time. From the

estimation results given in Tables 6.5 and 6.6, we can see that both optimization

methods converge to the very similar solutions, as shown in trial 3 of Table 6.5
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Figure 6.7: Optimization curves of three trials given in Table 6.6.

and all trials of Table 6.6. Note that the first and second layer Maxwell element

are exchangeable in a parallel five-element model. Therefore, the values of E1 and

E2, c1 and c2 are also exchangeable, which makes the solutions of trials 1, 3, and

trials 2, 4, 5 of Table 6.6 actually very similar. In addition, the computation costs

in the calculation-based optimization were extremely short (less than 1 second

in all trials listed in Table 6.6) since there is no FE simulations involved during

optimization. However, the disadvantage is that this method only can be used in

parallel models which provide the analytical expressions of forces.

6.3.4 Estimation without the Constraint of
∑3

i=1 ci

The value of
∑3

i=1 ci calculated separately before force optimization will guar-

antee a good reproduction of final deformed shape. In the last subsection, this

value was used as a constraint during the force optimization. Since this con-

straint makes the optimization problem losing one independent variable, the re-

sult of force optimization will be suffered. We have to compromise the accuracy

between the reproductions of final-shapes and force behaviors. Note that the

held-shape is affected only by Poisson’s ratio γ. Therefore, we do not have to

do the same compromise for held-shapes. In some situations, such as deformable

objects handled by robotic hand, we may care about the force response and the

held-shape much more than the final-shape. In such situations, we can just ignore

the calculation of
∑3

i=1 ci during the parameter estimation procedure. Instead,

we use all four parameters: E1, E2, c1, and c2 as unknown variables to perform

the force optimization. This should give us better results of force reproduction.
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Table 6.7: Estimation results of E1, E2, c1 and c2 using simulation-based opti-

mization
Trial Initial Final F (Θ) Iteration Cost

number
Parameter

value x0 value x∗ (N2) count (hr.)

E1 (Pa) 4 × 104 3.1736 × 104

trial 1 E2 (Pa) 7 × 104 7.1867 × 104 4.0351 24 24.9

c1 (Pa·s) 9 × 106 1.3298 × 107

c2 (Pa·s) 6 × 105 6.9787 × 105

E1 (Pa) 3 × 104 3.1735 × 104

trial 2 E2 (Pa) 8 × 104 7.1884 × 104 4.0351 39 39.8

c1 (Pa·s) 9 × 106 1.3298 × 107

c2 (Pa·s) 7 × 105 6.9787 × 105

E1 (Pa) 2 × 103 7.1851 × 104

trial 3 E2 (Pa) 3 × 104 3.1732 × 104 4.0351 26 26.7

c1 (Pa·s) 4 × 105 6.9809 × 105

c2 (Pa·s) 5 × 106 1.3300 × 107

In the following subsections, the estimation results of these four parameters us-

ing both simulation- and calculation-based methods will be presented. Note that

γ = 0.2902 and c3 = 100Pa·s are still used in the following discussions.

6.3.4.1 Estimation Results with Simulation-Based Optimization

Three optimization trials with different initial conditions were performed and the

estimation results were given in Table 6.7. The optimization curves are shown in

Figure 6.8: Optimization curves of three trials given in Table 6.7.
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Table 6.8: Estimation results of E1, E2, c1 and c2 using calculation-based opti-

mization
Trial Initial Final F (Θ) Iteration Cost

number
Parameter

value x0 value x∗ (N2) count (s)

E1 (Pa) 4 × 104 3.1752 × 104

trial 1 E2 (Pa) 7 × 104 7.2145 × 104 4.0766 25 0.3108

c1 (Pa·s) 9 × 106 1.3291 × 107

c2 (Pa·s) 6 × 105 6.9733 × 105

E1 (Pa) 3 × 104 3.1753 × 104

trial 2 E2 (Pa) 8 × 104 7.2147 × 104 4.0766 24 0.3205

c1 (Pa·s) 9 × 106 1.3291 × 107

c2 (Pa·s) 7 × 105 6.9731 × 105

E1 (Pa) 2 × 103 7.2131 × 104

trial 3 E2 (Pa) 3 × 104 3.1750 × 104 4.0766 26 0.3554

c1 (Pa·s) 4 × 105 6.9745 × 105

c2 (Pa·s) 5 × 106 1.3292 × 107

Fig. 6.8. In this case, we are able to find a global minimum and the solution is

much better than the ones shown in Tables 6.5 and 6.6 (by comparing the values

of objective function F (Θ)).

