
Feature Points Matching of Nonrigid Tissues Based 
on SURF, Spatial Association Correspondence and 

Clustering: Application to MR 2-D Slice 
Deformation Measurement 

 
Xubing Zhang 1,2, Shinichi Hirai 1, Penglin Zhang3 

1Dept. of Robotics, Faculty of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan 
2School of Computer Science, Wuhan Textile University, Wuhan 430073, China 

3School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079,China 
 

 
Abstract-Due to the nonlinear and nonuniform local 

deformation of the nonrigid tissues, it is difficult whereas 
important to extract and correctly match a considerable number 
of feature points from the MR images for deformation 
measurement. Current approaches are dissatisfying towards this 
issue. In this paper, firstly the authors use SURF algorithm to 
extract the feature points in the initial MR image, and take every 
point in the deformed MR image as the feature point. Then the 
SURF descriptors and Spatial Association Correspondence 
(SAC) of the neighborhood pixels is adopted to match the 
corresponding feature points between the initial and deformed 
MR images. Finally, by clustering the coordinate differences 
between the deformed points matched by SURF-SAC with the 
corresponding points calculated by affine transformation, most 
of wrong match points are eliminated. The experimental results 
prove that the proposed method can extract and match more 
correct corresponding feature point pairs than SURF and SIFT 
methods.  
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I. INTRODUCTION 

Deformation field measurement of nonrigid biological 
tissues from MR (Magnetic Resonance) images is often 
required for clinical diagnosis, surgery simulation, operation 
planning, and evaluation of physical characteristics of 
biological tissues [1-4]. Usually we need to measure the local 
irregular deformations accurately between the two MR 
images obtained at different rotation, displacement, and soft 
tissue deformations. In our opinions, current nonrigid medical 
image registration and deformation measurement methods 
can be classified into four categories, transformation model 
estimation [5-7], physical model method [8-12], mutual 
information [13-14], and feature points combined with TIN 
(Triangular Irregular Network) [1-2].   

The space transformation model such as low degree 
polynomial [5], thin plate splines (TPS) [6], and B-splines [7] 
can be applied to measure the nonlinear deformation of 
images. According to such approaches, the interpolation and 
matching of images is based on many feature points. Actually, 
it is difficult to extract and correctly matched a considerable 
number of feature points between the deformed images.  

The typical methods of physical model include elastic 
deformation model [8-9], viscous fluid [10], optical flow [11], 
and finite element [12]. In elastic deformation models, 
popular parametric deformation model cannot handle 
topological changes [8], and geometric active model cannot 
measure the interior deformation and tends to leak through 
the weak boundary [9]. The viscous fluid method tends to 
wrong matching when there are some different tissue fabrics 
with similar pixel intensity distribution. When the gradient 
information is weak, the optical flow method cannot behave 
well in the deformation image estimation. The deformation 
measurement accuracy of finite element model depends on 
the matching boundary of image fabric, which is difficult to 
obtain.       

The maximal mutual information method is originally 
applied in the rigid image registration. Now it is widely 
adopted to match the nonrigid deformed images when 
combined with the other methods, such as thin-plate splines, 
B-splines, optical model and so on. In these cases, the mutual 
information method mainly acts as a global estimate of the 
image registration accuracy, so that it cannot avoid the 
limitation of the other combined methods.   

Zhang presented a deformation field measurement method 
based on the feature point tracking and Delaunay TIN. 
Considering the irregular local deformation of nonrigid and 
nonuniform tissues, Zhang extracts and matches a 
considerable number of feature points in MR images by 
means of Harris algorithm and relaxation labeling method, 
and then the Delaunay TIN is constructed based on feature 
points to measure the deformation fields. While in this 
method, the initial rough match is based on the points around 
the rigid bone, and actually, a certain number of wrong 
matched points which have negative effect on measurement 
accuracy cannot be eliminated automatically [1], [2].  

