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Abstract-Due to the nonlinear deformation of the nonrigid 
and nonuniform biological tissues, it is difficult whereas 
important to correctly match a number of feature points 
distributed somewhat uniform in the tissues from MR images for 
deformation measurement. In this paper, the authors present 
TPS-SURF-SAC matching method and mismatching elimination 
method based on TPS clustering. Firstly the matching region is 
identified by a TPS for every query point. Then the SURF 
descriptors and the proposed Spatial Association 
Correspondence (SAC) method are combined to match the 
feature points. Finally, using clustering the coordinate differences 
between the matching points obtained using TPS-SURF-SAC 
method and the matching points matched by TPS model, most of 
wrong match points are eliminated. After every iterative 
processing of matching and mismatching elimination, the 
updated TPS model becomes more accurate and more correctly 
matched points can be identified than that of the previous 
iteration. The experimental results showed that the proposed 
method outperformed the single SURF and SIFT methods.  

I. INTRODUCTION 

ATCHING of feature points is a key component in many 
computer vision tasks, such as, stereo matching, image guided 
surgery, motion tracking, pattern identification, and object 
recognition.  In this paper, the application of extraction and 
matching of feature points is focused on the deformation 
measurement of nonrigid and nonuniform biological tissues. 
The deformations of the biological tissues are caused by the 
forces applied to biological tissues, with the initial and 
deformed MR images being taken. Deformation measurement 
aims to obtain the displacements of a number of feature points, 
which are usually distributed in the inner parts, boundaries and 
separatrixes of layers in the tissues. In the application and 
research of biomedical engineering, and surgical simulation 
using deformation models, the physical characteristics, such as 
Young’s modulus, Poisson’s ratio and some unknown 
parameters have to be available. Measurement of the 
deformation field of the real nonrigid tissues is the 
prerequisite for the evaluation of the physical characteristics 
nonlinearly distributing in the tissues [1]–[5]. Usually the 
deformations of the biological tissues are irregular. For 
example, the human body consists of various tissues, such as 
skin, muscle, organ, bone, and nail, of which the physical 
parameters are very different resulting in the different 
deformations with the same force on different tissues. Due to 
the nonlinear deformation of the nonrigid and nonuniform 

tissues, it is by no means a trivial task to measure the accurate 
displacements of a number of feature points distributing on the 
inner parts, boundaries and separatrixes of layers all over the 
tissues.  

Deformation measurement of nonrigid tissues is not 
identical with nonlinear registration which aims to find a 
transformation such that the transformed template is similar to 
the reference image. Usually, one cannot obtain the accurate 
displacements of many feature points by the intensity based 
registration techniques such as FFD (Free Form Deformation) 
B-Spline and Demons based registration methods [6]–[14]. In 
feature point based registration methods, the matching of 
feature points is critical while difficult to be solved in 
nonlinearly deformed images [15]–[19]. In the famous feature-
based nonlinear registration method HAMMER, the attribute 
vector consisting of GMI (geometric moment invariants) 
feature, edge type and intensity of the voxel is utilized to 
identify the driving boundary voxel of registration in the 
segmented MR images of brain [15]. Nevertheless, the 
attribute vector of HAMMER cannot be utilized in gray MR 
images directly, and it is lack of the texture feature of the 
voxel which is critical for identification of the feature points in 
other biological tissues such as muscles, fat and visceral 
organs. Actually, the anatomical correspondences and image 
similarity are the focuses of nonlinear registration, with 
smoothness constraint usually being utilized to regularize the 
transformation of the displacement field. However, to obtain 
the physical characteristics in the nonrigid and nonuniform 
tissues, deformation field measurement aims to accurately 
evaluate the displacements of a number of feature points being 
somewhat uniformly distributed in the boundaries, 
separatrixes of layers, and inner parts of the tissues. So that, 
the nonlinear registration methods would not behave well in 
deformation measurement for identification of the physical 
characteristic. 

