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まえがき

本提案の目的は，人の皮膚や軟骨などの軟組織が，人の運動の巧みさにどのよう
に貢献しているかを力学的に解明することである．人は，意識することなく様々な
物体を把持し，様々な道具を巧みに操ることができる．運動生理学やロボティクス
の分野では，このような人の巧みさを解明する試みが成されてきた．運動生理学で
は，物体によって異なる把持形態の記述や手指の運動に関する脳神経系の活動部位
の同定が進められている．一方，ロボティクスの分野では，柔軟な組織が触覚に与
える影響の力学的解析や柔軟指による物体把持の力学解析が成され，柔らかい組織
が触覚のフィルターの役割を果たすことやポテンシャルエネルギーの形成を通して
安定な把持と操作に寄与していることが明らかになりつつある．しかしながら，人
が物体を操作するときに，どのような力学で巧みな操作が可能になっているかは不
明のままである．そこで本研究では，内部イメージング技術に基づき人の軟組織の
変形を計測し，力学モデリングを通して人の巧みな操作における軟組織の力学を解
明することを目的とする．
第 1章では，軟組織の変形をモデリングする手法について述べる．軟組織は，弾性

変形と塑性変形の両方を示し，非線形や非一様など複雑な変形特性を有する．この
ような変形特性を表わすために，動的なレオロジー変形を有限要素近似により定式
化するとともに，変形過程の計測結果から変形モデルのパラメータを推定する手法
を確立した (成果 論文 [1]，論文 [7]，国際会議 [7]，口頭発表 [10]，口頭発表 [11]，口
頭発表 [16]，口頭発表 [19]，口頭発表 [21])．有限要素近似による定式化においては，
直列モデルと並列モデルを解析し，それぞれの限界を明らかにするとともに，その
限界を克服するために多重粘性要素を提案した．レオロジー変形のモデリングにお
いては，コーシー歪みとグリーン歪みを用いて変形を定式化し，回転を含む変形の
シミュレーションを示した．さらに，制約安定化法を用いて，非一様な層状物体をモ
デリングする手法を提案した．特に，変形モデルのパラメータ推定においては，変
形形状と変形により生じる力を同時に再生するように，モデルを選択しパラメータ
を推定する手法を提案した (成果 国際会議 [6]，国際会議 [11]，国際会議 [14]，国際
会議 [16]，口頭発表 [6])．
第 2章では，人指の内部変位の計測と変形シミュレーションについて述べる．第
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3章で述べる手法を基に，人指のMR画像から人指の内部変形を計測する．さらに，
前章で確立したモデリング手法を基に，人指の変形モデルを構成し，人指の変形を
シミュレーションした結果を述べる．指先の変形計測を進めるとともに，軟組織が
硬い物体と接触し転がりや滑りを生じる状態のモデリングを進めた (成果 論文 [2]，
国際会議 [3]，国際会議 [13]，国際会議 [18]，口頭発表 [1]，口頭発表 [12]，口頭発表
[13])．軟組織の転がりのモデリングでは，軟組織を梁の集まりで表わし，転がりに
起因する制約を課している．軟組織の滑りのモデリングでは，梁と梁の間に弾性要
素を配置することにより，局所滑りを表わしている．
第 3章では，軟組織のMR画像から内部変形を計算する手法を述べる．変形前と変

形後のMR画像を撮影し，これらを比較することにより内部変形を計算する．変形
場の計算においては，画像のアフィン変換に加えて画像の変形に対処する必要があ
る．また，軟組織のMR画像は，解像度が少なく輪郭が明瞭でない場合が多い．この
ようなMR画像に対して，ロバストに画像間の対応点を求め，変形場を計算するア
ルゴリズムが求められる．本研究では，局所不変特徴量を用いた変形場の計算手法
と，SACとTPSを用いた変形場の計算手法について述べる．前者は，局所的に不変
な特徴量を用いて画像間の対応点を計算する (成果 国際会議 [9])．後者は，Spatial

Association Correspondence (SAC)とThin Plate Spline (TPS)を用いて，局所的な
対応点探索と大域的なモデル更新を交互に実行することで，変形場を計算する手法
である (成果 国際会議 [10]，口頭発表 [7])．また，MR画像の解像度と画質の向上を
試みた (成果 論文 [4]，論文 [6]，論文 [11]，論文 [12]，国際会議 [20]，口頭発表 [8]，
口頭発表 [9]，口頭発表 [15]，口頭発表 [23])．
第 4章では，柔軟指操作の力学と制御について述べる．平行分布モデルにより柔

軟指のポテンシャルエネルギーを定式化し，柔軟指操作の三次元力学モデルを構成
するとともに，柔軟指による把持物体の姿勢と位置を制御する二段階制御を提案し
た (成果 書籍 [1]，論文 [5]，国際会議 [15]，国際会議 [19]，国際会議 [22]，口頭発表
[5]，口頭発表 [17]，口頭発表 [18])．さらに提案した制御則を，二自由度二指による
把持物体の姿勢と位置の制御 (成果 国際会議 [1]，国際会議 [17]，口頭発表 [22])，一
自由度三指による把持物体の三次元空間内における姿勢制御 (成果 口頭発表 [2]，口
頭発表 [4])，連動関節を有する指による物体操作 (成果 国際会議 [8]，口頭発表 [3]，
口頭発表 [14]) に拡張した．
第 5章では，視覚情報遅れ下における物体操作について述べる．人の視覚や神経

系には，数ミリ秒ないしは数十ミリ秒に至る情報伝達の遅れがある．このような遅
れに関わらず，人は巧みに物体を操作することができる．なぜこのような操作が可
能であるかを探究することが目的である．第 4章の成果を基にして，二段階制御法
では情報伝達の遅れに対してロバストに物体を操作できることを示し，それが柔軟
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指のポテンシャルエネルギーの性質に帰することを示した(成果 論文 [8]，論文 [10]，
国際会議 [4])．
本研究課題の成果は，手術のシミュレーション等に応用できる (成果 国際会議 [21]，

