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 For humanoid robots which interact with objects in unstructured environments, tactile sensing is important. It 

helps the robot to evaluate surface properties of the objects it interacts with. Texture identification and discrimination 
is an ability of such kinds of robots. In this paper, the development of a bio-mimetic fingertip that has accelerometers 
and force sensors to detect micro-vibration and force modalities is introduced. Furthermore, the ability of the 
fingertip in discriminating materials using textures is investigated. An artificial intelligence based approach is 
proposed with four parameters as classifiers for the ANN. The classifiers are the mean, standard deviation, and energy 
of detailed and approximate values of discreet transformation of the convoluted signal of accelerometer sensor signals. 
The method shows promising results as it was able to discriminate seven materials, six fabrics and one metal surface 
with 55% accuracy.  
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1. Introduction 

 
The ability to discriminate materials or objects based on surface 

texture is an important characteristic of the human tactile system. 

Likewise, in service robots, medical robots and exploration robots 

etc. where the robot interacts autonomously with the unstructured 

environment, similar capability is required. 

In recent years several artificial fingertips were developed with 

tactile perception. These had different methods of sensing. Among 

them, few were designed to mimic a biological finger. Most of the 

fingertips used sensors which used MEMS based technologies. Ho 

et al. [1] developed a MEMS based soft fingertip and conducted 

texture recognition experiments using the power spectrum density 

of the obtained signal. Boissieu et al. [2], Oddo et al. [3] developed 

similar MEMS based fingertips and conducted research on surface 

textures identification. Jamali et al. [4], and Takamuku et al. [5] 

developed anthropomorphic fingertips where randomly distributed 

strain gauges and Polyvinylidene Fluoride (PVDF) films embedded 

in silicon. Jamali et al. conducted material classification 

experiments with the fingertip using a naive bayes classifier. Liu et 

al. [6] developed a robot finger that can detect contact location, 

normal and tangential forces and vibrations generated when the 

fingertip contacts with a surface. This finger was used to recognize 

materials by gently sliding along the material with varying 

velocities and applying a dynamic friction model to evaluate contact 

parameters and used a naive bayes function for classification.  

Discrimination of surface textures has been studied by using 

various methods. Converting the time domain sensor signal in to 

frequency domain and analyzing was a common method. Sukhoy et 

al. [7], and Howe et al. [8] used accelerometer based systems to 

identify textures. Sukhoy et al. used Fast Fourier Transform (FFT) 

data for a support vector machine learning algorithm to obtain a 

accuracy of 80%. Tanaka et al. [9] developed a PVDF based system 

incorporating piezoresistive effect and pyroelectric effect of a 

PVDF film. Ho et al. [10]- [11] used a fabric sensor and discreet 

wavelet transform of the signal to discriminate three types of 

textures. Discriminating textures by various types of sensors are 

presented in [12] - [15]. These sensor systems have varying degrees 

of success rates. 

 Uses of machine intelligence based classification methods are 

becoming more popular. Jeremy et al. [16] proposed a bayesian 

exploration method for identifying textures with BioTac fingertip. It 

yielded a 95.4% success rate. Cuevas et al. [17] developed a 

fingertip with a piezoelectric microphone and used a learning vector 

quantization technique and obtained an over 93% success rate.  

The authors of this paper have developed a bio-mimetic fingertip 

[18] that can detect force and vibration modalities. The aim of this 

paper is to evaluate its ability to discriminate fabrics based on the 

surface textures. Six fabrics and one metal surface were used in the 

experiment. The fingertip moved in an exploratory motion similar 

to that of a human finger. The accelerometer signals were processed 

and three magnitude acceleration values were calculated. Then the 

fabrics were classified using features generated by the above 

magnitude acceleration values. The signals of two adjacent 

accelerometers were convoluted and this convoluted signal was 

used to generate feature vectors for the ANN. The success rate of 

the method was calculated. 

 

2. Bio Mimetic Finger 

 

2.1 Design of fingertip 

 

The proposed bio-mimetic fingertip is designed to mimic the 

functions of a human fingertip. It has the ability to detect force and 

vibration modalities from embedded force sensors and MEMS 

accelerometers. The fingertip has a bone to determine shape, a 

tissue layer and a skin layer. It has a frequency response up to 500 

Hz similar to a human fingertip [19].  

The fingertip is designed to be two and a half times the size of an 

average thumb of an adult. This was necessary to allow 

commercially available sensors to be used in the construction of the 

fingertip. It is cylindrical in shape with half hemispherical at the end. 