6.3.4.2 Estimation Results with Calculation-Based Optimization

Estimation results using calculation-based optimization method were given in

Table 6.8 and optimization curves are shown in Fig. 6.9. Comparing with

Figure 6.9: Optimization curves of three trials given in Table 6.8.
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Table 6.9: Estimation results with the constraint of
∑3

i=1 ci for all objects made

by clay materials

Trial E1 E2 c1
∑3

i=1 ci E(Θ)

name
γ

(Pa) (Pa) (Pa·s) (Pa·s) (N2)

red-06 0.2672 3.1706 × 104 6.4702 × 104 7.4606 × 106 7.9035 × 106 6.3658

red-08 0.2902 3.7730 × 104 8.0916 × 104 9.2022 × 106 9.6961 × 106 24.514

red-10 0.2367 2.7237 × 104 7.5406 × 104 5.4256 × 106 5.9092 × 106 31.5945

blue-06 0.2537 2.0182 × 104 4.4243 × 104 4.4555 × 106 4.9014 × 106 3.1863

blue-08 0.2292 2.6344 × 104 6.4348 × 104 6.9430 × 106 7.6884 × 106 5.5283

blue-10 0.2602 3.0593 × 104 7.5570 × 104 5.7866 × 106 6.5596 × 106 50.4884

yellow-06 0.2593 2.0820 × 104 3.9699 × 104 7.9776 × 106 8.5615 × 106 2.4562

yellow-08 0.2479 2.9216 × 104 4.6662 × 104 1.1663 × 107 1.2385 × 107 28.5041

yellow-10 0.2494 2.1480 × 104 4.1776 × 104 8.0970 × 106 8.9095 × 106 32.8334

average 0.2549 2.7256 × 104 5.9258 × 104 7.4457 × 106 8.0571 × 106 —

simulation-based method, very similar results were obtained using calculation-

based optimization but the computation costs are significantly reduced. Figures

6.8 and 6.9 also show very similar curves of solution evolution.

6.3.5 Estimation Results for All Objects Made of Clay

Materials

By following the same estimation procedures presented above, we can estimate

the physical parameters for all experimental objects made of clay materials. Note

that c3 = 100Pa·s and the calculation-based optimization method were used in

all trials. Estimation results for clay objects with and without the constraint of
∑3

i=1 ci are given in Tables 6.9 and 6.10, respectively. Note that the estimated

parameters listed in Table 6.9 yield good reproductions of final-shapes while pa-

rameters in Table 6.10 result in good approximation of force responses. We can

see that both sets of parameters of some clay objects are quite close and the opti-

mal values of objective function (given in the last column of both tables) are also

not very different. This means that it is possible for those objects (e.g., red-06,

blue-06) to use one set of parameters to accurately reproduce both deformation

and force behaviors. However for most objects, the differences of parameters and
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Table 6.10: Estimation results without the constraint of
∑3

i=1 ci for all objects

made by clay materials

Trial E1 E2 c1 c2 E(Θ)

name
γ

(Pa) (Pa) (Pa·s) (Pa·s) (N2)