国際会議 [24]，口頭発表 [20])．さらに，本研究の発展として，柔軟指の内部にセン
サを埋め込み，滑り覚を得ることを試みた (成果 論文 [3]，国際会議 [2]，国際会議
[23])．滑り覚のセンシングにおいては，柔軟指が対象の表面を滑ることが重要な役
割を果たす．本研究で進めた柔軟指のモデリング，特に人指のモデリングが，滑り
覚のセンシングの解析において基礎となると考える．また，滑りを用いた布地のハ
ンドリングに関する研究を進めた (成果 論文 [9]，国際会議 [5]，国際会議 [12])．滑
りを用いることで，摘みハンドによる布地の展開が可能になった．滑りの解析には，
本研究で進めた柔軟指のモデリングが基礎になると考える．
本研究では，軟組織の変形モデリングを進めた．軟組織単体のモデリングに関し

ては多くの成果が得られたが，軟組織と軟組織との接触に伴うトライボロジーに関
しては未開拓の部分が多い．上記のように軟組織の滑りや転がりは，触覚や物体の
操作において重要な役割りを演じる．このような軟組織のトライボロジーに関して
は今後の課題としたい．
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第1章 軟組織の変形モデリングと力学
パラメータ推定

1.1 緒言

1.1.1 柔軟物のモデリング

There are many deformable objects in our daily life, such as human organs and

tissues, pottery, clay, and various food products. Modeling and simulation of such de-

formable objects has been studied for over 20 years and many applications have been

involved, including computer aided surgery, food automation, and robot manipula-

tion. In our definition, deformable objects were roughly divided into three categories

(Fig. 1.1): elastic object, in which the deformation is completely reversible; plastic

object, in which the deformation is completely maintained; and rheological object,

in which the deformation is partially reversible.

Early work on the modeling of deformable objects can date back to [1] and [2].

They have shown the advantages of physically-based models over kinematic mod-

els for computer animation and have proposed several physically-based models for

simulating inelastic deformation. Generally, a physically-based model consists of a

finite numbers of elastic and viscous elements connected in a certain configuration.

Some famous physically-based models, such as the Maxwell model1, the Kelvin-Voigt

model2, the Lethersich model3, and the Burgers model4 (Fig. 1.2), were often used

to describe the behaviors of deformable materials. In conventional material tests,

e.g., force relaxation and creep recovery tests, one-dimensional (1D) models were

used to describe the behaviors of materials. However, along with the developments

of computer, we are able to reconstruct an object with two-dimensional (2D) and

1It was introduced by J. C. Maxwell in 1867.
2It was firstly introduced by L. Kelvin in 1875 and later by W. Voigt in 1889.
3It was firstly introduced by W. Lethersich in 1942.
4It was firstly introduced by J. M. Burgers in 1935.
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(a) (b)

(c) (d) (e)

図 1.1: Categories of deformable objects. (a) Original shape before pushing. (b) De-

formed shape during manipulation. (c), (d), and (e) Deformed shape after releasing.

(c) Elastic object. (d) Plastic object. (e) Rheological object.

E c

E

c
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E2 c2
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図 1.2: Widely used physically-based models: (a) the Maxwell model, (b) the Kelvin-

Voigt model, (c) the Lethersich model, and (d) the Burgers model.

three-dimensional (3D) geometry to achieve more realistic simulation behaviors of

deformable objects.

The most popular methods for 2D and 3D modeling of deformable objects are the

mass-spring-damper (MSD) method [3] and the finite element method (FEM) [4].

The MSD method has been used to simulate cloth animation [5], facial expressions

[6], and the deformation of a myoma (pathology) [7], respectively. The MSD method

has the advantage of conceptual simplicity and relatively low computation costs.

However, the formulation of MSD method was not based on continuum mechanics

and the simulation accuracy is quite limited. Therefore, a finite element (FE) model

has been used as a reference to calibrate MSD model based on genetic algorithm

optimization [8] and analytical expression [7], respectively.

The FE method has proven to be a powerful tool for simulating complex behaviors
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of deformable objects. In FE formulation, an object is described by a set of elements

(e.g., triangles in 2D case and tetrahedrons in 3D case). The dynamic behaviors of

the object are then determined by analyzing the behaviors of individual elements.

In recent years, many commercial FE softwares are available and more and more

researchers have been using FE method in their applications. The FE method has

been widely used in computer-aided surgery to simulate the deformation behaviors

of biological organs and tissues, such as porcine liver [9], human skin [10], liver [11],

and uterus [12]. It currently also was employed to model some surgical operations,

such as needle insertion [13] and soft tissue cutting [14]. FE method is based on

continuum mechanics and does not suffer from geometry problems. But, it is quite

time-consuming. In order to speed up FE simulation, matrix condensation tech-

nology [15] and fast FEM [16] have been proposed. Current parallel calculation

architecture, such as graphics processing unit (GPU), also has been investigated

by [17]. In addition, to achieve real-time simulation of soft tissue, other modeling

methods were also presented, such as the radial elements method [18] and the point

collocation-based method of finite spheres [19]. The FEM also has been used in food

industry to model food products. For example, FE analysis has been used to model

and simulate the indentation of bread crumbs [20]; FE simulation has been used to

evaluate the dependence of temperature and water content on process time during

meat cooking [21]; and FE method also has been employed to calculate food quality

and safety losses during processing, storage and distribution [22].

To date, the modeling of soft organs and tissues mostly supposed that the organs

and tissues are completely recoverable and the deformation behaviors after unload-

ing operations are not considered in most applications. Some organs and tissues,

however, may fail to totally recover from the deformation after loading-unloading

operations. [23] found that porcine brain tissue did not recover completely after a

loading-unloading cycle. In vivo experimental results showed that residual deforma-

tion may also present in human liver [11]. In addition, residual deformation may also

exist when biological organs and tissues suffer from some diseases or undergoing a

significant external forces. Such residual deformations could be handled by rheologi-

cal models. On the other hand, modeling and property estimation of food materials

were studied so far mainly on the chemical and ingredient composition point of view

for improving the cooking ability, product quality, and nutrition. As an “engineering

material”, however, it was not well developed. [24] stated that the most critical bar-

rier against the application of robotics and automation in food industry is a lack of

3
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図 1.3: Optimization process for parameter estimation.

understanding of the food product properties as an “engineering” material for han-

dling operations. We have therefore turn our attention on the modeling, simulation,

and parameter estimation of rheological objects, especially considering the residual

deformations which has not been studied intensively.