According to above discussion, we can see that the 
extraction and correct matching of a considerable number of 
feature points is very important to the deformation 
measurement of nonrigid biological tissues, also it is a key 
difficult to be solved.      



 Extraction and matching of the feature points, which 
should be robust against the change in illumination, scaling, 
rotation, and noise or slight distortion, is one of the most 
important methods used to detect the correspondences 
between the images. A wide variety key point detectors and 
descriptors have already been proposed in the literature [15-
18]. The most widely used detector probably is the Harris 
corner detector [19], based on the eigenvalues of the second-
moment matrix. However, Harris corners are not scale-
invariant. Lindeberg introduced the concept of automatic 
scale selection, which detects interest points with their own 
characteristic scale [15].  Mikolajczyk and Schmid created 
robust and scale-invariant feature detectors with high 
repeatability, called Harris-Laplace and Hessian-Laplace [20].  

Lowe presented the Scale Invariant Feature Transform 
(SIFT) approach, which approximated the Laplacian of 
Gaussian (LoG) by a Difference of Gaussians (DoG) filter 
[16], and can bring speed at a low cost in terms of lost 
accuracy [21], [22]. Shown in the literature [22], SIFT 
outperforms the other feature descriptors like Gaussian 
derivatives [23], moment invariants [24], complex features 
[25], phase-based local features. Various refinements on the 
SIFT scheme have been proposed, the PCA-SIFT and the 
GLOH methods are known well in them [18], [22]. 

Bay Herbert presented SURF (Speeded-UP Robust Feature) 
in 2006 [26], it is invariant to scaling, rotating, illumination 
change, affine transformation, and is robust to noise and 
detection errors. By using the ‘Fast-Hessian’ to approximate 
the Laplacian, describing a distribution of Haar-wavelet 
responses within the interest point neighborhood, reducing 
the descriptor to 64 dimensions, and exploiting integral 
images, the SURF is more repeatable, distinctive, robust, and 
furthermore the computing velocity is three times more than 
SIFT.  In the experimental results, Bay also proved that, 
SURF outperformed the other methods such as GLOH and 
PCA-SIFT [22], [26], [27]. 

Unfortunately, when we attempted to evaluate the 
deformation measurement by SURF, the experimental results 
were not inspiring. The amount of the matched points was too 
few and not enough to construct the TIN which was very 
important to the accurate deformation measurement.  

In order to obtain more correct matched points, the authors 
combined the SURF with the analysis of spatial association 
correspondence to extract and match the feature points 
between the initial and deformed MR images. Secondly, in 
order to eliminate the wrong matched point pairs, we apply 
clustering to analyze the coordinate differences between the 
deformed corresponding points matched by our method and 
the theoretic corresponding points calculated by the affine 
transformation. The points which are not included in the 
range of the maximum clustering are regarded as the wrong 
matching points. 

In our experiments, the SIFT, SURF, and the method 
combined SURF, SAC and clustering are compared, and the 
results showed that SURF-SAC can obtain more correct 

corresponding points, furthermore, most of wrong matching 
feature points can be eliminated by adopting coordinate 
difference clustering algorithm. 

II. SURF 

The interest point detector of SURF is based on the Hessian 
matrix. It relies on integral images to reduce the computation 
time and called ‘Fast-Hessian’ detector [20]. On the other 
hand, the descriptor of interest point describes a distribution 
of Haar-wavelet responses within the interest point 
neighbourhood. 

A. Fast-Hessian Detector 
Rather than using a different measure for selecting the 

location and the scale as the Hessian-Laplace detector [20], 
SURF relies on the determinant of Hessian for both. Given a 
point ),( yxp = in an image I, the Hessian matrix ),( σpΗ  
in P at scale σ  is defined as follows 
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where σ is the scale factor, Lx,x (p, σ) is the convolution of 
Gaussian second order derivative with the 
image I in point p, and similarly for Lx,y(p, σ) and Ly,y (p, σ). 