red-06 0.2672 2.8650 × 104 6.0364 × 104 8.8323 × 106 5.4820 × 105 3.1418

red-08 0.2902 3.1753 × 104 7.2147 × 104 1.3291 × 107 6.9731 × 105 4.0766

red-10 0.2367 2.1954 × 104 6.7528 × 104 8.4719 × 106 6.8294 × 105 4.2865

blue-06 0.2537 1.6582 × 104 4.2801 × 104 6.0304 × 106 6.1032 × 105 0.3573

blue-08 0.2292 2.2164 × 104 6.0319 × 104 8.7880 × 106 9.6051 × 105 1.2468

blue-10 0.2602 2.2424 × 104 7.1494 × 104 9.3098 × 106 1.2391 × 106 1.8716

yellow-06 0.2593 1.7273 × 104 3.6229 × 104 1.0636 × 107 8.4945 × 105 0.2495

yellow-08 0.2479 2.1804 × 104 4.2930 × 104 1.9429 × 107 1.3657 × 106 0.6176

yellow-10 0.2494 1.5206 × 104 4.1475 × 104 1.4602 × 107 1.4882 × 106 0.5583

objective function values are significant, especially the values of
∑3

i=1 ci which

dominate both final-shape and force amplitude as discussed in Section 2.4. For

these objects, one set of parameters is not enough to reproduce both rheological

deformation and force simultaneously.

6.3.6 Estimation Results for Objects Made by Japanese

Sweets Materials

The same parameter estimation procedures were also performed for objects made

by three kinds of Japanese sweets materials. Experimental information was given

in Table 6.2. Estimation results for these three objects with and without the

constraint of
∑3

i=1 ci are given in Tables 6.11 and 6.12, respectively. Comparing

with results of clay materials, two sets of parameters of sweets objects are very

different with each other. The values of
∑3

i=1 ci from Table 6.12 (not given di-

rectly but can be easily calculated) are around 10 times larger than those given

in Table 6.11. The optimal values of objective function are even hundreds times

different. This means it is impossible for objects made by sweets materials to ac-

curately reproduce both rheological deformation and forces simultaneously. This

problem comes from the physical model (e.g., parallel five-element model) itself

and it cannot be resolved by adding more basic elements to the physical model or
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Table 6.11: Estimation results with the constraint of
∑3

i=1 ci for three objects

made by Japanese sweets materials

Trial E1 E2 c1
∑3

i=1 ci E(Θ)

name
γ

(Pa) (Pa) (Pa·s) (Pa·s) (N2)

material 1 0.3746 8.1002 × 103 9.7210 × 103 1.0804 × 106 2.3761 × 106 326.01

material 2 0.3353 1.0662 × 104 3.7979 × 103 1.2423 × 106 1.6849 × 106 186.48

material 3 0.3267 5.8791 × 103 7.3308 × 103 8.6015 × 105 1.9319 × 106 76.41

Table 6.12: Estimation results without the constraint of
∑3

i=1 ci for three objects

made by Japanese sweets materials

Trial E1 E2 c1 c2 E(Θ)

name
γ

(Pa) (Pa) (Pa·s) (Pa·s) (N2)

material 1 0.3746 1.3468 × 104 2.4695 × 104 2.9631 × 107 7.2381 × 104 0.9152

material 2 0.3353 1.0553 × 104 3.7276 × 104 1.3213 × 107 1.1593 × 105 0.8385

material 3 0.3267 9.1565 × 103 5.0802 × 104 8.1809 × 106 1.3427 × 105 0.7208

changing the configuration of the model. Further validation of this phenomenon

with simulation results comparing with experimental ones will be presented in

the later of this chapter.

6.3.7 Estimation Results of FE Model with Dual-Moduli

Viscous Elements

For some materials, such as clay materials discussed above, one set of parame-

ters seems enough to capture both rheological forces and deformation behaviors.