1.1.2 柔軟物の力学パラメータの推定

Before simulating any real objects, some physical parameters of the model have to

be available in advance. In conventional material science, material properties were

usually estimated by direct calculation or curve fitting based on the measurements of

experimental tests, such as compressive, tensile, force relaxation, and creep recovery

tests [25]. However, these calculations and tests were mostly under an assumption of

1D deformation (pure uniaxial or pure shear deformation). Deformable objects, on

the other hand, have more complex deformation behaviors and sometimes include

several different material properties. Therefore, they have to be simulated as a

2D/3D continuum and complex deformation behaviors have to be considered during

parameter estimation. It is a quite challenging work to estimate physical parameters

for accurately reproducing the behaviors of deformable objects.

So far, the most popular method used in estimating physical parameters of de-

formable objects is simulation-based optimization, i.e., the simulation is iterated

with updated physical parameters until the difference between the simulation and

experiment becomes minimal, as shown in Fig. 1.3. Using this method, many work

has been done. For example, [12] characterized human uteri in vivo through an as-

piration experiment; [13] investigated the force behaviors during the insertion of a

needle into a porcine liver; [26] developed a robotic indenter for minimally invasive
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measurements and characterized the material properties of pig liver; [9] character-

ized a porcine liver by indentation experiments with various indentation depths and

two different tip shapes; [27] performed a compression test inside a magnetic reso-

nance imaging (MRI) system and estimated the material properties of a layered soft

tissue; [28] investigated the physical parameters of pig heart based on cyclical in-

flation experiments and MRI tagged images with simultaneous pressure recordings;

and [29] calibrated a food dough which was simulated by a hierarchical MSD model.

In order to accomplish the optimization problem of the estimation method, many

optimization algorithms have been used, such as Levenberg-Marquardt method [12],

sequential quadratic programming (SQP) [28], genetic algorithm (GA) [29] and ex-

tended Kalman filter [30]. The optimization-based estimation method is quite robust

and works well with different models. However, this method is time-consuming since

it is based on iterative simulations.

Direct calculation and curve fitting methods have also been used to estimate phys-

ical parameters of deformable objects. [31] have performed a series of compressive

and shear tests on pig kidney and estimated its physical parameters by using curve

fitting. [32] formulated a “Norimaki-sushi” by a 2-layered Maxwell model and di-

rectly calculated its physical parameters by using least squares method based on the

measurements of force and displacements. In order to well capture the force response

during the grasping of the “Norimaki-sushi”, [33] used a Fung’s viscoelastic model

to describe the force behaviors of the sushi and employed curve fitting method to

determine the physical parameters. Direct calculation or curve fitting method for

estimating parameters are efficient since no simulation was involved. However, this

method needs the analytical expressions of force or displacement, which are not al-

ways available. Therefore, such method is not always applicable. In this dissertation,

both simulation-based and calculation-based methods will be discussed and mixed

together to achieve better reproductions of both force and deformation simultane-

ously.

1.1.3 レオロジー物体のモデリングとパラメータ推定

Rheological object has both elastic and plastic properties. Generally, it is more

difficult to model a rheological object than model an elastic object due to the pres-

ence of residual deformation. Early work on the modeling of rheological objects

was started by [2], who have employed a Burgers model to describe rheological be-
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haviors. However, it is only a conceptual description and no simulation results and

information of parameter determination were given. A plenty of work on modeling

and parameter estimation of rheological objects has been done by [34], who have

employed a Lethersich model and MSD method to construct a food dough, a typical

rheological object [35]. They investigated three different mesh configurations: the

lattice [36], the truss [37], and the hierarchical [29] structures, with decreased MSD

elements connected between nodal points to reduce the computation cost. Two op-

timization methods, modified randomized algorithm [34] and genetic algorithm [29],

were used to estimate the physical parameters. As we mentioned above, the MSD

model has an advantage of low computation cost but the simulation accuracy is

quite limited and the physical parameters are dependent on mesh configuration and

resolution. A two-layered Maxwell model [32] and a Fung’s viscoelastic model [33]

have been used respectively to reproduce the force response of a sushi when grasped

by a robot hand. Good approximations of force behaviors were obtained. However,

both models are still 1D models. In addition, the ISU exoskeleton technique has

been used in modeling clay to simulate an interaction between virtual clay and a

human finger [38].

Interestingly, most above-mentioned work of rheological objects modeling has fo-

cused on either reproduction of deformation alone [34], [37], [35], [36], [29] or repro-

duction of force alone [32], [33]. Reproduction of both force and deformed shapes

of a food dough has been studied by [39] with a MSD model. Experimental results

suggested that shape calibration (parameter estimation by minimizing the difference

of deformed shape) could only yield good shape reproduction and force calibration

only resulted in good force reproduction. It is impossible to reproduce both force

and deformed shape simultaneously by using one set of parameters. However, they

did not mention the reason of this impossibility and how to solve it. This will be

the main concern of this dissertation.

On the other hand, rheological properties of food materials were frequently studied

in food engineering. Many instruments have been developed to measure rheological

properties, such as rheometer, farinograph, and dynamic oscillator, as reviewed by

[40]. [41] have used a farinograph and a rheometer to assess the rheological properties

of various types of rice dough to determine their suitability for making rice bread. [42]

have investigated the use of extrusion cooking on pastes by estimating the dynamic

rheological properties of extruded flaxseed-maize pastes through dynamic oscillation

and creep-recovery tests. However, properties tests and behavior models on food
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materials are usually carried out in 1D condition and mainly focusing on chemical

and ingredient composition. Our work has been motivated from an engineering point

of view for grasping and manipulating of rheological objects. Therefore, the object

or material investigated in this dissertation basically has a 2D or 3D shape and the

deformed shapes are always of concern.

