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We describe continua modeling of a rheologically deformable object. Rheological 2D deformation is formulated
based on continua modeling. We show a simple simulation to demonstrate the modeling capability.
Key Words: rheology, modeling, deformation, continua, dynamic

1. Introduction
Most food and biological tissue show rheological na-

ture in their deformation. Modeling and identification
of these rheologically deformable objects are needed in
virtual reality, especially, surgery simulation and mas-
tication simulation. We have applied a particle-based
approach to the modeling of rheological objects (1). Un-
fortunately, physical meaning of model parameters is
unclear in the particle-based approach, resulting the d-
ifficulty in identification of model parameters. Note that
continua modeling stands on a clear foundation. In this
paper, we apply the continua modeling to 2D rheological
deformation to build a dynamic model of a rheological
object.
2. Rheological objects
Objects deform in response to forces applied to the

objects. Objects can be categorized into three groups
with respect to their deformation. Assume that a nat-
ural shape of an object is as given in Figure 1-(a). On
applying external forces, the object deforms as in Fig-
ure 1-(b). Let us release the applied force and examine
the stable shape after the release. Deformation of vis-
coelastic objects is completely lost and their stable shape
coincides with their natural shape, as illustrated in Fig-
ure 1-(c). Namely, viscoelastic objects have no residual
deformation. Deformation of plastic objects complete-
ly remains and their stable shape coincides with their
deformed shape under the applied forces, as shown in
Figure 1-(d). Namely, plastic objects have no bounc-
ing deformation. Objects with residual deformation and
bouncing deformation are referred to as rheological ob-
jects. Deformation of rheological objects is partially lost
after the applied forces are released, as illustrated in Fig-
ure 1-(e). Various objects including foods and tissues
are categorized into rheological objects.
3. Dynamic modeling of 2D rheological object
Let σ be a pseudo stress vector and ε be a pseudo s-

train vector. Stress-strain relationship of 2D rheological
deformation is formulated as follows:

σ(t) =
∫ t

0

R(t − t′) ε̇(t′) dt′, (1)

where 3×3 matrix R(t− t′) is referred to as a relaxation
matrix, which determines the nature of a 2D rheologi-
cal deformation. The relaxation matrix of 2D isotropic
rheological deformation is formulated as

R(t − t′) = rλ(t − t′)Iλ + rµ(t − t′)Iµ (2)

(a) natural shape (b) deformed shape

(c) viscoelastic (d) plastic (e) rheological

Fig.1 Viscoelastic object, plastic object, and
rheological object

where

rλ(t − t′) = λela exp
{
−λela

λvis
(t − t′)

}
,

rµ(t − t′) = µela exp
{
−µela

µvis
(t − t′)

}
.

Elasticity of the object is specified by two elastic moduli
λela and µela while its viscosity is specified by two vis-
cous moduli λvis and µvis. Matrices Iλ and Iµ are matrix
representations of isotropic tensors, which are given as
follows in 2D deformation:

Iλ =




1 1 0
1 1 0
0 0 0


 , Iµ =




2 0 0
0 2 0
0 0 1


 .

The stress-strain relationship can be converted into
a relationship between a set of forces applied to nodal
points and a set of displacements of the points. Let uN

be a set of displacements of nodal points. Let Jλ and
Jµ are connection matrices, which can be geometrically
determined by object coordinate components of nodal
points. Replacing Iλ by Jλ, Iµ by Jµ, and ε by uN in
the stress-strain relationship (1) of a rheological object
yields a set of rheological forces applied to nodal points
as follows:

rheological force = Jλwλ + Jµwµ (3)

where

wλ =
∫ t

0

λela exp
{
−λela

λvis
(t − t′)

}
u̇N (t′) dt′,
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wµ =
∫ t

0

µela exp
{
−µela

µvis
(t − t′)

}
u̇N (t′) dt′.

Let M be an inertia matrix and f be a set of external
forces applied to nodal points. Let us describe a set of
geometric constraints imposed on the nodal points by
AT uN = b. The number of columns of matrix A is
equal to the number of geometric constraints. Let λ be
a set of constraint forces corresponding to the geometric
constraints. A set of dynamic equations of nodal points
is then given by

−(Jλwλ + Jµwµ) + f + Aλ − M üN = .

Applying the constraint stabilization method (2) to the
constraints specified by angular velocity ω, system dy-
namic equations are described as follows:

u̇N = vN ,

M v̇N − Aλ = −Jλwλ − Jµwµ + f ,

−AT v̇N = AT (2ωvN + ω2uN ),

ẇλ = −λela

λvis
wλ + λelavN ,

ẇµ = −µela

µvis
wµ + µelavN .

Consequently,



I

M −A

−AT

I

I







u̇N

v̇N

λ

ẇλ

ẇµ




=




vN

−Jλwλ − Jµwµ + f

AT (2ωvN + ω2uN )

−λela

λvis wλ + λelavN

−µela

µvis wµ + µelavN




. (4)

Note that the above linear equation is solvable since the
matrix is regular, implying that we can sketch uN , vN ,
wλ, and wµ using numerical solver such as the Euler
method or the Runge-Kutta method.
4. Simulation
Let us apply the dynamic model of 2D rheologi-

cal deformation to a 2D beam illustrated in Figure
2. The beam involves 10 nodal points and 8 trian-
gles. Edge P0P5 is affixed on a wall. Uniform pressure
P = [Px, Py]T is applied over an edge P4P9. Values of
elastic moduli are λela = 7.0, µela = 5.0, values of vis-
cous moduli are λvis = 4.0, µvis = 2.0, and area density
is given by ρ = 0.2. Pressure P = [10, 0]T is applied
during the first 1 second. After 1 second, no pressure is
applied on the right edge.
Figure 3 shows a successive shape of the deforming ob-

ject. As shown in the figure, the beam extends during
the first 1 second and shrinks after the applied pressure
is released. This implies that the simulation describes
the rheological deformation of the beam. Deformation
along the vertical axis is caused by non-uniform arrange-
ment of triangles. Residual forces wλ and wµ converge
to zero as plotted in Figure 4.

P0 P1

P5

P2 P3 P4

P6 P7 P8 P9

Fig.2 Two-dimensional rheological beam
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Fig.3 Simulation of 2D rheological deformation
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(a) wλ
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Fig.4 Residual forces

5. Conclusion
We have applied the continua modeling to rheologi-

cal deformation and have built a dynamic model of a
2D rheological object. Experimental evaluation will be
studied soon.
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