However for most rheological objects, such as Japanese sweets products, it is

impossible to use only one set of parameters to cover both force and deforma-

tion simultaneously. We have therefore introduced FE model with dual-moduli

viscous elements (section 3.3) to solve this problem. Here, we suppose that the

FE model was formulated using parallel five-element model with two dual-moduli

viscous elements (Fig. 2.9b) and we preassigned a value of 100 Pa·s to parameter

c3. By following the estimation procedure presented in section 5.2.5, we can de-

termine those parameters for FE model with dual-moduli viscous elements and
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Table 6.13: Estimation results of FE model with dual-moduli viscous elements

for simulating the objects made of Japanese sweets materials

Trial E1 E2 c1 c2 α1 α2

name (Pa) (Pa) (Pa·s) (Pa·s) (Pa·s) (Pa·s)

mat.1 1.3468 × 104 2.4695 × 104 1.4820 × 107 5.3855 × 104 1.4811 × 107 1.8527 × 104

mat.2 1.0553 × 104 3.7276 × 104 6.6096 × 106 7.8271 × 104 6.6034 × 106 3.7659 × 104

mat.3 9.1565 × 103 5.0802 × 104 4.0958 × 106 8.2198 × 104 4.0851 × 106 5.2072 × 104

listed them in Table 6.13. Note that the Poisson’s ratios are not listed in this

table and they take the same values as given in Table 6.12.

6.4 Validation Results

In the above sections, the experimental information was introduced and the physi-

cal parameters for clay and Japanese sweets materials were estimated using differ-

ent methods. In this section, the simulation results using the estimated parame-

ters will be compared with experimental measurements to show the performance

of our FE model and parameter estimation methods. Note that the physical

parameters were estimated by using measured data of the uniform objects (for

both clay and sweets materials) with compressing operations from the entire top

surfaces. The measurements of uniform objects compressed from the center-top

surfaces (white colored clay objects) and non-uniform sweets objects compressed

from top and center-top surfaces were used to evaluate the estimated parameters.

6.4.1 Validation Results of Objects Made by Commercial

Clay Materials

At first, the estimated parameters listed in Tables 6.9 and 6.10 were used to sim-

ulate the corresponding clay objects to show performance of our optimization-

based estimation methods and also to demonstrate the difference between these

two methods with or without the constraint of
∑3

i=1 ci. Simulation results com-

pared with experimental measurements for three trials (denote by red-08, blue-06,

and yellow-08 in Tables 6.9 and 6.10) were shown in Figs. 6.10, 6.11, and 6.12,

99



6.4 Validation Results

Figure 6.10: Validation results for object red-08 (a) with and (b) without the

constraint of
∑3

i=1 ci.

respectively. From these figures we can see that estimated parameters with the

constraint of
∑3

i=1 ci yield better results of final-shapes. On the other hand,

estimated parameters without this constraint result in better results in force ap-

proximation. This is coincide with our theoretical analysis, i.e., the summation
∑3

i=1 ci dominates the residual deformation. We can also see that the estimated

parameters with the constraint always under-approximated the force amplitudes,

especially in the end of the holding phases. On the other hand, the estimated

parameters without the constraint always over-approximated the final-shapes,

especially for object yellow-08 shown in Fig. 6.12. It can be explained that

accurate approximation of final-shape requires relative smaller values of
∑3

i=1 ci

while accurate approximation of force behaviors requires relative larger values. If

we look at Tables 6.9 and 6.10, we find that the values of
∑3

i=1 ci in Table 6.10

are always larger than those in Table 6.9. The object yellow-08 has the largest

difference (about 1.8 times) between two sets of parameters among these three
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Figure 6.11: Validation results for object blue-06 (a) with and (b) without the

constraint of
∑3

i=1 ci.

objects. This is why the differences in both force and deformation behaviors

shown in Fig. 6.12 are larger than those in Figs. 6.10 and 6.11. However, we can

obtain good reproductions of both rheological forces and deformation behaviors

for objects red-08 and blue-06 within a relative short time (within 200 seconds)

using the estimated parameters with the constraint of
∑3

i=1 ci. Actually in most

applications, the holding time may not be very long. In such cases, the parame-

ters listed in Table 6.9 are good enough to reproduce both rheological forces and

deformation behaviors simultaneously.