1.1.4 まとめ

As discussed above, the modeling of rheological objects has not been well devel-

oped and mostly is based on MSD modeling method or with a 1D assumption. An

effective approach for estimating physical parameters of rheological objects has also

not been well established. To our knowledge, the residual (permanent) deformation

after loading-unloading operation has not been taken into consideration during the

modeling and parameter estimation of rheological objects so far. The residual de-

formation might be important in some situations where the desired shape is needed

without any damage. The aim of this dissertation is the determination of appro-

priate models for simulating rheological objects and of their physical parameters in

order to reproduce both rheological force and deformation behaviors simultaneously.

In other words, we hope that our present work is able to help us to understand

rheological behaviors and to choose an appropriate model and parameters for ac-

curately capturing those behaviors, such as force response, deformed shapes, and

final recovered shapes. Possible application fields of our present work may include

surgical simulation, food engineering, and robot manipulation.

1.2 力学モデル
Physically-based models are often employed to describe deformable materials and

objects, e.g., an elastic element (Fig. 1.4a) and a viscous element (Fig. 1.4b) rep-

resent ideal elastic and viscous material, respectively. Note that the deformation

generated in an elastic element is completely recoverable while the deformation gen-

erated in a viscous element will be totally maintained after loading-unloading op-

erations. An elastic and a viscous elements connected in series is called a Maxwell

element (Fig. 1.4c), which denotes a simplest rheological material. An elastic and a

viscous elements connected in parallel is called a Kelvin (or Kelvin-Voigt) element

7



(Fig. 1.4d), which denotes a visco-elastic material. We shall call the above four ele-

ments as basic elements (Fig. 1.4). By connecting several basic elements in different

configurations, many physically-based models can be obtained for simulating rheo-

logical behaviors. We categorized such models into two groups: serial and parallel

models, as shown in Fig. 1.5.

1.2.1 一般直列モデル

A serial rheological model consists of numbers of Kelvin elements and a viscous or

a Maxwell element connected in series. Note that the deformation generated in an

elastic or a Kelvin element is completely recoverable. Therefore, a serial rheological

model must include a viscous element connected in series, which causes the residual

(permanent) deformation. According to the presence of elastic element, serial models

can be further divided into two types, as shown in Fig. 1.6. Let us take the serial

model of type 1 (Fig. 1.6(a)) as an example to show the derivation procedure of the

constitutive law.

Note that the constitutive law of four basic elements can be formulated as:

Elastic element : σ = Eε,

Viscous element : σ = cε̇,

Maxwell element : σ̇ +
E

c
σ = Eε̇,

Kelvin element : σ = Eε + cε̇,

(1.1)

Let εi and εn+1 be the strain at the i-th Kelvin element and the (n+1)-th viscous

element, respectively, in type 1 serial model. Let Ei and ci be the Young’s modulus

E c

E c

E

c

(a) (b)

(d)(c)

図 1.4: The basic elements for describing deformable materials: (a) the elastic; (b)

the viscous; (c) the Maxwell; and (d) the Kelvin elements.
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E1 c1

c2E2

c2
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図 1.5: Two groups of rheological physically-based models: (a) serial models, and

(b) parallel models.

and viscous modulus of the i-th elastic and viscous elements, respectively. Due to

the serial connections among these basic elements, the total stress at the serial model

is equal to the stress at each basic element and the total strain at the serial model

is equal to the summation of the strain at each basic element. That is,

σ = Eiεi + ciε̇i, 1 ≤ i ≤ n,

σ = cn+1ε̇n+1,

ε =
n+1∑
i=1

εi.

(1.2)

E1

c1

E2

c2

En

cn

L
cn+1

(a)

cn+1En+1

E1

c1

E2

c2

En

cn

L

(b)

図 1.6: Generalized serial models: (a) type 1, and (b) type 2.
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Taking Laplace transform of the above equations, we have

σ(s) = Eiεi(s) + cisεi(s), 1 ≤ i ≤ n,

σ(s) = cn+1sεn+1(s),

ε(s) =

n+1∑
i=1

εi(s).

(1.3)

Eliminating εi(s) from the above equations, we then have

ε(s) =
[( n∑

i=1

1

s + ri

1

ci

)
+

(1

s

1

cn+1

)]
σ(s), (1.4)

where ri = Ei/ci. Let us define a polynomial as below:

n∏
i=1

(s + ri) = Ansn + An−1s
n−1 + · · ·+ A1s + A0. (1.5)

The coefficients of the above polynomial have the forms of:

An = 1,

An−1 =
n∑

i=1

ri,

An−2 =

n∑
i=1

n∑
j=1
j �=i

rirj ,

An−3 =
n∑

i=1

n∑
j=1
j �=i

n∑
k=1
k �=i
k �=j

rirjrk,

· · ·

A0 =

n∏
i=1

ri.

(1.6)

Multiplying Eq. 1.4 by Eq. 1.5, we have

n∏
i=1

(s + ri)ε(s) =
n∏

i=1

(s + ri)
[( n∑

i=1

1

s + ri

1

ci

)
+

(1

s

1

cn+1

)]
σ(s)

=
[ n∑

i=1

n∏
j=1
j �=i

(s + rj)

ci
+

n∏
j=1

s + rj

s

1

cn+1

]
σ(s).

(1.7)
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We then find the following equation:

n∏
j=1
j �=i

(s + rj) = (s + r1) · · · (s + ri−1)(s + ri+1) · · · (s + rn)

= sn−1 + Bi,1s
n−2 + · · ·+ Bi,n−2s + Bi,n−1,

(1.8)

where

Bi,1 =

n∑
j=1
j �=i

rj,

Bi,2 =

n∑
j=1
j �=i

n∑
k=1
k �=i
k �=j

rjrk,

Bi,3 =
n∑

j=1
j �=i

n∑
k=1
k �=i
k �=j

n∑
l=1
l �=i
l �=j
l �=k

rjrkrl,

· · ·

Bi,n−1 =
n∏

j=1
j �=i

rj .

