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Abstract—There are many kinds of deformable objects in our
living life. Some of them demonstrate rheological behaviors, such
as human tissues, food, and clay. Comparing with elastic or
viscoelastic objects, rheological objects have not been studied in-
tensively. Especially, effective methods for parameter identification
have not been established until now. In this paper, we summarize
two FE dynamic models associated with three-element and four-
element physical model respectively. According to the analysis
of simulation results, we proposed an approach for estimating
physical parameters of rheological objects based on FE simulation
and nonlinear optimization. This method aims at minimizing
the difference of deformed shape and force response between
experiment and simulation. This method take both deformed shape
and force response into consideration. Experiment is conducted
by using commercial clay. The identification results show that
the four-element physical model is more appropriate to describe
rheological behaviors than three-element model.

I. INTRODUCTION

There are many kinds of deformable objects in our living life,
such as human tissues, cloth, food, clay, and so on. The model-
ing and simulation of such objects have been studied since late
80’s. Many applications have been involved in virtual reality,
from previous applications for imitating dynamic behaviors of
various deformable objects [1], [2], to current popular surgical
applications for modeling and simulating of human tissues or
organs [3]–[6], and also some other applications related with
robot hand grasping [7], [8] and food engineering [9], [10]. If
we can say that previous applications mostly focused on the
visual approximation, then current applications are focusing on
the haptic approximation, i.e., we want to make the simulation
not only looks like the real deformation, but also feels like the
real one.

So far, most related works of modeling and simulation of
soft objects focus on elastic or viscoelastic objects (see Fig.
1c) because most living tissues and organs demonstrate elastic
behaviors. On the contrary, the rheological objects (see Fig.
1e), as a combination of elastic and plastic objects, have not
been given enough attention. In general, modeling a rheology
object is more difficult than doing an elastic or viscoelastic
object because the rheological object always leaves a residual
deformation after pushing operation and we cannot understand
how to control the residual displacement [11], [12]. So, the
dynamic modeling of rheological deformation has not been well
developed. Especially, the effective methods for estimating the
physical parameters have not been established until now. The
main contributions of our works concentrate on the modeling
and parameter identification of rheological objects.

(a) Original shape (b) Deformed shape

(c) Viscoelastic (d) Plastic (e) Rheological

Fig. 1. The definitions of soft objects

The remainder of this paper is organized as follows: after
giving the FE dynamic models associated with three-element
and four-element physical model respectively in Section 2. We
propose the parameter identification method in Section 3. Some
experiments and identification results are given in Section 4. In
Section 5, we will conclude this paper and suggest future works.

II. FE DYNAMIC MODELS

Depending on the deformation behaviors, soft objects can
be roughly divided into three categories: viscoelastic, plastic,
and rheological objects. Supposing that an object has a natural
shape, as shown in Fig. 1(a). Applying external force, the object
deformed as shown in Fig. 1(b). After removing the force,
viscoelastic objects totally turn back to the original shape, as
shown in Fig. 1(c). Plastic objects maintain all the deformation
and there is no recovered deformation, as shown in Fig. 1(d).
However, rheological objects partially maintain the deformation
but not all, as shown in Fig. 1(e). Until now, two popular
physical models used to describe rheological behaviors are
three-element model (see Fig. 2(a)) and four-element model
(see Fig. 2(b)).

In this section, we give the FE dynamic models based
on these two physical models, respectively. Let us imag-
ine that there is a rheological object with a size of
80 mm×80 mm×12.5 mm. The bottom surface is fixed on the
ground. From time 0 s to 20 s, we push the object from top
surface with a constant velocity of 0.5 mm/s and we call this
time period push-phase. Before releasing the external force,
we keep the deformation from time 20 s to 60 s and we call it
keep-phase. Besides, through this paper, we use keep-shape and
final-shape to denote the deformed shape in the end of keep-
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Fig. 2. Popular physical models for describing rheological behaviors.

phase and the deformed shape after releasing, respectively. We
suppose that this is 2D deformation and the object is described
by a set of triangles. A three-element (see Fig. 2(a)) or four-
element physical model (see Fig. 2(b)) is attached on each
triangle. Since these two FE models have already presented in
our previous works [13], [14], we just give the dynamic models
directly in this paper and readers can check our previous works
for detail information.