)()/( 22 σgx∂∂

As Gaussian filters are nonideal in any case, and given 
Lowe’s success with LoG approximations, Bay further 
applied the box filters to approximate the second order 
Gaussian derivatives. The other hand, the integral images is 
applied to accelerate the process of interested point detection 
and descriptor estimation, independently of the image size. 
The 9×9 box filters Dx,x, Dx,y and Dy,y in Fig. 1 approximate 
Gaussian second order derivatives with the lowest scale σ = 
1.2, and the grey regions in the figures equal to zero. 
 

  
Figure 1. The box filters Dx,y and Dy,y used to approximate Gaussian 

second order partial derivatives in xy-direction and yy-direction 
 

The weights, 1 in black regions while –1 in white regions, 
applied to the rectangular regions are kept simple for 
computational efficiency. Bay proposes the following 
formula as an accurate approximation for the Hessian 
determinant using the approximated Gaussians: 
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In SURF, the scale space can be created by applying 

kernels of increasing size to the original image. This allows 
multiple layers of the scale space pyramid to be processed 



simultaneously. The scale-space is divided into a number of 
octaves, where an octave refers to a series of response map 
layers covering a doubling of scale. In SURF the output of the 
above 9×9 filter is considered as the lowest level of scale 
space, which correspond to a real valued Gaussian with σ = 
1.2. The scales of subsequent layers can be evaluated by the 
following formula 

 
)9/2.1(⋅= terSizeCurrentFilapproxσ .      (3) 

 
In the lowest octave, the filter size of the first layer is 9×9, 

and the filter size increases by 6 between the two neighboring 
layers. For each new octave, the filter size increases double. 

B. Descriptor 
The SURF descriptor describes how the pixel intensities 

are distributed within a scale dependent neighbourhood of 
each interest point detected by the Fast-Hessian. This 
approach is similar to that of SIFT but integral images used in 
conjunction with filters known as Haar wavelets are used in 
order to increase robustness and decrease computation time. 
The first step consists of fixing a reproducible orientation 
based on information from a circular region around the 
interest point. Then describing the interest point by 
calculating the Haar wavelet responses over the square region 
aligned to the selected orientation. 

1) Orientation Assignment: Assigning the interest point a 
reproducible orientation is to achieve invariance to image 
rotation. To determine the orientation, Haar wavelet 
responses of size 4σ are calculated for a set of pixels around 
the detected point with a radius of 6σ, where σ refers to scale 
at which the point was detected.  

Once the wavelet responses are weighted with a Gaussian 
(2.5σ) centered at the interest point, they are represented as 
vectors in space with the horizontal response strength along 
the abscissa and the vertical response strength along the 
ordinate. The dominant orientation is estimated by calculating 
the sum of all responses within a sliding orientation window 
covering an angle of π/3. The longest responses vector lends 
its orientation to the interest point. 

2) Descriptor Components: The first step in extracting the 
SURF descriptor is to construct a square window around the 
interest point. This window contains the pixels which will 
form entries in the descriptor vector and is of size 20σ, where 
σ also refers to the detected scale. Furthermore the window is 
oriented along the dominant orientation such that all 
subsequent calculations are relative to this direction. 

As shown in Fig. 2 the descriptor window is divided into 4
×4 regular subregions. Within each subregion Haar wavelets 
of size 2σ are calculated for 25 regularly distributed sample 
points. If we refer to the x and y wavelet responses by dx and 
dy respectively, then for these 25 sample points (i.e. each 
subregion) we collect, 

 
[ ]∑∑∑∑= dydxdydxvsubregion  , , , .      (4) 

Therefore each subregion contributes four values to the 
descriptor vector leading to an overall vector of length 4×4
×4 = 64. The resulting SURF descriptor is invariant to 
rotation, scale, brightness and, after reduction to unit length, 
contrast. 