(1.9)

Substituting Eqs. 1.5 and 1.8 into Eq. 1.7, we have the following Laplace transform

equation:

(Ansn+1 + An−1s
n + · · ·+ A0s)ε(s)

= (Bs1
n sn + Bs1

n−1s
n−1 + · · · + Bs1

1 s + Bs1
0 )σ(s),

(1.10)
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where

Bs1
n =

n∑
i=1

1

ci
+

An

cn+1
,

Bs1
n−1 =

n∑
i=1

Bi,1

ci

+
An−1

cn+1

,

· · ·

Bs1
1 =

n∑
i=1

Bi,n−1

ci
+

A1

Cn+1
,

Bs1
0 =

A0

cn+1
.

(1.11)

Applying the inverse Laplace transform to Eq. 1.10 yields the constitutive law of

serial model of type 1 as follows:

n+1∑
i=1

Ai−1
∂iε

∂ti
=

n∑
j=0

Bs1
j

∂jσ

∂tj
. (1.12)

Note that the highest-order derivative of strain ε is one order larger than the highest-

order of stress σ. In addition, there is no constant term in the coefficients of strain

polynomial (the subscript i starts from 1 in the left side of Eq. 1.12).

Following the same derivation procedure, we can obtain the constitutive law of

serial model of type 2 as follows:

n+1∑
i=1

Ai−1
∂iε

∂ti
=

n+1∑
j=0

Bs2
j

∂jσ

∂tj
, (1.13)

where

Bs2
n+1 =

1

En+1
,

Bs2
n =

n∑
i=1

1

ci
+

An

cn+1
+

An−1

En+1
,

Bs2
n−1 =

n∑
i=1

Bi,1

ci
+

An−1

cn+1
+

An−2

En+1
,

· · ·
Bs2

0 =
A0

cn+1
.

(1.14)
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E1 c1

E2 c2

En cn�

cn+1
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E2 c2

Ei ci�

En cn�
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図 1.7: Generalized parallel models: (a) type 1; and (b) type 2.

Equation 1.13 indicates that the highest-order derivative of strain ε is equal to the

highest-order of stress σ. Note that the left side of Eq. 1.13 has the same form with

the left side of Eq. 1.12.

1.2.2 一般並列モデル

Two kinds of parallel rheological models were shown in Fig. 1.7. Due to the

parallel connections among basic elements, the total strain at the parallel model is

equal to the strain at each basic element and the total stress at the parallel model

is equal to the summation of the stress at each basic element. For parallel model of

表 1.1: The constitutive laws of generalized serial and parallel models

Models Type The constitutive law

1
∑n

j=0 Bs1
j

∂jσ
∂tj

=
∑n+1

i=1 Ai−1
∂iε
∂ti

Serial
2

∑n+1
j=0 Bs2

j
∂jσ
∂tj

=
∑n+1

i=1 Ai−1
∂iε
∂ti

1
∑n

i=0 Ai
∂iσ
∂ti

=
∑n+1

j=1 Bp1
j

∂jε
∂tj

Parallel
2

∑n
i=0 Ai

∂iσ
∂ti

=
∑n

j=1 Bp2
j

∂jε
∂tj
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type 1, we therefore have

σ̇i +
Ei

ci
σi = Eiε̇, 1 ≤ i ≤ n,

σn+1 = cn+1ε̇,

σ =

n+1∑
i=1

σi.

(1.15)

Following the same derivation with serial models, we can end up with the constitutive

law of parallel model of type 1 (Fig. 1.7a) as follows:

n∑
i=0

Ai
∂iσ

∂ti
=

n+1∑
j=1

Bp1
j

∂jε

∂tj
, (1.16)

where

Bp1
n+1 = cn+1,

Bp1
n =

n∑
i=1

Ei + An−1cn+1,

Bp1
n−1 =

n∑
i=1

Bi,1Ei + An−2cn+1,

· · ·

Bp1
1 =

n∑
i=1

Bi,n−1Ei + A0cn+1.

(1.17)

Correspondingly, the constitutive law of parallel model of type 2 (Fig. 1.7b) can be

formulated as:
n∑

i=0

Ai
∂iσ

∂ti
=

n∑
j=1

Bp2
j

∂jε

∂tj
, (1.18)

where

Bp2
n =

n∑
i=1

Ei,

Bp2
n−1 =

n∑
i=1

Bi,1Ei,

· · ·

Bp2
1 =

n∑
i=1

Bi,n−1Ei.

(1.19)
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We summarize the constitutive laws of generalized serial and parallel models in

Table 1.1, where Eqs. 1.12 and 1.13 are rearranged for convenient comparisons. We

found that the constitutive law of serial model of type 1 has the identical form with

the parallel model of type 1 except some coefficients having different formulations.

Correspondingly, the constitutive laws of serial model of type 2 also has the same

form with the parallel model of type 2 by replacing the summation limit n + 1 by n.

Note that same constitutive laws yield same deformation behaviors. Therefore, for

simulating a certain behavior, we can use either a serial model or a parallel model.

Actually, for any type of physically-based model, which consists of any numbers of

basic elements connected in any configuration, we are always able to find one pair of

serial and parallel models which are corresponding to each other and yield the same

behaviors. This allows us to investigate only one kind of model instead of both for

simulating a certain behaviors of deformable objects. In this dissertation, we mainly

investigate the parallel models. In addition, according to Eq. 1.2, if the total stress

at the serial model is available, we can easily obtain the strain at each basic element

by solving a series of ordinary differential equations and therefore have the total

strain by summing up the individual strain at each element. On the other hand,

equation 1.15 indicates that the convenient calculation of rheological stress can be

achieved by using the parallel models. This tells us how to choose a model between

serial and parallel models. If you are interested in the calculation of deformation,

you should use a serial model. On the contrary, you should go with parallel models if

you have more concern with force behaviors. In this dissertation, we choose parallel

models because the experimental measurements including continuous force responses

and static images of deformed shapes. We suppose that the continuous deformation

measurements are not available.

1.2.3 並列モデルの解析

レオロジー変形の特性

Typical rheological behaviors (force and deformed shapes) of commercial available

clay and Japanese sweets material are shown in Figs. 1.8 and 1.9. Clays were

bought from supermarket and were supposed to be played by children above 3 years

old. The sweets materials were provided by OIMATU, a sweets company in Kyoto.