A. FE Model Based on Three-Element Physical Model

Let uN be a set of displacements of nodal points. Let Jλ

and Jµ be connection matrices, which denote the connection
configuration among triangles and can be geometrically deter-
mined by object coordinate components of nodal points. Let
M be an inertia matrix and vector f be a set of external forces
applied to nodal points. Let us describe a set of geometric
constraints imposed on the nodal points by AT uN = b, where
b is a displacement vector of the constraints and matrix A
decides which points are going to be constrained. Let vector λ
be the Lagrange multipliers which denotes a set of constraint
forces corresponding to the geometric constraints. Then, a set of
dynamic equations of rheological deformation based on three-
element physical model can be described as:

u̇N = vN ,

Mv̇N −Aλ = −Jλωλ − Jµωµ + f ,

−AT v̇N = AT (2ωvN + ω2uN ),
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A set of rheological forces applied to all nodal points are
then simply described as:

Frheo = Jλωλ + Jµωµ. (3)

B. FE Model Based on Four-Element Physical Model

Similarly, a set of dynamic equations of rheological defor-
mation based on four-element physical model can be described
as below:
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The detailed calculations of variables Bλ
0 , Bλ

1 , Bµ
0 , Bµ

1 , m,
and n can be found in [14]. Then, a set of rheological forces
based on four-element physical model can be formulated as:

Frheo = Jλ(ωλ
1 − ωλ

2 ) + Jµ(ωµ
1 − ωµ

2 ). (5)

III. PARAMETER IDENTIFICATION

The most popular method for estimating parameters of soft
objects is optimization: the simulation is iterated with updated
physical parameters until the difference between the simulation
and experiment is minimized, as shown in Fig. 3. Many related
works are using this idea to estimate parameters of soft objects.
Unfortunately, most of them are only focus on minimizing the
difference of deformed shapes. Along with the development of
computer graphic and haptic sensing, we are eager to know
how the force response will be during the deformation of soft
objects. In this paper, we take both deformed shape and force
response into consideration to yield a method to improve the
accuracy of force approximation. At first, we use four-element

Force data

Experiment

Simulation

Initial 
parameters

If Solution
Yes

Parameters 

Update

Error

No

Fig. 3. Optimization process for parameter identification.
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Fig. 4. Comparison results of deformation behaviors with different Poisson’s
ratio γ.

model as an example to investigate how these physical param-
eters affect the simulation results. Recall that the deformation
behaviors of four-element model are decided by 5 physical
parameters: E1, E2, c1, c2, and γ. But the contributions of
these parameters are different to the consequential deformation
and force response.

1) Contribution of Poisson’s Ratio: Let us consider simula-
tions with different Poisson’s ratios: γ = 0.25, γ = 0.35, and
γ = 0.45. Other four parameters are unchanged with values of
E1 = 5 × 102 Pa, E2 = 1.2 × 103 Pa, c1 = 2 × 104 Pa·s, and
c2 = 8 × 103 Pa·s. The comparison of keep-shape and force
response are shown in Fig. 4. We can see that the Poisson’s
ratio γ affects both keep-shape and force response.

2) Contribution of Elastic Modulus: Let us compare sim-
ulation results with different elastic moduli. Fig. 5 shows the
deformation behaviors with different E1 and E2. We can see
that elastic moduli only contribute to force response, they do
not affect the keep-shape at all.

3) Contribution of Viscous Modulus: Let us perform the
same comparisons with different viscous moduli, as shown in
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Fig. 5. Comparison results of deformation behaviors with different elastic
moduli E1 and E2.
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Fig. 6. Comparison results of deformation behaviors with different viscous
moduli c1 and c2.

Fig. 6. We only give the force responses with different c1 and c2

because the keep-shapes are same with Fig. 5. Fig. 6 indicates
that the viscous moduli also only affect force responses.