      
 

Figure 2. Left: Haar wavelet types for SURF (top the x-direction and bottom 
the y-direction). Right: SURF descriptor component. The brown arrow 
directs the dominant orientation, and the green rectangle refers to one of the 
descriptor subregion. 

 

III. SPATIAL ASSOCIATION CORRESPONDENCE 

Although SURF is outstanding to extract the invariant 
interest points in an image, the number of correctly matched 
point pairs is too few to measure the tissue deformation 
accurately. Actually, many interest points that SURF extracts 
between the initial and deformed images are not really 
corresponding because of the nonuniform elastic deformation 
of the nonrigid tissues. In this paper the Spatial Association 
Corresponding method is proposed to obtain more correctly 
matched point pairs.  

A. Spatial Association Correspondence 
The Spatial Association Correspondence method is based 

on the supposition that the neighboring pixels in the initial 
MR image would also be most probably neighboring in the 
deformed MR image although the elastic deformation. 

iP(0) iP(1)

iP(2)iP(3)iP(4)

iP(5)

iP(6) iP(7) iP(8)

     
Figure 3. A pair of corresponding pixel neighbourhood regions between 
initial and deformed MR images. Left: neighbourhood in initial image, Right: 
corresponding neighbourhood in deformed image. 

 
As shown in Fig. 3, there is a pixel neighbourhood region 

in initial and deformed image respectively. Because the pixel 
neighborhood has only 9 pixels and is very small, we only 
need consider the rotation and translation. We can suppose 
that if the initial point iP(0) is corresponding to the deformed 
point dP(0), the initial neighboring pixel iP(1) would be 
corresponding to the deformed neighborhood pixel dP(1). 



Pixels iP(2) through iP(8) also correspond to the dP(2) 
though dP(8). 

 

B. Feature Point Matching 
How to match the interest points between the images is 

based on the method as follows:  

dP(0_1) dP(0_2) dP(0_3) …… dP(0_k0)

dP(1_1) dP(1_2) dP(1_3) …… dP(1_k1)

dP(2_1) dP(2_2) dP(2_3) …… dP(2_k2)

dP(8_1) dP(8_2) dP(8_3) …… dP(8_k8)

…
…

 
Figure 4. Candidate corresponding points of the the neighbourhood of iP(0).  

 
1) Corresponding Candidates Searching: We extract and 

match several correctly corresponding point pairs between the 
two images by means of SURF and the ratio of the nearest 
and the second nearest neighbor (NN/SCN) matching method. 
Then approximate affine transformation model of deformed 
image is calculated with the several matching pairs.  

For the interest point iP(0) extracted, we only need to 
search a region in the deformed image. This region centered 
with the corresponding point of iP(0) calculated by the 
approximate affine transformation model, and the range of 
the corresponding region reflects a pre-estimation of 
maximum deformation. The SURF descriptors distances 
between iP(0) and all of the pixels in the corresponding 
region are compared. Usually, the point with the least 
descriptor distance to iP(0) may  not be the real 
corresponding point. So we can set a threshold which is a 
little bigger than the least descriptor distance to iP(0), the 
deformed pixels whose SURF descriptor distances to iP(0) 
are smaller than the threshold will be taken as the 
corresponding candidates such as dP(0_1) through dP(0_k0). 
For the other pixels in the 3×3 neighborhood of pixel iP(0), 
the corresponding candidates would be detected by the same 
process. For every point of iP(0) through iP(8) there are 
several corresponding candidates in the deformed image as 
shown in Fig. 4. 

2) Corresponding Point Detection: In this step, we need to 
detect the corresponding point of iP(0) from the 
corresponding candidates by using Spatial Association 
Corresponding as shown in Fig. 5. 