Detailed experimental setup and results will be presented in Section 1.6. Our target

is to find an appropriate model to simulate the rheological behaviors of these objects.
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Normally, physical parameters of an object should keep the same even though its size

may change or it may be deformed in different ways. This feature allows us to use

a regular shaped object with simple tests to estimate the properties of the object.

Such tests include the uniaxial compressive and tensile tests as used in material

engineering. In our study, we conducted a compressive test with a pushing-holding-

releasing procedure. We fashioned a 2D rheological object with a flat-squared shape.

We firstly pushed the entire top surface of the object with a constant velocity to reach

a desired displacement during time 0 to tp, which was called pushing phase (Figs.

1.8(a) and 1.9(a)). During this phase, force was increasing with the deformation

increasing. Before releasing, the deformed shape was maintained from time tp to

tp + th. This time period was called holding phase and the deformed shape during

this phase was called held-shape (Figs. 1.8(b) and 1.9(b)). In the holding phase,

rheological force was decreasing (called force relaxation) in a nonlinear manner.

After unloading, however, rheological force went to zero and the deformed shape

were partially recovered. Figures 1.8 and 1.9 also indicate that rheological behaviors

of different materials are quite different. Comparing with clay, the force relaxation

behavior of sweets material is slower and the residual deformation is larger. Let us

now investigate the ability of physically-based models for reproducing the above-

mentioned rheological behaviors.

t

t

(a) (b)

図 1.8: Experimental measurements of commercial available clay: (a) force response,

and (b) deformed shapes.
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t

t

(a) (b)

図 1.9: Experimental measurements of Japanese sweets material: (a) force response,

and (b) deformed shapes.

レオロジー変形における応力

We take the parallel model of type 1 as an example to show the derivations of

analytical expressions of rheological stresses. During the pushing phase, the strain

rate is constant, i.e., ε̇ = p. By solving Eq. 1.15, we have the analytical stress

expression in the pushing phase as below:

σ(t) =
n∑

i=1

cip
(
1 − e

−Ei
ci

t)
+ cn+1p, (0 ≤ t ≤ tp). (1.20)

In the holding phase, solving Eq. (1.15) with ε̇ = 0 and initial condition of σi(tp),

we can formulate the analytical stress expression in this phase as:

σ(t) =

n∑
i=1

cip
(
1 − e

−Ei
ci

tp
)
e
−Ei

ci
(t−tp)

, (tp ≤ t ≤ tp + th). (1.21)

レオロジー変形における残留歪み

After unloading, we intuitively consider to solve the constitutive law Eq. 1.16 with

σ = 0 to formulate the strain recovering profile over time. Unfortunately, when the

order of time derivative of strain ε exceeds two, it becomes impossible to solve Eq.

1.16 because we have no information about the initial condition of strain derivatives.

Therefore, we turn our attention to focus on each viscous element. Let εela
i (t) and

εvis
i (t) be the strain at each elastic and viscous element, respectively. Note that the
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stress at a Maxwell element is equal to the stress at the elastic element and the

viscous element as well. Thus, total stress after unloading can be formulated as:

σ(t) =
n+1∑
i=1

σi(t) =
n∑

i=1

ciε̇
vis
i (t) + cn+1ε̇(t) = 0. (1.22)

Integrating the above equation from time tp + th to time infinite, we have

n∑
i=1

ci

∫ ∞

tp+th

ε̇vis
i (t)dt + cn+1

∫ ∞

tp+th

ε̇(t)dt = 0, (1.23)

and thus

n∑
i=1

ci

[
εvis
i (∞) − εvis

i (tp + th)
]
+ cn+1

[
ε(∞) − ε(tp + th)

]
= 0. (1.24)

It is important to note that the residual strain at every viscous element in a parallel

model should be the same and equal to the total residual strain when time goes

to infinite, i.e., εvis
1 (∞)=εvis

2 (∞)=· · ·=εvis
n (∞)=ε(∞), because all elastic elements

completely recovered from the deformation. Thus, equation 1.24 yields

ε(∞) =
n∑

i=1

ciε
vis
i (tp + th)∑n+1

j=1 cj

+
cn+1ε(tp + th)∑n+1

j=1 cj

. (1.25)

In addition, each viscous element has its own constitutive law as σi=ciε̇
vis
i . Integrat-

ing it through time 0 to time tp + th and rearranging it, we have

εvis
i (tp + th) =

1

ci

∫ tp+th

0

σi(t)dt. (1.26)

Substituting Eq. 1.26 into Eq. 1.25 and considering σ(t) =
∑n+1

i=1 σi(t), we finally

end up with the expression of total residual strain as:

ε(∞) =
1∑n+1

i=1 ci

∫ tp+th

0

σ(t)dt. (1.27)

This equation indicates that the final residual strain in a parallel model is dominated

by the summation of viscous moduli and the integration of force through the pushing

and holding phase.

For the parallel model of type 2, we can obtain the same formulation of stress

expression in the holding phase and the same formulation of final residual strain
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図 1.10: Typical simulation results of rheological behaviors by using: (a) 5-element

model, and (b) 2-layered Maxwell model.

with the summation limit n + 1 replaced by n in Eq. 1.27. The only difference of

the parallel model of type 2 is the stress expression in the pushing phase, which is

σ(t) =

n∑
i=1

cip
(
1 − e

−Ei
ci

t)
, (0 ≤ t ≤ tp). (1.28)

Typical simulation results of rheological stress and strain were shown in Fig. 1.10

by using a five-element model (the last row of Fig. 1.5(b)) and a two-layered Maxwell

model (the middle row of Fig. 1.5(b)). According to Eqs. 1.20, 1.21, and 1.28, we

find that the stress curve can be determined by viscous moduli ci and time coef-

ficients Ei/ci of exponential functions. The coefficients Ei/ci dominate the stress

relaxation behavior during the holding phase, as formulated in Eq. 1.21 and shown

in Fig. 1.10. In order to obtain similar force relaxation curves with real materials as

shown in Figs. 1.8 and 1.9, at least two exponential terms are needed [[43]], one with

large value of Ei/ci and another one with small Ei/ci. The large Ei/ci describes the

rapid relaxation in force and the small one denotes the slow decreasing. For example,

figure 1.11 shows the curve fitting results of force relaxation behaviors of commer-

cial clay material by using a force expression with one and two exponential terms,

respectively. We can see that two exponential terms are enough to achieve a good

reproduction of force relaxation behavior. The values of Ei/ci used in Fig 1.11(b)

were E1/c1 = 0.2514 and E2/c2 = 0.00213. After determining Ei/ci and substituting
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図 1.11: Curve fitting of force relaxation behaviors by using expressions with: (a)

one exponential term, and (b) two exponential terms.

into Eq. 1.20, we find that the viscous moduli ci will dominate peak stress at time tp.