The simulation results shown in Figs. 6.10, 6.11, and 6.12 were performed

using their own estimated parameters. In other words, these validation results

only showed how well the force and shape optimizations were performed. These

validation results are thus quite insufficient. We therefore conducted three other

experiments with objects made by white colored clay materials. In order to

investigate how the estimated parameters can handle different operations, we

compressed these three objects from the center area of the top surfaces instead of
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Figure 6.12: Validation results for object yellow-08 (a) with and (b) without the

constraint of
∑3

i=1 ci.

the entire top surfaces and also with different compressing velocities of 0.5 m/s,

0.2 m/s, and 0.1 m/s, respectively. Detailed experimental information of these

three trials can be found in Table 6.1. Note that different colored clay materials

actually denote different materials and they may have different properties. How-

ever, since they were sold in the same pack and manufactured at the same time,

the difference in properties among them was supposed to be negligible. There-

fore, the average values of estimated parameters listed in the last row of Table

6.9 were used to reproduce the rheological behaviors of these three objects. The

simulation results compared with experimental measurements were shown in Fig.

6.13. Because the deformation behaviors are more complicated (especially in the

contact corners) than compressing from the entire top surfaces, we have used a

16×16 triangular mesh instead of a 4×4 mesh to simulate the behaviors of these

white colored objects. In order to clearly show the deformation comparisons be-

tween simulation and experiments, only 8 × 8 lattice mesh was shown in Fig.
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Figure 6.13: Validation results for white colored objects with a compressing ve-

locity of (a) 0.5 m/s, (b) 0.2 m/s, and (c) 0.1 m/s.

6.13. We find that both held-shapes and final-shapes are pretty well matched

between simulation results and experimental measurements and we can achieve

good reproductions of force behaviors in a short term (within about 200 seconds).

We can therefore say that we can obtain acceptable reproduction results of both

rheological force and deformation for clay objects by using our FE model and the

estimated parameters listed in Table 6.9.
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Figure 6.14: Validation results for sweets material 1 (a) with and (b) without the

constraint of
∑3

i=1 ci.

6.4.2 Validation Results of Objects Made by Japanese

Sweets Materials

The estimated parameters listed in Tables 6.11 and 6.12 were used to simulate

these three objects to see what happen for sweets materials with two estimation

methods with or without the constraint of
∑3

i=1 ci. Simulation results compared

with experimental measurements for these three trials are shown in Figs. 6.14,

6.15, and 6.16, respectively. We can see that estimated parameters with the con-

straint of
∑3

i=1 ci yield good results of final-shapes but bad results of forces. On

the contrary, estimated parameters without this constraint result in good results

in force but bad in final-shapes. This again proved our theoretical discussions of
∑3

i=1 ci dominating both force amplitude and residual deformation. The values of
∑3

i=1 ci in Tables 6.11 and 6.12 are very different with each other. The ratios be-

tween these two set of values
∑3

i=1 ci are 12.5, 7.91, and 4.3 (values in Table 6.12

divided by values in Table 6.11) for sweets materials 1, 2, and 3, respectively. We
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Figure 6.15: Validation results for sweets material 2 (a) with and (b) without the

constraint of
∑3

i=1 ci.

can see that material 1 has the largest ratio and also the largest difference of the

objective function values (listed in the right most column in Tables 6.11 and 6.12).

We are not able to accurately reproduce both forces and deformation behaviors

simultaneously for sweets objects by using only one set of parameters. Using

one set of parameters, we can reproduce either rheological forces or deformation

behaviors alone. It is impossible to cover both in the same time. If we use only

one set of parameters, we always have to compromise between the reproductions

of force and deformation behaviors. We believe the reason of this phenomenon

arises from the nonlinearity of material properties. Our FE model is based on

linear Hooke’s law, which provided a proportional relationship between stress and

strain (force and displacement in 2D case). Most real materials include nonlinear,

rate-, and time-dependent properties. Therefore, it is hard to use a linear model

to approximate such nonlinear behaviors. We can introduce nonlinear modeling,

such as the model with Green strain tensor as presented in Section 3.2, to cope

with this problem. Such nonlinear models suffer from high computational cost
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Figure 6.16: Validation results for sweets material 3 (a) with and (b) without the

constraint of
∑3

i=1 ci.

because of the complicated constitutive equations and the intensive calculation

for updating the stiffness matrices. Analytical expressions of force are usually not

available for such nonlinear models, which makes the parameter estimation more

difficult and sometimes inapplicable. We have therefore introduced dual-moduli

viscous elements into our FE model to deal with this problem and next section

will demonstrate validation results of this model.