Firstly, we create a chain set C, which consists of the 
corresponding candidates of iP(0), those are dP(0_1) through 
dP(0_k0), as shown in the Fig. 5-a) are the red circles. 
Secondly, if every corresponding candidate of iP(1), which 
refers to the green circle, is adjacent to any corresponding 

candidates of iP(0), the two candidates are composed as a 
new binary chain element of the chain set C. Then check the 
set C, and eliminate the elements which consist of only one 
point, Such as the {dP(0_4)} and {dP(0_6)} in Fig. 5-b). 
Thirdly, if every corresponding candidate of iP(2), which 
refers to the blue circle, is adjacent with both of the 
corresponding candidates of iP(0) and iP(1) in one of the 
binary chain elements of C, and the spatial position 
relationship between the three candidates is the same as iP(0), 
iP(1) and iP(2) except the rotation, it is combined with the 
binary chain as a ternary chain element of C. Similarly 
eliminate the elements which consist of only two point, such 
as the {dP(0_5), dP(1_5)} in Fig. 5-c). 

Step by step, we check the corresponding candidate points 
of the other neighboring points iP(3) through iP(8) as the 
same process shown above. When only one element left in 
the chain set, we regard the first point of the element as the 
corresponding point of the pixel iP(0). 

 

Figure 5. Corresponding point detection process of iP(0). 
 

IV. CLUSTERING 

Actually, although matching the points between the initial 
and deformed images by means of the SURF and Spatial 
Association Correspondence, many feature points are 
incorrectly matched because of the deformation, blurry, noise, 
or other complex influence factors of the MR images. In 
order to eliminate the wrong matching points, the authors 
adopt the affine transformation and the clustering of the 
coordinate differences between the corresponding points 
matched by our method and the corresponding points 
calculated by the affine transformation method.  

A.  Affine Transformation 
Given a point P in the initial image, the corresponding 

point P’ in the deformed image matched by the affine 
transformation is as follows 

 

affineTpp ⋅=' ,                            (5) 
 

where Taffine is the affine transformation matrix, which can be 
calculate by 

 



transrotatescaleafine TTTT ××= ,             (6) 
 

where Tscale, Trotate and Ttrans are respectively scaling matrix, 
rotate matrix and translation motion matrix, given as follows: 
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There are five variables in the three matrices; the scaling 

parameter u and v are along x-direction and y-direction 
respectively, θ is the rotation angle, Δx and Δy are the 
displacement along  x-direction and y-direction. 

B. Difference Clustering 
In this paper, several correct matched pairs of points are 

detected by SURF, and the affine transformation was 
evaluated based on the least square method. Then, the 
difference cluster method is adopted to judge a pair of 
matching points is correctly corresponding or not.  

The difference clustering is as follows. Suppose that P(x, y) 
refers to a feature point in the initial image, P’(x’, y’) is the 
corresponding point in the deformed image calculated by the 
affine transformation Taffine, and P”(x”, y”) is the 
corresponding point in the deformed image matched by 
SURF-SAC. The difference between P’ and P” refers to 
difference point dP(dx, dy) is as follows 
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Difference clustering method is based on the supposition 

that if the point pairs are matched correctly the values of their 
difference points maybe most probably near to each other. 
Because the main tendencies of the biological deformation in 
the correct matched points are probably similar to each other, 
although the deformation displacements of them are not 
uniform. The other hand, the wrong matched point 
elimination is based on our method SURF-SAC, and the 
affine transformation can evaluate the great deformation such 
as scaling, rotation, and translation.   

Given R refers to the cluster radius, C(i) refers to a cluster 
centered with the difference point dP(i), and C(i) consists of 

the difference points whose distance with dP(i) is less than R. 
In this paper, every difference point is taken as the cluster 
center, and the cluster which includes the most difference 
points are considered as consisting of correctly matched 
feature points. 

