のこぎり歯形状を有する表面によるサブミリサイズマイクロパーツの水平対称振動輸送 ━ フィーダ表面における摩擦の方向性に関する検証 ━

札幌市立大学 三谷 篤史，立命館大学 吉村 俊厚，平井 慎一

Micro-parts Feeding by a Saw-tooth Surface
Evaluation of directionality of friction of feeder surfaces
Sapporo City Univ. Atsushi Mitani,
Ritsumeikan University Toshiatsu Yoshimura and Shinichi Hirai.

We have previously showed that microparts can be fed along saw-tooth surfaces using simple planar symmetric vibration. The microparts move forward because they adhere to the saw-tooth surface more in the backward direction than in the forward direction. We then studied the movement of 0603-type capacitors (0.6 × 0.3 × 0.3 mm, 0.3 mg) using saw-toothed silicon wafers, and also the movement of the 0402-type capacitors (0.4 × 0.2 × 0.2 mm, 0.1 mg). In this study, we evaluated the characteristics of friction of these feeder surfaces. The friction angle of 0603- and 0402-type capacitors in both positive and negative direction were measured to estimate the directionality of friction. The angles of friction under various ambient humidity were also measured to evaluate the effect of humidity on friction.

1 はじめに

筆者らは，図1 に示す，のこぎり歯形状表面を有するマイクロパーツフィーダを提案している[1]。この機構は，振動式フィーダの表面にのこぎり歯形状の溝加工を施し，マイクロバーツとフィーダの接触条件を正負方向で変化させることで，対称な水平振動による一方方向輸送を実現する。

本報では，セラミックチップコンデンサの摩擦角を計測することにより，フィーダ表面の摩擦係数および凝着力を検証する。とくに，フィーダ表面の傾斜方向を正方向とした場合と負方向とした場合それぞれについて計測することにより，摩擦の方向性を検証する。また，セラミックチップコンデンサであるマイクロパースの運動においては，傾斜力だけでなく，フィーダ表面から受ける摩擦力や凝着力の影響も考慮する必要がある。バーツの大きさの小さいほど傾斜力が少なくて大きく，傾斜力に対する凝着力の比が大きくなり，バーツの運動特性は凝着力が支配的になる傾向を示す。凝着力は，周囲の湿度に影響をうける。そこで，異なる湿度条件下で摩擦角計測実験を行い，湿度が摩擦角におよぼす影響を検証する。

2 摩擦角計測実験

のこぎり歯のピッチをδ = 0.01, 0.02, …, 0.1 mm, 半角をα = 20°としたフィーダ表面を用いて，0603型および0402型セラミックコンデンサの摩擦角を計測した。サブミリサイズ以下のマイクロパースにはたくさんの凝着力は，周囲の湿度に影響を受ける。そこで，図2 に示す測定システムを用いて，湿度を50%, 60%, 70%にしたときの摩擦角を計測した。各実験は55個のマイクロパースを用いて10回行った。落下したバーツ個数とそののれん幅の平均を実験結果とした。また，摩擦の方向性を確かめるために，フィーダ表面を正方向および負方向に傾斜させた場合それぞれについて計測した。ここでは，図7 における前後方向の軸に対して，時計回りに傾斜させる場合を正方向とした。なお，実験を行う前に，実験装置およびマイクロパースをそれぞれの湿度環境下に一日間放置した。各バーツの実験結果を図3 および5 に示す。

3 実験結果の考察

0603型実験では，湿度70%ではp = 0.05, 0.06，湿度60%ではp = 0.08，湿度50%ではp = 0.06。温度70%ではp = 0.01, 0.02, 0.04 においてそれぞれ逆転しているものの，全体的に正方向の摩擦角が負方向よりも小さくなっている。また0402型においては，湿度50%ではp = 0.01, 0.02, 0.09, 0.11，湿度60%ではp = 0.01, 0.02, 0.03, 0.09，湿度70%ではp = 0.01, 0.08 において方向性が反転している。各温度における摩擦の平均値と落下した個数を図7 に示す。バーツの落下個数を検証すると，どちらのバーツにおいても，湿度が増加するとこれで落下個数は減少し，摩擦角は増加している。これ，湿度の増加に伴って凝着力が増加することが原因である。また，湿度にかかわらず，0402型に比較して0603型の方が落下個数が大きく，摩擦角が小さいという結果となっている。これは，バーツサイズが小さいほど凝着力に対する凝着力の比が大きくなることが原因としてあげられる。

一方，湿度50%における0402型の摩擦においては，方向性が得られていない。この原因としては，湿度が小さいほど凝着力の効果が小さくなり，接触の際にによる方向性が得られてなかったことが挙げられる。それぞれのバーツにおいて摩擦の方向性が
最も得られている条件を検証すると、0603型においては湿度が70％のときに90％の方向性が得られており、また、0402型においては湿度60％において84％の方向性が得られている。

4 おわりに

本稿では、のこぎり歯形状を有するフィーダ表面の摩擦特性を検証するために、マイクロバーツの摩擦角を検証した。マイクロバーツとして0603型および0402型のセラミックチップコンデンサを用いた。摩擦の方向性を検証するために、フィーダ表面を正方向および負方向に傾斜させていった場合の摩擦角を計測した。さらに、サブミリ以下のマイクロバーツにはたくなる凝着力の影響は、周囲の湿度に影響を受けるため、様々な湿度条件下での摩擦角を計測することにより、満度が摩擦角におよぼす影響を検証した。今後の予定としては、フェムト秒レーザー・ダブルパルス加工表面のフィーダ表面への適用可能性について検証する。

本研究は、科学研究費補助金（若手研究（B）、課題番号20700056）およびメカトロニクス技術高度化財団（EMTAF）の助成を受けたものである。

参考文献