Note that there is a sudden drop in stress (Fig. 1.10(a)) at the end of pushing phase

for five-element model (parallel type 1). This sudden drop is denoted by σ = cn+1p.

Figure 1.10(b) showed that the two-layered Maxwell model(parallel type 2) results

in attenuated vibrations in both stress and strain curves after unloading. Based on

the above discussions, we can say that the physically-based models with at least two

exponential terms in force expressions have the ability to accurately reproduce rheo-

logical force behaviors. Our work [[43]] has shown good reproductions of rheological

forces for commercial clay. However, we failed to reproduce the final recovered shape

at the same time. Let us now discuss the reason of this failure.

According to Eq. 1.27, the residual strain is dominated by the summation
∑n+1

i=1 ci.

On the other hand, parameters ci also strongly affect stress amplitude as formulated

in Eqs. 1.20, 1.21, and 1.28. This causes a contradiction between the reproductions

of stress and residual strain. For example, if we determine the parameters ci from

stress, the summation of ci will therefore yields a certain residual strain. We are

unable to change this residual strain to another desired one. On the contrary, if

we firstly calculate the summation of ci based on Eq. 1.27, we have an upper limit

(
∑n+1

i=1 ci) for each modulus ci and we have to keep each ci under this limit during

the reproduction of stress. For some materials, we may be able to achieve a good

reproduction of stress with ci under this limit, as will be presented in Section 1.6. For

most materials, however, this limit always will be broken in order to well capture the

stress. The above discussions suggest that the physically-based models have some

difficulties to reproduce both rheological force and deformation, especially residual
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deformation, simultaneously. The reason of this difficulty is the linearity of the

physically-based models, especially, the linear viscous elements, which dominated

both residual strain and stress behaviors.

To solve this problem, the first idea come to our mind is to change the physically-

based models. We can add more elements to the physical model or change the

configurations of the basic elements. However, this will not work well. Actually, we

are able to find a corresponding parallel model for any physical model no matter how

many elements are involved and how these elements are connected. We have already

discussed that a contradiction phenomenon always exist for arbitrary parallel model.

Therefore, we are unable to solve this problem by adding more elements or changing

the elements connections in physically-based models. The second idea for solving

this problem is to introduce some nonlinear physical models. From textbooks or

literatures, we can find some nonlinear physical models, such as the followings:

Wertheim (1847) ε2 = aσ2 + bσ,

Morgan (1960) ε = aσn,

Kenedi et al. (1964) σ = kεd, and σ = B [ems − 1] ,

Ridge and Wright (1964) ε = C + kσb, and ε = x + ylogσ.

(1.29)

Unfortunately, most of these nonlinear models cannot be extended to 2D/3D FE

models. Even some of them may be able to be extended to 2D/3D models, the

FE simulation will be very time consuming and it may be impossible to estimate

all the parameters. We have tried to introduce some nonlinear models into our FE

simulation, but we did not obtain any good result for reproducing both rheological

force and residual deformation simultaneously so far. We have therefore turn to

another idea which will be introduced in the next section.

1.2.4 多重粘性要素

According to the above discussions, we found that the summation
∑n

i=1 ci domi-

nates both rheological forces and residual deformation simultaneously. Therefore, it

is difficult to use one set of ci to capture both force and residual deformation simul-

taneously. In addition, we found that one set of ci is enough to capture both force

and deformation behaviors during operations, such as pushing and holding phase.

However, this set of parameter ci cannot guarantee good reproduction of residual

deformation. It is also clear that the force response goes to zero immediately after
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図 1.12: (a) the dual-moduli viscous element and (b) parallel 5-element model with

two dual-moduli viscous elements.

releasing. During deformation recovery, we do not concern about force any more.

Therefore, we are able to use another set of ci to capture residual deformation. We

can switch these two sets of parameters during simulation when the deformation

starts to recover. We have therefore introduced a dual-moduli viscous element, as

shown in Fig. 1.12a into our physically-based model in order to reproduce both rhe-

ological force and deformation, especially residual deformation simultaneously. The

governing equation for the dual-moduli viscous element can be formulated as

σ(t) = (κα + c)ε̇(t), (1.30)

where scalars α and c were parameters to be determined. Switch function κ takes

the following values:

κ =
{ 1 Criterion is satisfied,

−1 Otherwise.
(1.31)

This dual-moduli viscous element has an ability to switch the parameters from one to

the other during simulation. The physical meaning of this element can be explained

as the property changing of a material during operation and recovery. For example,

some elastic materials experience a hysteresis phenomenon during loading and un-

loading operations. The material properties are slightly changed during hysteresis.

In addition, some metal materials also demonstrate strain hardening behavior when

they are strained beyond the yield point. In this case, the properties of the materials

are also changed during the operation. For rheological materials, both hysteresis and

strain hardening may also happen and may be in more stronger way. This causes the

material properties changing significantly during loading and the materials therefore
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behave in another way after unloading. In other words, the physical parameters of

rheological objects may be continuously changing during operations and reach an-

other set of values when operations are finished. Unfortunately, continuous change of

parameters during operation brings troubles in implement of parameter estimation.

In our work, therefore, we suppose that the parameters are kept constants during

operation and change to another set when the operation is finished.