V. EXPERIMENT RESULTS ANALYSIS 

In our experiments, SIFT, SURF, and the proposed SURF-
SAC are compared. An initial MR 2-D slice image and a 
deformed MR 2-D slice image of the volunteer’s calf are 
tested. For SIFT and SURF method, the image pyramid 
consists of 3 octaves, every octave have 4 layers with the 
different scales (more octaves and more layers are not better 
to this experiments), and after the feature points are extracted, 
the method of NN/SCN is adopted to match the feature points 
between MR images. The procedure of SURF-SAC is as 
follows. 1) Extract the feature points in the initial MR image 
by SURF; 2) Take all the points in the deformed MR image 
as the feature points, and match the feature points between 
the two images based on SURF-SAC; 3) Eliminate the wrong 
matched pairs by coordinate difference clustering. We 
showed the experiments results from Fig. 6 to Fig.10. 

The experiment results of SIFT were shown in Fig. 6.  We 
can see that only 9 pairs of points are matched, which were 
signed in Fig. 6-b). Furthermore, the pairs 7 and 9 are 
matched incorrectly obviously.  

The experiment results of SURF were shown as Fig. 7. The 
parameter T is defined as the threshold value of the 
determinant of the Fast-Hessian, the point whose fast-Hessian 
determinant is smaller than T would not be extracted. We set 
T equal to 0.0004. In SURF experiments, among many 
feature points extracted by SURF, there are 41 pairs of points 
are matched, even though the ratio of NN/SCN is assigned to 
0.9 to obtain more matched pairs. Furthermore only 11 pairs 
of points are matched correctly, and the matching correct rate 
is 26.83%.  

The experiment results of SIFT and SURF showed that the 
correct matched points was few, which are not enough to 
used to measure the deformation field of nonrigid nonuniform 
biological tissues. Actually in SIFT and SURF methods, 
many interest points of initial image could not obtain the 
really corresponding points among the interest points in the 
deformed image, when the MR images are blurry and 
especially with nonuniform elastic deformation in the tissues. 
On the other hand, the match method such as the ratio of 
NN/SCN behaved not well in this case. 

 

         
a) Feature points extracted by SIFT 



        
b) Matched points between initial and deformed MR image 

Figure 6. The results of SIFT. Left: initial slice, Right: deformed slice. 
 

        
a) Feature points extracted by SURT 

        
b) Matched points between initial and deformed MR image (41 pairs) 

        
c) Correctly matched points (11 pairs) 

Figure 7. The results of SURF 
 

         
a) Feature points extracted by SURT 

          
b) The results of background segmentation 
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c) The matched points used for affine transformation evaluation 

          
d) Searching region evaluated by affine transformation (radius = 30) 

           
e) Matched points between initial and deformed MR image (93 pairs) 

      
f) Correctly matched points (52 pairs) 

  
g) Coordinate difference points distribution h) The results of the clustering 

       
i) The matching points after clustering (48 pairs) 
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j) The wrong matched points are not eliminated by clustering (6 pairs) 

     
k) The correct matched points missed by clustering (10 pairs) 

Figure 8. The results of SURF-SAC and Clustering 
 
The experiment results are shown in Fig. 8. We used 

SURF-SAC to extract and match the feature points from the 
two MR images. In SAC method, we adopted spatial 
association corresponding relationship of two points in the 
neighbourhood of feature point, because when the number of 
the point increase the correct matched pairs decrease although 
the correctly match rate increase in this experiment. The 
matched points extracted by SURF-SAC are shown in Fig. 8-
a). Fig. 8-b) showed the results of background segmentation, 
we used seed fill algorithm to segment the background, which 
avoided estimating the feature point in the background.   

The evaluation of the affine transformation is based on the 
4 pairs of matched points extracted by SURF (parameter T = 
0.0004) and matched by NN/SCN with the ratio is of 0.65, 
which is shown in Fig. 8-c). The parameters of the affine 
transformation are θ = –14.19, u = 13.869, v = 0.8974, Δx = 
44.73, and Δx = –13.68. Given a feature point in the initial 
image, we only need to search the region centered with the 
corresponding point of affine transformation in the deformed 
image. The radius of the rectangle region equal to 30, and it 
reflects a pre-estimation of maximum deformation. Fig. 8-d) 
shows this step. By means of SURF-SAC, we obtained 93 
pairs of matched points, and 52 pairs of points were correctly 
matched as shown in Fig. 8-e) and 10-f). The number of the 
correctly matched points was much more than that of SURF 
(or SIFT).  