6.4.3 Validation Results of FE Model with Dual-Moduli

Viscous Elements

The dual-moduli viscous element has an ability to switch two parameters from one

to the other during simulation. The FE model is still linear model and only some

parameters (c1 and c2 in the case of parallel 5-element model) change values before

and after the switching moment. This model can yield accurate reproductions of

both rheological forces and deformation behaviors simultaneously with the same
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computation cost as a linear model with one set of parameters.

6.4.3.1 Validation Results for Corresponding Uniform Objects

At first, we have used the estimated parameters listed in Table 6.13 to simulate

the corresponding objects made by three sweets materials. The simulation results

compared with experimental measurements are shown in Fig. 6.17, where the

solid line denotes the results from experimental measurements and dashed line

(may be hard to distinguish) denotes the results from simulation. We can see

that this model successfully captured both rheological forces and deformation

behaviors simultaneously.

6.4.3.2 Validation Results for Non-Uniform Layered Objects Made

by Sweets Materials

Again, the simulation results shown in Fig. 6.17 were performed using their own

estimated parameters. These validation results therefore only demonstrate how

well the parameter estimation procedures were conducted. In order to further

evaluate the estimated parameters, several other experimental trials with layered

objects, as shown in Fig. 6.5, were performed. Each object consists of three

layers and two different materials, with the materials of the top and bottom

layers being identical. These types of layered structures are often encountered

in food products, such as sandwich and sushi. Different combinations of two

materials were tested, e.g., in Fig. 6.5a-1, the object was made of Materials 1

and 2 with Material 1 in the middle. The objects were compressed over their

entire top surfaces (Fig. 6.5a) or at the center (Fig. 6.5b) of the top surfaces

with a constant velocity of 0.2 mm/s. Detailed experimental information can be

found in Table 6.2. The estimated parameters listed in Table 6.13 were then used

to simulate these layered objects. Comparisons of the simulation results and

experimental measurements are shown in Figs. 6.18 and 6.19. In Fig. 6.19, the

object images are from experiments and the blue and red lines are obtained from

simulations. Because the objects compressed over their entire top surfaces showed

simple deformation behaviors, 4 × 8 triangular meshes are sufficient for their

simulations, as shown in Fig. 6.18. On the other hand, the objects compressed at
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(a-1) force (a-2) held-shape (a-3) final-shape

(a)

(b-1) force (b-2) held-shape (b-3) final-shape

(b)

(c-1) force

(c)
(c-2) held-shape (c-3) final-shape

Figure 6.17: Validation results of FE model with dual-moduli viscous elements

for objects made by Japanese sweets material 1 (a), 2 (b), and 3 (c).

the center of top surfaces demonstrate more complicated deformations around the

contact corners. We therefore use triangular meshes with finer resolution (16×32)

to reproduce these deformation behaviors. In Fig. 6.19, only 8×16 lattice meshes

are given for the convenience of comparisons with the experimental images. The

validation results in Figs. 6.18 and 6.19 show the successful reproductions of

both deformation behaviors and force responses for these layered objects. But the

simulations results shown in Fig. 6.19 exhibited larger errors than those in Fig.
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(a-1) Force (a-2) Held-shape (a-3) Final-shape

(a) 

(b-2) Held-shape

(b) 

(b-1) Force (b-3) Final-shape

(c) 

(c-1) Force (c-2) Held-shape (c-3) Final-shape

Figure 6.18: Validation results of layered objects compressed over the entire top

surfaces. The layered objects made by materials 1+2 (a), 2+3 (b), and 1+3 (c),

respectively.