A wide variety of feature point descriptors have already 
been proposed in the literature [20]–[26]. Shown in the 
literature [22], the Scale Invariant Feature Transform SIFT [20] 
outperforms the other feature descriptors like Gaussian 
derivatives [23], moment invariants [24], phase-based local 
features. Various refinements on the SIFT scheme have been 
proposed, the PCA-SIFT and the GLOH methods are known 
well in them [21], [22]. Bay presented SURF (Speeded-UP 



Robust Feature) [25], which is more repeatable, distinctive, 
and robust than SIFT.  He also proved that, SURF 
outperformed the other methods such as GLOH and PCA-
SIFT [22], [25], [26]. However, SIFT and SURF is not 
invariant to general deformations [21], [27]. Actually, when 
we attempted to evaluate the deformation measurement by 
SURF and SIFT, the experimental results were not inspiring. 

Ling and Jacobs proposed a deformation descriptor called 
GIH based on geodesic distance [27]. One drawback is that it 
assumes the deformation along different directions to be 
isotropic. This assumption is usually not true in practice [28]. 
Tian proposed a low-complexity deformation by using Hilbert 
scanning [29]. But if an interest point is located in the 
subdivision line of Hilbert scanning, the method would be 
disabled. Also this method assumes that only pixel locations 
change do not their intensities, but the MR images which are 
taken at different time would not always have the same 
intensities. Cheng proposed a deformable local image 
descriptor called Local-to-Global Similarity (LGS) model [28]. 
Unfortunately, the method only has a little improvement in 
recall precision when compared with SIFT, also the author did 
not proposed the elimination method of wrong matching 
points.  

Figure. 1. The flow chart of proposed integrated method 

In this paper, the authors propose an integrated matching 
approach which combines TPS, SURF, Spatial Associate 
Correspondence information (SAC), so as to respectively 
obtain the global information of MR images, local 
neighborhood information of feature points, and spatial 
associate correspondence information between the points in 
one neighborhood. According to proposed method, the Harris 
edge detector and SURF detector are utilized to extract the 
inner and edge feature points of the initial image. Then TPS 
transformation model is adopted to identify the matching 
region of the query point, which can avoid the ambiguities that 
might occur when an images has multiple similar regions. To 
improve the correct ratio of matching we propose the SAC 
method which is combined with SURF descriptor to match the 
feature points. Finally the TPS clustering method is proposed 
to eliminate the mismatching of the feature points. The 
matching/mismatching is an iterative process, and with the 
iterative of the process, TPS transformation model becomes 
more accurate, and more correctly matched points are obtained. 
In our experiments, the SIFT, SURF, and the proposed method 
are compared, and the results showed that our method is 
feasible and effective. 

II. OVERVIEW OF PROPOSED APPROACH 

Fast-Hessian has been shown to be one of the most stable 
feature point detectors, and to be invariant to scaling, rotating 
and changes in illumination [25], [26]. Unfortunately, Fast-
Hessian cannot detect the edge points that are very important 
for measuring deformation. Thus, after extracting inner feature 
points, which are distributed in the inner parts of the skin, fat, 
muscle, or organ of the biological tissues, with Fast-Hessian, 
the Harris operator [30] is utilized to detect the edge points of 

the initial images which are distributed in the boundaries and 
layer separatrixes of different anatomical tissues. Afterwards, 
the feature points are described by the SURF descriptor. 

SURF descriptor lacks global information on images, 
making it prone to mismatching when there are multiple 
similar local regions in the image. However, similar local 
regions usually occur in the MR images of nonrigid biological 
tissue. To overcome this drawback of SURF, we utilized the 
TPS transformation model to determine the small matching 
region in the deformed image for every query point in the 
initial image. Even in the matched region, mismatches would 
still occur if the feature points are matched only by the SURF 
descriptor. We therefore propose SAC and combine it with 
SURF descriptor during the matching process. The details of 
TPS-SURF-SAC matching are described in Section 3. 

After TPS-SURF-SAC matching of the feature points, the 
TPS clustering method is adopted to eliminate the residual 
mismatching points. We introduce a difference vector, 
consisting of the coordinate differences between the points 
matched by TPS and TPS-SURF-SAC. This is followed by 
use of the clustering method of difference vectors to identify 
the correctly matched points, which are determined by the 
maximum cluster of difference vectors. The details of the TPS 
clustering method is described in Section 4. 

The elimination of mismatches using TPS clustering is 
dependent on the TPS transformation. Since the initial TPS 
model determined by several landmarks is not accurate, only a 
small number of correctly matched points could be identified 
after clustering based on the initial TPS model. To solve this 
problem, we repeat the processes of matching and elimination 
of mismatches, such that TPS and feature point matching 
reinforce each other. After every iterative matching and 



elimination of mismatching, we obtain more correctly 
matched points to improve the TPS model, making it closer to 
the real deformation of tissues. In addition, the matched 
regions determined by TPS model would be more accurate, 
and the results of mismatching elimination by TPS clustering 
should also be improved, until the processing is stable. 