In addition, mesh distribution also affects simulation results.
A rule of thumb is that the finer the mesh is distributed, the
higher the accuracy of simulation results will be. Fig. 7 shows
how the mesh distributions affect simulation results. According
to Fig. 7, we find that the discrepancy of both deformed shape
and force response between different mesh distributions is not
significant if the mesh distribution is finer than 4 × 4 in this
simple deformation. So we employ 4×4 triangle mesh through
our identification process.

According to the above simulation analysis, we find that only
Poisson’s ratio γ affect the keep-shape and other parameters
have no contribution to this shape. This phenomenon suggests
that we can identify Poisson’s ratio γ separately by optimizing
the keep-shape. So we divided our identification method into
two steps. In the first step, we identify the Poisson’s ratio γ
by minimizing the keep-shape and we call this step as shape
optimization. In the second step, the other parameters will
be identified based on the optimization of force response and
we call this step as force optimization. Both shape and force
optimization process can be described by Fig. 3. The objective
functions for both cases can be generalized as

F (x) =
m∑

i=1

[
ωfsim

i (x)− ωfexp
i (x)

]2
, (6)

where x is the physical parameters. ω is a weight coefficient
which is set to 1000 and 1 for shape and force optimization
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respectively. Vectors fsim
i (x) and fexp

i (x) are simulation and
experiment data respectively. For shape optimization, fsim

i (x)
and fexp

i (x) denote displacements of nodal points. For force
optimization, they denote force response at every sampling
time. Number m denotes how many nodal points are involved in
shape optimization and how many times the forces are sampled
in force optimization respectively.

In both optimizations, we employ optimization toolbox of
Matlab software and ’Nonlinear Least Squares’ method to
minimize the objective functions. This method is widely used
in data fitting problems.

IV. EXPERIMENT RESULTS

The commercial clay made of flour, water, and salt was
employed to work as a rheological object through our ex-
periment. The object of size about 80 mm×80 mm×12.5 mm
was pushed by a motorized stage with a displacement about
9.6 mm and a constant velocity of 0.5 mm/s. Before releasing,
the displacement was kept about 47.88 seconds. Some markers
were drawn on the surface of the clay by using a resist pen filled
with lacquer ink. The initial and deformed shapes recorded by
a camera are shown in Fig. 8(a), (b), and (c). By using a simple
image processing, we can obtain 2D FE mesh of these shapes
as shown in Fig. 8(d), (e), and (f). The force response on the
bottom surface was recorded by a tactile sensor.

A. Identification Results for Three-Element Physical Model

1) Step 1: In the first step, we give some random values
to other three parameters and iterate simulations with update
Poisson’s ratio γ until termination conditions stop the opti-
mization process. For the three-element physical model, the
random values for the other three parameters are given as:
E = 700 Pa, c1 = 500 Pa·s, and c2 = 1000 Pa·s. In addition,
we set two termination conditions to stop the optimization.
One is the changing of objective function value. Another one
is the changing of identified parameter value. Both conditions

(a) (b) (c)

(d) (e) (f)

Fig. 8. Deformed shapes in experiment. (a), (b), (c): Images taken by camera.
(d), (e), (f): Description by 2D triangle mesh. (a), (d): Initial shape. (b), (e):
Keep-shape. (c), (f): Final-shape.

TABLE I
IDENTIFICATION RESULTS OF POISSON’S RATIO γ FOR THREE-ELEMENT

PHYSICAL MODEL.

Trial Initial Identified F (x) Iter.

no. value x0 value x∗ (mm2) no.

1 0.15 0.3408785 3.6062343 4

2 0.25 0.3408817 3.6062343 4

3 0.35 0.3408849 3.6062343 3

4 0.45 0.3408844 3.6062343 5

TABLE II
IDENTIFICATION RESULTS OF PARAMETERS E , c1 , AND c2 FOR

THREE-ELEMENT PHYSICAL MODEL.

Initial Identified F (x) Iter.

Para. value x0 value x∗ (N2) no.

E (Pa) 4× 104 5.4939× 104

c1 (Pa·s) 5× 104 2.2814× 105 15.6030 28

c2 (Pa·s) 6× 106 7.1967× 106

TABLE III
IDENTIFICATION RESULTS OF POISSON’S RATIO γ FOR FOUR-ELEMENT

PHYSICAL MODEL.