6.18, especially the force behaviors. This suggests that better validation results

might be obtained if the operation conditions used in parameter estimation and

application are identical. Even though the force reproductions in Fig. 6.19 suffer

109

Chapter5/Chapter5Figs/figure6p18.eps


6.5 Concluding Remarks

(a-1) Force (a-2) Held-shape (a-3) Final-shape

(b-1) Force (b-2) Held-shape (b-3) Final-shape

(a) 

(b) 

Figure 6.19: Validation results of layered objects compressed at the center of the

entire top surfaces. The layered objects made by materials 1+2 (a) and 2+3 (b),

respectively.

from some errors, the errors are still in acceptable range for most applications.

6.5 Concluding Remarks

In this chapter, experimental setup and compressing tests were demonstrated and

simulation results were compared with experimental measurements to validate our

FE models and parameter estimation methods. Two kinds of rheological materi-

als, commercial available clay and Japanese sweets materials, were employed in

our experiments. Flat-squared objects made by these two materials were com-

pressed using a linear stage with a pushing-holding-releasing operations. The

force data and static images were recorded for estimating the physical parame-
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ters. The estimation methods presented in Chapter 5 were used to estimate the

physical parameters for these objects. Two sets of parameters with or without the

constraint of
∑3

i=1 ci were given to compare the differences. The simulations were

then performed using the estimated parameters and comparisons between simu-

lation results and experimental measurements were done to validate the proposed

FE models and parameter estimation methods. We found that the estimated pa-

rameters with the constraint of
∑3

i=1 ci yield better reproduction of final-shapes

while parameters without
∑3

i=1 ci result in better force reproductions. For some

objects made by clay materials, good reproductions of both rheological forces

and deformation behaviors can be achieved simultaneously by using only one

set of parameters. However for other objects, this is impossible and the reason

caused the failure is the linearity of the physically-based models. Fortunately,

after introducing the dual-moduli viscous elements into our FE models, we have

finally solved this problem and successfully reproduced both rheological forces

and deformation behaviors simultaneously. The estimated parameters from uni-

form objects can also be used in simulating non-uniform layered objects even with

different compressing operations.

Note that the measurement requirements for our estimation methods included

three static images of the object: the initial shape, the held-shape, and the final-

shape, and the force responses during the experiments. In addition, we have used

regular shaped objects with some markers drawn on the surfaces throughout our

experiments. However, our estimation method is not limited by the shape of the

object and can be applied to arbitrary object as long as the deformation field of

some feature points is available. Besides, the loading position is also not limited

to the top surface but may be anywhere, even at just one point convenient for

force measurements.
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Chapter 7

Conclusions and Future Works

7.1 Conclusions

Modeling and simulation of deformable objects has been playing an important

role in many applications, such as surgical simulation, robotic manipulation, food

engineering, and so on. Many modeling methods have been proposed, such as

MSD, FEM, and particle-based methods, etc. They all have their own advan-

tages and disadvantages. There are even many commercial softwares available

for simulating deformable objects, such as ANSYS and ABAQUS. However, the

modeling and simulation of deformable objects is still a unmature and hot research

field. This is not only because the development of computation technology makes

more methods applicable, but also because the diversity of deformation behaviors

demonstrated in real world objects.

The work presented in this dissertation is focusing on modeling and reproduc-

ing the behaviors of rheological objects, which include both elastic and plastic

properties and always yield residual deformation after loading-unloading oper-

ations. The difficult part of this subject is how to accurately reproduce both

rheological forces and deformation, especially residual deformation behaviors si-

multaneously. The main contributions of our current work are as follows:

1. We have summarized the physically-based models which can be used to

simulate rheological behaviors. We categorized such physical models into

serial and parallel models and proposed a criterion to choose an appropriate
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one for certain application. We have derived the generalized constitutive

laws for both models and found a corresponding relation between the two

models. We then derived the analytical expressions of rheological forces

and residual deformation for generalized parallel models. Through a series

of analysis, we found that there is contradiction between accurate repro-

ductions of rheological forces and residual deformation. In order to cope

with this contradiction, we have proposed a dual-moduli viscous element

and integrated it with our physically-based models.