III. MATCHING 

A. Identification of the matching region - TPS 
Thin Plate Spline is an interpolation method that finds a 

"minimally bended" smooth surface that passes through all 
given points [31], [32]. It is particularly popular in 
representing shape transformations, such as image morphing 
or shape detection and matching. TPS maps any location 

[ , ]Tx y=x  to a new location [ , ]Tx y′ ′ ′=x  as follows: 
 

( ) ( ) ( )tpsT A R′ = = +x x x x ,                   (1)  

            
where A(x) denotes the global affine transformation and R(x) 
represents the non-global (non-linear) transformation, with the 
latter described by a radial basis function. Given a set of 
control points, TPS transformation can map any location x to a 
new location x’.    

 TPS can accurately measure non-linear deformation 
between images if there are enough correctly matched and 
well distributed control points. If there are only a few control 
points distributed globally throughout the images, an 
approximate deformable transformation of the deformed 
image can be obtained. Based on the TPS transformation, we 
can identify a small local region around the TPS mapping 
point corresponding to the query point, and the real point 
corresponding to the query point could be located in the local 
region with high probability. The local region is named 
“Matching Region”. The initial TPS model are determined by 
several landmark points distributed somewhat uniformly in the 
initial and deformed MR images, and the matching region of 
query points are identified based on the initial TPS model. 

B. SURF descriptor 
The SURF descriptor describes how the pixel intensities are 

distributed within a scale dependent neighborhood of each 
interest point detected by the Fast-Hessian [25], [26]. 

1) Orientation Assignment: To determine the orientation, 
Haar wavelet responses of size 4σ are calculated for a set of 
pixels around the detected point with a radius of 6σ, where σ 
refers to the scale at which the point was detected.  

Once the wavelet responses are weighted with a Gaussian 
(2.5σ) centered at the interest point, they are represented as 
vectors in space with the horizontal response strength along 
the abscissa and the vertical response strength along the 
ordinate. The dominant orientation is estimated by calculating 
the sum of all responses within a sliding orientation window 
covering an angle of π/3. The longest responses vector lends 
its orientation to the interest point. 

2) Descriptor Components: The first step in extracting the 
SURF descriptor is to construct a square window around the 
interest point. This window contains the pixels which will 
form entries in the descriptor vector and is of size 20σ. 
Furthermore, the window is oriented along the dominant 
orientation such that all subsequent calculations are relative to 
this direction. 

 
 
 
 
 
 
 
 
 

     
 
 
 
  

 
Figure. 2. Left: Haar wavelet types for SURF (top the x-direction and bottom 
the y-direction). Right: SURF descriptor component. The brown arrow directs 
the dominant orientation, and the green rectangle refers to one of the 
descriptor subregion. 

 
As shown in Fig. 2 the descriptor window is divided into 4

×4 regular subregions. Within each subregion Haar wavelets 
of size 2σ are calculated for 25 regularly distributed sample 
points. Letting dx and dy be wavelet responses along x- and y-
axes, respectively, we collect dx, dy, |dx|, and |dy| for these 25 
sample points (i.e. each subregion), 

 
,  ,  ,  subregionv dx dy dx dy⎡ ⎤= ⎣ ⎦∑ ∑ ∑ ∑ .      (2) 

 
Therefore each subregion contributes four values to the 
descriptor vector leading to an overall vector of length 64. 

C. Spatial association correspondence-SAC 
1) Corresponding candidates: Although the target points are 

within the small matching region calculated by TPS model, 
the SURF matching point with minimum SURF descriptor 
distance from the query point may not always be 
corresponding point. In this paper, we introduce a threshold 
tSURF for any query point P, such that tSURF should be larger 
than the SURF distance between P and its corresponding point. 
The target point whose SURF distance from P is less than 
tSURF is defined as a corresponding candidate of P. Every 
query point has a certain number of corresponding candidates 
(the green points) in its matching region. As tSURF decreases, 
so would the number of corresponding candidates. However, 
if tSURF is too small, the real corresponding point may be 
excluded from the set of corresponding candidates. The 
purpose of SAC is to identify the corresponding point from 
among the candidates. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2) Spatial association correspondence supposition: 