The diameter of the cylinder and the hemisphere is 34 mm. 

Fingertip is designed with a nail made of plastic connected to the 

bone and tissue. The nail acts as a sensing surface as well as a 

boundary (hard surface) to stop the extensive deformations of the 

tissue. The fingertip has two tissue layers. The inner layer is made 

from polyurethane rubber (Hitohada human skin gel, 
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www.exseal.co.jp) having hardness 5 and the outer layer is made 

from Sylgard 184 (www.dowcorning.com) which is comparatively 

harder than the polyurethane rubber tissue layer. The outer skin 

layer is similar to the skin of the human fingertip. The outer rubber 

layer has friction ridges similar to the human fingertip. 

 In the flat surfaces of the bone “Flexiforce” A201 force sensors are 

bonded. The three long surfaces of the bone are fixed with seven 

force sensors, two for the side surfaces and three for the underside. 

Front surface of the bone is covered by a single force sensor. These 

eight force sensors change resistance proportional to the applied 

vertical force.  

The fingertip consists of five Analog Devices ADXL327BCPZ 

three-axis accelerometers. The accelerometers are bonded on to a 

flexible printed circuit board. Three accelerometers are suspended 

between the two tissue layers and 1mm away from the skin outer 

boundary. They are placed at the middle of the sensing surface of 

the force sensors. From the other two accelerometers, one is on the 

fingertip bone and the other is on the inside surface of the nail, (Fig. 

1).  

The bio-mimetic fingertip is connected to three servo motors 

(Fig. 2). This setup is similar to the distal, intermediate, and 

proximal phalanx of a human finger. It has three rotational joints 

thus, three degrees of freedom in a vertical plane. It can move 

similar to a human finger. The finger system is controlled via a 

LabView program. From here onwards the total system is 

introduces as a robot finger.  

 

2.2 Sensing of vibrations and forces 

 

The biomimetic fingertip is capable of picking up 

micro-vibrations that occur on the surface of the skin layer similar 

to the fast adapting mechanoreceptors (FA1 and FA2) in the 

biological skin. The force sensors are capable of adapting to static 

vertical loads and are correspond to slow adapting 

mechanoreceptors (SA1 and SA2) in human skin. When the finger 

is subjected to external vibrations or vibrations generated by the 

rubbing of a finger on an external surface (Fig.3), the vibrations 

causes deformations in the skin layer of the fingertip. These 

deformations propagate along the skin. Propagated deformations 

cause the accelerometer to move in x, y, and z directions. These 

movements are captured by the accelerometer as accelerations. 

Above accelerations are then converted into proportional voltage 

signals. When a force is applied to the fingertip, it is transmitted to 

the force sensors through the skin and tissue layers. The sensors 

detect vertical loads applied to its surface and change its resistance 

accordingly. Let Fi denotes the i-th force sensors while fi denotes the 

vertical force applied to that sensor. Similarly, Ai denotes the i-th 

accelerometer, and xi, yi, and zi represents its acceleration 

components. 

 

2.3 Data acquisition and digital signal processing.  

 

The force sensors of the robot finger are connected to a signal 

amplifier. These amplified force sensor signals and accelerometer 

signals are converted to digital data by using a National Instruments 

NI9205 AD converter and stored in a computer. The data is read and 

analyzed by Labview software. The signals are sampled at a rate of 

1.2 kHz for each input. A 500 Hz center frequency low pass filter is 

applied to the obtained sensor signals. The filter and the sampling 

rate are adequate as human dynamic sensor field is susceptible only 

to the micro vibrations having frequency in the range of 50-500 Hz. 

The obtained signals are saved and analyzed later using MatLab 

software. 

For each accelerometer, the system records three vector 

components xi,yi, and zi corresponding to the accelerations detected 

in the x, y, and z directions. To reduce computational cost by 

reducing the amount of data to be processed, a magnitude ai of an 

acceleration vector is computed as:  
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3. Test setup 

The test materials were fixed underneath the fingertip. The fingertip  

Fig. 1: Bio–mimetic fingertip with five accelerometers and eight force 

sensors  

Fig. 3:  When the fingertip moves on a rough surface the skin layer 

and the tissue layer deforms. Because of the deformation, Vertical 

force fi is applied to the i-th force sensors Fi. Acceleration components 

yi and zi are detected by Ai 
 

Fig. 2: The robot finger  
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was moved in an exploratory motion called the active touch. It is 

similar to a human moving his/her finger to explore a texture.  Fig. 