2. We have developed 2D and 3D FE dynamic models for simulating rheo-

logical behaviors based on the physically-based models and linear Cauchy

strain tensor. In order to simulate large deformation and deformation with

rotation motion, the nonlinear Green strain tensor has also been introduced

into our FE formulations. The FE dynamic model with dual-moduli viscous

elements was also derived. We have then extended our FE model to deal

with non-uniform layered objects and contact interaction between rheolog-

ical objects and external instruments. We found that the losing contact

moment can serve as a perfect criterion for dual-moduli viscous element to

switch the parameters.

3. We have proposed several methods for estimating the physical parameters

of rheological objects. The basic idea is to minimize the difference between

simulation results and experimental measurements with updated physical

parameters. In order to capture both rheological forces and deformation

behaviors, we proposed a three-step method with a separate estimation of

Poisson’s ratio γ and calculation of summation
∑n

i=1 ci. Both simulation-

and calculation-based optimization methods were investigated and com-

pared. The simulation-based method is robust but time-consuming, while

the calculation-based method is very efficient but limited to only parallel

models. we found that the three-step method works well for some rheolog-

ical objects but failed to others. We have therefore estimated the param-

eters of FE model with dual-moduli viscous elements. We employed the

calculation-based optimization method to minimize the force difference and

simulation-based method to optimize the difference of final-shapes.
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4. A series of compressing tests were performed using objects made by com-

mercial available clay and Japanese sweets materials. Experimental mea-

surements of uniform objects with compressing from the top surfaces were

used to estimate the physical parameters. The estimated parameters were

then employed to simulate uniform objects with compressing operation from

the top-center surfaces and even non-uniform layered objects. Through var-

ious validations, we proved the contradiction between the reproductions of

rheological forces and residual deformation. For several clay objects, this

contradiction phenomenon is not obvious and we could obtain acceptable

results for both force and deformation using only one set of parameters.

For other objects, however, this contradiction phenomenon is very strong

and it is impossible to use one set of parameters to cover both rheologi-

cal forces and deformation behaviors. This coincides with our theoretical

discussions. The FE model with dual-moduli viscous elements and esti-

mated parameters were then employed to solve this problem and finally we

successfully reproduced both rheological forces and deformation behaviors

simultaneously.

Even though our current work concentrated on reproductions of rheological

behaviors, most of our discussions and methods can be easily applied to elastic,

visco-elastic, and plastic models as long as the physically-based models were used.

Since our attention is focusing on the reproduction accuracy of both forces and de-

formation, we have to sacrifice the computation costs and real-time performance

is not of concern in the current situation.

7.2 Future Works

According to our current works, we have done a systematic analysis of modeling

for simulating rheological behaviors and we have established efficient methods for

estimating physical parameters of rheological objects. In the future, we plan to

make our efforts on the following directions:
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1. 3D validation of our FE model and estimated parameters. 3D FE formu-

lation has been presented in this dissertation. But we did not perform

any simulation validation for real objects with estimated parameters. The

physical parameters were mainly estimated by using 2D FE model and they

are supposed to be applicable in 3D simulation. Thus, we need experimen-

tal validations of this issue. If the proposed methods are not applicable,

new parameter estimation methods with 3D model have to be investigated.

This is theoretically feasible but practically difficult because the computa-

tion costs.

2. Therefore, the second future target is to speed up our FE simulation. We

plan to use the new computing architecture called GPGPU (General Pur-

pose Graphic Processing Unit) to achieve this target.

3. In the current experiments, only two kinds of materials were tested. This

is quite limited. We will perform more experiments with other rheological

objects, such as Japanese tofu and various kinds of sushi. There might be

some interesting behaviors which have not been discovered.

4. We are now working on particle-based model, such as Smoothed Particle

hydrodynamics (SPH). This could be another option for simulating rheo-

logical objects. Comparing with FE model, SPH model has advantages of

low computation costs and convenient implement for complex operations,

such as cutting and reforming. The SPH model also need parameter esti-

mation when dealing with real materials. The parameter estimation ideas

presented in this dissertation can serve as a good reference.
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