Although non rigid tissues are deformed in MR images, in 
very small regions, such those measuring 3×3 pixels, it is 
likely that pixels neighboring the region of the initial image 
would also be neighboring the corresponding region of the 
deformed image. Usually the feature points extracted by Fast-
Hessian and Harris would be more stable to deformation than 
that of the general points of the images. Actually, although not 
all the feature points would obey SAC supposition, it would 
be useful for point matching as long as a considerable number 
of stable feature points can satisfy the SAC supposition. The 
neighborhood of query point P0 in the initial image and the 
neighborhood of target point Q0 in the deformed image are 
shown in Fig. 3. The circles of different colors refer to pixel 
points of the neighborhood located in different positions. 
Based on the SAC, if query point P0 corresponds to the target 
point Q0, P1 would probably correspond to Q1, and points P2 
through P8 would probably correspond to Q2 though Q8, 
respectively.  

3)Probability of Corresponding: Several terms:  
a) 0 1( , , ..., )

jj j j jkS Q Q Q= : the set of candidates 

corresponding to Pj (j=0, 1, 2, … , 8). 
b) Pr(Qji): Probability that Qji corresponds to Pj.  
c) : the discriminant of SAC.  ),...,,(

10 10 jjkkk QQQSAC
If the relative positions without considering the rotation of 

 through  coincide with those of P0 through Pj, then 

the discriminant , 

otherwise the SAC discriminant is equal to False. 

00kQ
jjkQ

0 10 1( , , ..., )
jk k jkSAC Q Q Q True=

d) : the number of points that 

obey the SAC supposition in the neighborhood of feature 
point.  

0 10 1( , ,..., )
jSAC k k jkN Q Q Q

 
 

 
TABLE 1  

SAC ALGORITHM
 
 
 SAC algorithm 

1) Initialize a chain set C.  
Ⅰ. Input all the points of S0 (S0 is the set of corresponding 

candidates of Pi) into set C.  
2) Search all the points of S1. 

Ⅰ . IF , ; and CQ k ∈}{
00

True
11 1

SQ k ∈

QQSAC kk =)
1

,(
0 10

},{
10 10 kk QQ

, THEN create a new element 

and input it into C; 

Ⅱ.Delete the elements which consist of only one point.  
3) Search all the points of S2. 

Ⅰ . IF , CQQ kk ∈},{
10 10 22 2

SQ k ∈ ; and 

, THEN create new 

element {  and input into C; 

TrueQQ kk =),
21 21

},,
210 21 kkk QQ

QSAC k ,(
00

0Q
Ⅱ. Delete the elements which consist of only two points.  

4) Search all the points of Si, (3≤i≤ 8). 
Ⅰ. Repeat the same process as step 2) and 3); 
Ⅱ . IF only one element CQQ kk ∈}... ,,{

10 10 , 

THEN  is the corresponding point of P0;  
00 kQ

Ⅲ. Else IF C=φ, back up to the results of previous step, 
THEN go to 5);  

Ⅳ. Or else IF after S8 is processed, still more than one 
element is left in C, THEN go to 5).  

5) Compare the SURF distance. 
For the first point of every element in C, compare their 

SURF distances to P0. The candidate of the least SURF 
distance is corresponding point of P0. 

 
 
 
 Figure. 3. Left: 3×3 neighborhood of query point P0 in initial image.

Right: 3×3 neighborhood of corresponding point Q0 in deformed
image.  
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If the SAC discriminant of   through  is equal to 

True, then 
00kQ

...,
jjkQ

0 10 1( , , )
jSAC k kN Q Q

0 10 1( ,SAC k kN Q Q Q −

jkQ

,..., j

 is equal to j; otherwise 

it is equal to .  
11, )

jk −

According to SAC supposition, if P0 corresponds to Q0, the 
neighboring points P1 though P8 would likely correspond to 
Q1 though Q8. Conversely, if a target point 

0
is a 

corresponding candidate of P0, and the neighboring points of 
are the corresponding candidates of P1 to P8, respectively, 

that is, the SAC discriminant of   through Q  is equal 
to True, then  has high probability of 

0
 

corresponding to P0. Based on this inference, two Comparison 
Rules of corresponding probability can be formulated. 
Suppose  and  are two corresponding candidates of P0. 
Then, 

0kQ

8jk
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then .         
b) If  
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1

'
010 1010 jj jkkkSACjkkkSAC QQQNQQQN =  

Figure. 4. Corresponding probability comparison of the corresponding
  candidates.



then, if  then 

, and vise versa, where 
denotes the SURF distance between Pj and 

. 