Trial Initial Identified F (x) Iter.

no. value x0 value x∗ (mm2) no.

1 0.15 0.341160 3.605885 5

2 0.25 0.341145 3.605885 4

3 0.35 0.341149 3.605885 4

4 0.45 0.341156 3.605885 5

are set as 1 × 10−6. Table I gives the identification results of
Poisson’s ratio γ with different initial values. We can see that
the identified Poisson’s ratios in all trials are very similar with
each other. This means we obtain the global minimum for this
optimization problem. We use γ = 0.3409 for second step of
three-element physical model.

2) Step 2: After having Poisson’s ratio γ, we can identify
the other three parameters E, c1, and c2 by optimizing the force
differences between experiment and simulation. Identification
results are given in Table II.

B. Identification Results for Four-Element Physical Model

1) Step 1: Same with three-element physical model, we
estimate the Poisson’s ratio γ for four-element model in the
first step. The random values for the other four parameters are
given as: E1 = 500 Pa, E2 = 1000 Pa, c1 = 20000 Pa·s, and
c2 = 8000 Pa·s. Then, the identification results for parameter γ
with different initial values are given in Table III. We still can
find the global minimum for parameter γ. We use γ = 0.3412
for the second step.

2) Step 2: Once again, in the second step. We identify all the
other four parameters E1, E2, c1, and c2 by optimizing the force
difference. We conduct two identification trials with different
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Fig. 9. Comparison results for both physical models. The first row denotes the comparison results of three-element model, the second row denotes the results
from four-element model.

TABLE IV
IDENTIFICATION RESULTS OF PARAMETERS E1 , E2 , c1 AND c2 FOR

FOUR-ELEMENT PHYSICAL MODEL.

Trial Initial Identified F (x) Iter.

no. Para. value x0 value x∗ (N2) no.

E1 (Pa) 3× 104 5.8525× 104

trial 1 E2 (Pa) 5× 103 1.2348× 105 3.8652 52

c1 (Pa·s) 2× 105 2.0556× 107

c2 (Pa·s) 6× 105 8.3340× 105

E1 (Pa) 6× 104 5.8481× 104

trial 2 E2 (Pa) 2× 105 1.3497× 105 3.6981 28

c1 (Pa·s) 2× 107 1.5845× 107

c2 (Pa·s) 1× 106 7.4853× 105

initial values. The identification results are given in Table IV.
We can see that identified parameters are slightly different
with different initial values. This means we have several local
minimums instead of one global minimum. Fortunately, we
can choose one set of better solutions for these parameters
according to the F (x) values. Here we choose the identified
parameters of trial 2.

After having all these parameters, we can finally simulate
the rheological behaviors and compare with experiment results.
The comparison results for both three-element model and four-
element model are shown in Fig. 9. Comparing two rows of

Fig. 9, we can see that we can obtain much better results for
force approximation by using four-element physical model than
three-element model. This is because that the force expression
of four-element model include two exponential functions, but
three-element model only has one. This coincide with our
previous work [15] which shows that we need at least two
exponential functions to obtain a good force approximation in
the keep-phase for rheological deformation. From Fig. 9, we
also find that the keep-shape approximation for both cases are
quite good. On the contrary, the final-shape approximation for
four-element model is worse than three-element model. This
is because that we focus on the keep-shape and force response
during our identification process and we did not take final-shape
into consideration.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we compare the performance of two physical
models for describing rheological objects. The first model is
three-element physical model and the second one is four-
element model. We give FE dynamic equations for both physi-
cal models. Then, we propose an approach to identify physical
parameters based on FE simulation and nonlinear optimization.
This identification method can be divided into 2 steps. In the
first step, the Poisson’s ratio is identified by minimizing the
difference of keep-shape between experiment and simulation.
In the second step, the other parameters are identified by opti-
mizing the force differences. Experiment is conducted by using



commercial clay. Identification results for both three-element
and four-element physical models are given. The comparison
results of deformed shapes and force responses show that the
four-element physical model is more appropriate than three-
element physical model to describe rheological behaviors.