After this, for all initial points of the 93 matched pairs by 
SURF-SAC, we calculated the coordinate differences 
between the deformed points estimated by SURF-SAC with 
the corresponding points of affine transformation. Then we 
adopted clustering of the differences to eliminate the wrong 
matched points. The initial affine transformation model is 
estimated by the 4 points obtained by SURF, which is shown 
in Fig. 8-c). We set radius of the cluster circle equal to 5, and 
the difference points located in the cluster circle are used to 
calculate the affine transformation model again. Then the 

second affine transformation model is adopted to estimate the 
coordinate clustering. This process is repeated, and it can 
reduce the error introduced by the initial transformation 
model, which only adopted 4 points. In this experiment we set 
the iterative time equal to 10, more times are proved no much 
use to the results. The distribution of coordinate difference 
points is shown in Fig. 8-g), and results of clustering after 10 
times iterative process is showed in Fig. 8-h), where the red 
points in the green circle denote to the correctly matched 
pairs. 

There are 48 pairs of points are left after clustering, as 
shown in Fig. 8-i), and 6 wrong pairs are not eliminated by 
clustering as shown in Fig. 8-j). The correct rate reaches to 
87.5%, especially in Fig. 8-j), the initial points and the wrong 
matched deformed points seem very likely to corresponding 
to each other although they are not the really corresponding 
pairs actually. Furthermore, there 10 correct pairs are missed 
by this means as shown in Fig. 8-k).  

From the results of the experiments by our method, we can 
see that, SURF-SAC method can obtain more correctly 
matched point pairs between the initial and deformed MR 
images of the elastically deformed biological tissues than 
SURF (or SIFT) combined NN/SCN method. Furthermore, 
the coordinate difference clustering method can eliminate a 
large number of the wrong matched pairs. 

VI. CONCLUSION 

Current methods such as the transformation model 
estimation, physical model method, mutual information, and 
feature points combined with TIN cannot measure the 
nonrigid and nonuniform biological tissues deformation 
accurately. The extraction and matching of considerable 
number of feature points and elimination of the wrong 
matching pairs are the key issues of accurate elastic 
deformation field measurement.  

SURF maybe the most outstanding method of feature point 
extraction, while unfortunately, when used in the deformation 
field measurement with the MR images of the nonrigid 
nonuniform biological tissues, the correctly matched points 
detected by SURF is too few to measure the local elastic 
deformation accurately.   

In order to detecting more correct matching points between 
the initial and deformed MR images, the authors present 
Spatial Association Correspondence method combined SURF 
(SURF-SAC) to extract and match the feature points. SAC is 
based on the supposition that the neighboring pixels in the 
initial MR image would be probably neighboring in the 
deformed MR image. Further, clustering of the coordinate 
difference method is adopted to eliminate the wrong matched 
point pairs. 

In the experiments, SIFT, SURF, and SURF-SAC are 
compared in the feature points extraction and matching of the 
MR images of the volunteer’s calf. The experiment results 
show that SURF-SAC can detect more correctly matched 
points. For the elastic local deformation of nonrigid 



nonuniform tissues, the accurate deformation is better to be 
measured by getting more correctly matched features. The 
other hand, the clustering of the difference between the 
deformed points matched by SURF-SAC with the 
corresponding points calculated by affine transformation can 
eliminate most of the wrong matched pairs.  

While there are some limitations about our method, such as 
the computation cost is more than that of SIFT and SURF, 
and there are still some wrong matched pairs are not 
eliminated by clustering method also some correctly matched 
pairs are missed. 
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