0

'
0 0 0 0( , ) ( , )kDIS P Q DIS P Q<

0

'
0( )k

0k

0 j

00( )kPr Q Pr Q>

),(
jjkj QPDIS

jjkQ
According to the above Comparison Rules, the comparison 

results of corresponding probabilities in Fig. 4-(a) and (b) are 
shown as: 

 

0Pr( ) Pr( )iQ Q>   (i = 0, 1, 4; j = 2, 3, 5),        (3) 
 

03 00 04 01Pr( ) Pr( ) Pr( ) Pr( )Q Q Q Q> > >  .       (4) 
 
4) Identification of corresponding point-SAC algorithm: 

Based on the supposition of SAC and the probability analysis 
of the candidates corresponding to the query point, we 
proposed the SAC algorithm to identify the corresponding 
point of any query point P0 as Table 1. 

 

IV. MISMATCHING ELIMINATION 

A. Definition of difference clustering 
Recall that x and x’ are the coordinate vectors of a query 

point P and its matching point P’ obtained by TPS 
transformation. Let P” be the matching point of P obtained by 
the TPS-SURF-SAC matching method, and be 

the coordinate vector of P”, and 

Tyx ],[ ′′′′=′′x
[ , ]x y Td d=d  be the 

difference coordinate vector:  
 

′′= −d x x′ .                           (5) 
 

Clustering is a method of unsupervised learning. In this 
paper, every difference coordinate vector can be taken as the 
clustering center. Let [ , ]x y T

i i id d=d  be the cluster center 

and [ , ]x y T
j j jd d=d  be any difference coordinate vector.  Let 

Clti be the i-th cluster with its center di and radius R. If 
 

( )i jdist R− ≤d d ,                    (6) 

 
where dist is the distance of infinite norm, then  

 

j Clt∈d i .                               (7) 

 
We take every difference coordinate vector as the clustering 

center, and the matching points corresponding to the 
difference coordinate vectors in the maximum cluster are 
considered the correctly matched points.  

B. Update of the TPS model 
Because the initial TPS model was calculated using several 

landmark points, it is not accurate for real deformation. So, by 
means of the clustering based on the initial TPS model, most 
of the correctly matched points far from the landmarks cannot 
be identified. The accuracy of the TPS model is decided by the 
correctly matched points, with more correctly matched points 
resulting in a more accurate TPS model. After TPS clustering, 
we can obtain a certain number of correctly matched points, 
which are used in turn to update the TPS model. Afterward, 
the matching and mismatching processes are repeated based 
on the new TPS model. Matching and elimination of 
mismatching are performed iteratively. With each iteration, 
more correctly matched points can be identified after TPS 
clustering and the TPS model can be updated to more 
accurately reflect the real deformation of the tissues.  

V. EXPERIMENT RESULTS 

In our experiments, SIFT, SURF, and the proposed 
integrated method are compared. The initial and deformed MR 
images of volunteer’s abdomen are tested. The images are 
taken by the 0.5T open MRI device, of which the FOV is 24×
24cm2. The tow sets of images show deformations of the 
abdomen when pushing and pressing on the kyte, named 
AbdPush and AbdPress respectively. For the SIFT  and SURF 
methods, the image pyramids each consisted of 3 octaves, 
with every octave having 4 levels with different scales. After 
the feature points were extracted, the NN/SCN (the ratio of the 
nearest and second nearest neighbors) of SURF distance was 
adopted to match the feature points of the initial and the 
deformed MR images.  

The experimental results of SIFT are shown in Fig. 5.  Only 
23 and 65 pairs of points are matched in AbdPush and 
AbdPress, respectively. The numbers of outliers are 4 and 5 in 
the matching pairs of AbdPush and AbdPress, respectively. As 
similar with the experimental results of SIFT, 20 and 32 pairs 
of points are matched by SURF, and 3 and 6 pair of points are 
wrong matched in AbdPush and AbdPress, respectively (Fig. 
6). Although the correctly matched ratios of SIFT are 82.61% 
and 91.8%, and the correctly matched ratios of SURF are 
85.0% and 81.25%, respectively, the correctly matched points 
are too few to obtain the accurate physical characteristics 
distributed all over the nonlinear tissues. 