In the future, the identification method will be used in non-
uniform objects, for instance, an object consists of two or
three layers with different parameters. On the other hand, the
nonlinear behavior will be taking into account to develop more
accurate model for rheological objects.

REFERENCES

[1] D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer, “Elastically De-
formable Models,” Proc. 14th Annual Conference on Computer Graphics
and Interactive Techniques (SIGGRAPH ’87), vol.21, no.4, pp. 205-214,
Jul. 1987.

[2] D. Terzopoulos and K. Fleischer,“Modeling Inelatic Deformation: Vis-
coelasticity, Plasticity, Fracture,” Proc. 15th Annual Conference on Com-
puter Graphics and Interactive Techniques (SIGGRAPH ’88), vol.22,
no.4, pp. 269-278, Aug. 1988.

[3] M. Bro-Nielsen, “Finite Element Modeling in Surgery Simulation,” Pro-
ceedings of the IEEE, vol.86, no.3, pp. 490-503, Mar. 1998.

[4] S. Cotin, H. Delingette, and N. Ayache, “Real-Time Elastic Deformations
of Soft Tissues for Surgery Simulation,” IEEE Trans. Visualization and
Computer Graphics, vol.5, no.1, pp. 62-73, Jan/Mar. 1999.

[5] R. Balaniuk and K. Salisbury, “Soft-Tissue Simulation Using the Ra-
dial Elements Method,” Surgery Simulation and Soft Tissue Modeling,
vol.2673, pp. 48-58, Jan. 2003.

[6] G. Picinbono, H. Delingette, and N. Ayache, “Nonlinear and Anisotropic
Elastic Soft Tissue Models for Medical Simulation,” Proc. IEEE Inter-
national Conference on Robotics and Automation (ICRA ’01), pp. 1370-
1375, May. 2001.

[7] R. Brockett, “Robotic Hands with Rheological Surfaces,” Proc. IEEE
International Conference on Robotics and Automation (ICRA ’85), vol.2,
pp. 942-946, Mar. 1985.

[8] T. Inoue and S. Hirai, “Elastic Model of Deformable Fingertip for Soft-
Fingered Manipulation,” IEEE Trans. Robotics, vol.22, no.6, pp. 1273-
1279, Dec. 2006.

[9] S. Tokumoto, Y. Fujita, and S. Hirai, “Deformation Modeling of Vis-
coelastic Objects for Their Shape Control,” Proc. IEEE International
Conference on Robotics and Automation (ICRA ’99), vol. 1, pp. 767-772,
May. 1999.

[10] M. Kimura, Y. Sugiyama, S. Tomokuni, and S. Hirai, “Constructing
Rheologically Deformable Virtual Objects,” Proc. IEEE International
Conference on Robotics and Automation (ICRA ’03), vol.3, pp. 3737-
3743, Sept. 2003.

[11] R. Nogami, H. Noborio, F. Ujibe, and H. Fujii, “Precise Deformation of
Rheologic Object under MSD Models with Many Voxels and Calibrat-
ing Parameters,” Proc. IEEE International Conference on Robotics and
Automation (ICRA ’04), vol. 2, pp. 1919-1926, Apr/May. 2004.

[12] T. Ikawa and H. Noborio, “On the Precision and Efficiency of Hierarchical
Rheology MSD Model,” Proc. IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS ’07), pp. 376-383, Oct/Nov. 2007.

[13] Z. Wang, K. Namima, and S. Hirai, “Physical Parameter Identification of
Rheological Object Based on Measurement of Deformation and Force,”
Proc. IEEE International Conference on Robotics and Automation (ICRA
’09), pp. 1238-1243, May. 2009.

[14] Z. Wang and S. Hirai, “Modeling and Parameter Identification of Rheo-
logical Object Based on FE Method and Nonlinear Optimization,” Proc.
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS ’09), Oct. 2009, preprint.

[15] Z. Wang and S. Hirai, “Physical Parameter Identification of Rheological
Object Based on FE Dynamic Model,” The Fourth Joint Workshop on
Machine Perception and Robotics, Beijing, Nov. 2008.