4 shows the trajectory of the fingertip. The applied vertical force 

was not measured as the exploratory motion conducted by a 

programmed path while applying a minimal force (light touch). The 

velocity profile of the different phases of the exploration task was 

kept constant with all the test samples. This velocity profile was 

selected after testing different velocity profiles and the relevant 

sensor signals. It provides the best output signal having a high 

signal to noise ratio. Higher velocities along with the inertia of the 

robot finger tend to vibrate the robot finger causing higher noise. 

From the obtained signal, data relevant to the robot finger’s 

reverse directional motion is separated and used in the following 

classification methods. 

 

4. Discrimination of Fabrics by Texture 

 

In previous work [18], the fingertip’s ability to detect surface 

profiles is presented by evaluating the pitch of a periodic surface 

with the help from the special frequency of the surface. The above 

method has limitations such as it can only be used if the velocity of 

the fingertip is constant and known. Furthermore, tests have 

revealed that the fingertip has sensitivity to distinguish only 

surfaces with spatial period p above 1 mm. But for material 

discrimination using textures, the fingertip should have the ability to 

senses textures with spatial period less than 1 mm. Therefore, the 

ability of the fingertip to discriminate textures needed to be 

investigated. 

 For this investigation, seven types of materials were used. Among 

the materials, six were fabrics because they had very fine textures 

and varying surface roughness. Polished aluminum surface was 

chosen as a standard surface (Fig.5). The ability of the fingertip to 

discriminate fabrics using textures was evaluated by using a neural 

network. For this method, the sample space was fifteen samples of 

data per each texture. These 105 test samples were taken in a 

random order, thus neglecting the effects of wear and tear of skin 

layer in the acquired sample signals. 

 

4.1 Convolution of accelerometer signals 

 

It has been noted that when the finger moves on the fabric surface, 

the contact surface of the fingertip changes with time. Therefore, the 

intensity of the vibrations detected by the two accelerometers A2 

and A3 changed with time. Additionally, as the velocity of the 

contact surface changes with time, the obtained sensor signal is not 

a stationary signal and use of FFT to convert it into frequency 

domain is erroneous. In order to overcome this, the convolution 

signal of the two accelerometer signals A2 and A3 was calculated. 

Convolution of the signals a2 and a3 is calculated as: 
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where s is the number of samples of the signal. Additionally, 

observing the convoluted signals (Fig. 6) of the seven materials, it 

was observed that the signals were different from one another 

compared to the raw signal of those materials that seemed similar. 

This is because the convolution of the two accelerometer signals 

rectifies for the change of intensity of the two accelerometer signals 

and it identified periodicities in the signals, which could not be 

identified by the FFT due to the non-stationary raw signals. 

 

4.2 Feature generation for the ANN 

 

By using the convoluted signal, the following four features were 

Fig. 4: exploratory motion of finger 

Fig. 5: Test materials 

Fig. 6: Convoluted signal of the seven samples 

Fig. 7: DWT of convoluted signal of one sample 
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calculated an input into the ANN. 

Mean, standard deviation and energy of detailed and 

approximate values of DWT of convoluted signal (Fig. 7) calculated 

as follows: 
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dj,k are wavelet coefficients and N is the level of de-composition.  

These feature vectors are then input to a single hidden layer ANN 

with 10 nodes. 

 

5. Results and Discussion 

 
The feature vector of 105 samples was input to the ANN. The 

ANN had 10 nodes in a single hidden layer. The ANN was trained 

with 73 training samples and verified with 16 samples. Remaining 

samples were used as test samples. Table 1 gives the confusion 

matrix of the total 105 samples. The identification accuracy was 

55%. This result was better than chance. 

By analyzing the confusion matrix, it was noted that metal and 

meshed polyester had 93% accuracy in identifying correctly. Denim 

and felt had a success rate of 80% and 67% respectively. Acrylic 

was identified 53% of the time. Nylon and polyester was 

misclassified. Polyester had almost similar texture as denim and 

even for a human it was difficult to identify with a single 

exploratory motion. The low rates of success in identifying acrylic, 

nylon, and polyester may be due to the fine textures and low friction 

between the fingertip and the fabric.  

Furthermore, from the above observations, it was evident that 

with only single movement, it was difficult to correctly discriminate 

textures.   
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