The experiment results of proposed method are shown in 
Fig. 8. From the results we can see that a number of points are 
matched by TPS-SURF-SAC. In AbdPush and AbdPress, 174 
and 180 pairs of points are matched, with the numbers of 
wrong matching pairs only being 2 and 1, respectively. The 
correctly matched ratios are higher than that of SIFT and 
SURF. Especially, in the parts of large deformation, many 
matching points are still obtained by TPS-SUR-SAC, which is 
significant for deformation measurement.    

To prove the effectiveness of the proposed SAC method, we 
have tested our method without SAC during the matching 
processing, for briefly, being referred to as TPS-SURF. The 
experimental results are shown in Fig. 7. We find that 138 and 
178 pairs of feature points are matched, and 12 and 5 pairs of 



feature points are wrong matched in AbdPush and AbdPress, 
respectively. The correctly matched ratios are both lower than 
that of TPS-SUR-SAC. Table 2 shows the comparison of the 
experimental results by SIFT, SURF, TPS-SURF and TPS-
SURF-SAC. From this table, we can see that the proposed 
integrated method can obtain much more correctly matched 
points, and eliminate most of the wrong matched points as 
well. The SAC is useful to the matching of the feature points 
from the blurred and obscure MR images. 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
(a) The results of AbdPush 

  
(b) The results of AbdPress 

Figure 5.  The experimental results by SIFT.  
 

  
(a) The results of AbdPush 

    
(b) The results of AbdPress 

Figure 6.  The experimental results by SURF.  

(a) The results of AbdPush 

    

TABLE 2  

Comparison of Experimental Results of Four Methods 
MR 
image Method NM NCM NWM Ratio(%)

(b) The results of AbdPress 
Figure 7.  The experimental results by TPS-SURF.  

 

  

SIFT 23 19 4 82.61 
SURF 20 17 3 85.0 
TPS-SURF 138 126 12 91.3 AbdPush 

TPS-SURF-SAC 174 172 2 98.85 
SIFT 61 56 5 91.8 
SURF 32 26 6 81.25 
TPS-SURF 178 173 5 97.19 AbdPress 

TPS-SURF-SAC 180 179 1 99.44 
NM: Number of the matched pairs; NCM: Number of correctly matched pairs; 
NWM: Number of incorrectly matched pairs; Ratio: correctly matched ratio.  

(a) The results of AbdPush 

  
(b)  The results of AbdPress 

Figure 8.  The experimental results by TPS-SURF-SAC.  

VI. CONCLUSION 

The matching of feature points are important in many 
research and application fields, while in this paper we focus on 
the deformation measurement of nonrigid, nonuniform 
biological tissues from MR images which are usually blurred, 
obscure and with low resolutions.   

In this paper, SURF and Harris operator are utilized to 
extract the inner and edge feature points respectively. During 
the matching process, the matching region of the query point 
is determined by TPS transformation model. Then the 
proposed SAC method is combined with the SURF descriptor 
to identify the corresponding point. To eliminate the 
mismatching of the feature points, TPS clustering method is 
utilized to identify the correctly matched points. The matching 
and mismatching elimination process is iterative, with the 
iterative of the process, more correctly matched points are 
obtained, and the TPS model becomes closer to the real 
deformation, until the number of the correctly matched points 
becomes stable.         

In the experiments, SIFT, SURF, and proposed integrated 
method are compared in the feature points matching of the 
MR images of the volunteer’s abdomen. The experiment 



results show that the proposed integrated method could detect 
much more correctly matched points, and the correctly 
matched ratio is much higher as well, those are very important 
to the accurate measurement of deformation field.  

We can draw the following conclusions. Firstly SAC is 
valid to the feature point matching of deformed tissues from 
MR image. Secondly, TPS clustering can eliminate most 
incorrectly matched pairs, and the correctly matched point and 
the TPS model can be boosted by each other.  

The proposed method also has some limitations, such as a 
higher computation cost than SIFT and SURF, and we have to 
choose some landmarks for calculation of the initial TPS 
model between the initial and deformed images. 
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