The criterion used in Eq. 1.31 has different options depending on different ap-

plications. If the operation time is available before simulation, the simulation time

can be a perfect criterion to trigger the parameter switching. In some applications

such as surgical training and virtual reality, the simulation time may be not avail-

able in advance. Fortunately in such cases, an interaction often happens between

the object and external instruments. This interaction can provide a good criterion

for the parameter switching since the deformation recovery normally happens after

the interaction was finished. This will be further investigated in Section 1.4. By

introducing two dual-moduli viscous elements into a parallel five-element model, we

can formulate an effective model (Fig. 1.12b) for capturing both rheological forces

and deformation behaviors.

1.2.5 まとめ

In this section, the physically-based models for simulating rheological behaviors

were summarized. We categorized such models into two groups: serial and parallel

models. The constitutive laws for both generalized serial and parallel models were

derived. We surprisingly found that the serial and parallel models are correspond-

ing to each other and can be replaced by each other. This allowed us to focus on

one group only and save us much time to go over various kinds of physically-based

models. We also found that the serial models yield easy calculation of strain while

the parallel models result in convenient calculation of stress. This suggested us how

to choose the models between both groups depending on our applications. Analyt-

ical expressions of rheological stress and residual strain were derived and compared

with rheological behaviors of real material. We found that at least two exponential

terms in stress expressions are required to accurately reproduce the rheological stress

behaviors. We also found the value of summation
∑n

i=1 ci dominates the residual

strain and strongly affect the force amplitude as well. There is a contradiction be-

tween the reproductions of rheological forces and residual deformation. The linear
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physically-based models have troubles to capture both rheological forces and de-

formation behaviors simultaneously. We have therefore introduced a dual-moduli

viscous element into our physically-based model to cope with this problem. This

model has an ability to switch parameters from one to the other during simulation

and each set of parameters was responsible for capturing rheological forces and resid-

ual deformation respectively. The physical meaning of this element can be explained

as hysteresis and strain hardening behaviors of rheological objects. In the following

sections, the FE dynamic models, parameter estimation methods, and experimental

results will be addressed.

1.3 動的 2D/3D 有限要素モデル
FEM is the most successful method for numerical computation of object defor-

mation. In FE modeling, an object is described by a set of elements (e.g., triangles

in 2D case or tetrahedra in 3D case). Dynamic behaviors of the object are then

determined by analyzing the behaviors of individual element. In this section, we for-

mulate the 2D/3D dynamic model of deformable objects based on the linear Cauchy

and nonlinear Green strain tensors, respectively. We firstly derive the FE model of

elastic material and then extended to rheological material.

1.3.1 コーシー歪みを用いた有限要素モデル

二次元弾性モデル

Linear elastic material (e.g., a linear spring) in 1D deformation satisfies the fol-

lowing equation:

σ = Eε, (1.32)

where σ and ε are stress and strain. Constant E denotes Young’s modulus. According

to the Hooke’s law, the above 1D relationship can be extended to 2D deformation

for an isotropic material as

σ = (λIλ + µIµ)ε, (1.33)

where σ = [σxx, σyy, σxy]
T and ε = [εxx, εyy, εxy]

T are 2D stress and linear Cauchy

strain tensors. Scalars λ and µ denote Lamé’s constants, which can be calculated by
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Young’s modulus E and Poisson’s ratio γ as follows:

λ =
γE

(1 + γ)(1 − 2γ)
, µ =

E

2(1 + γ)
. (1.34)

Constant matrices Iλ and Iµ have the forms of

Iλ =

⎡
⎢⎣ 1 1 0

1 1 0

0 0 0

⎤
⎥⎦ , Iµ =

⎡
⎢⎣ 2 0 0

0 2 0

0 0 1

⎤
⎥⎦ . (1.35)

Let S be a region of a 2D elastic object. Assuming that the object is composed of

linear elastic material, strain energy of the object is formulated as follows:

U =

∫
S

1

2
εT (λIλ + µIµ) εh dS.

Partitioning region S into a set of triangles, strain energy is described as

U =
∑

�PiPjPk

Ui,j,k,

where

Ui,j,k =

∫
�PiPjPk

1

2
εT (λIλ + µIµ) εh dS. (1.36)

In the region of �PiPjPk, displacement vector uP = [u, v]T at arbitrary point P

inside �PiPjPk can be approximated by a linear combination of nodal displacements

ui = [ui, vi]
T, uj = [uj, vj ]

T, and uk = [uk, vk]
T as follows:

u = uiNi,j,k + ujNj,k,i + ukNk,i,j,

v = viNi,j,k + vjNj,k,i + vkNk,i,j,
(1.37)

where Ni,j,k, Nj,k,i, and Nk,i,j are the interpolating shape functions. Each of them

has a value of 1 at each nodal point Pi, Pj, or Pk, respectively and zeros at all other

nodal points. Taking partial derivatives of u and v relative to x and y respectively,

we have

∂u

∂x
= ui

∂Ni,j,k

∂x
+ uj

∂Nj,k,i

∂x
+ uk

∂Nk,i,j

∂x
,

∂u

∂y
= ui

∂Ni,j,k

∂y
+ uj

∂Nj,k,i

∂y
+ uk

∂Nk,i,j

∂y
,

∂v

∂x
= vi

∂Ni,j,k

∂x
+ vj

∂Nj,k,i

∂x
+ vk

∂Nk,i,j

∂x
,

∂v

∂y
= vi

∂Ni,j,k

∂y
+ vj

∂Nj,k,i

∂y
+ vk

∂Nk,i,j

∂y
.

(1.38)
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Let [ξi, ηi]
T, [ξj, ηj ]

T, and [ξk, ηk]
T be initial coordinates of nodal points Pi, Pj , and

Pk, respectively. Partial derivatives of shape functions in Eq. 1.38 can be calculated

as:

Nix =
∂Ni,j,k

∂x
=

ηj − ηk

2� , Niy =
∂Ni,j,k

∂y
= −ξj − ξk

2� ,

Njx =
∂Nj,k,i

∂x
=

ηk − ηi

2� , Njy =
∂Nj,k,i

∂y
= −ξk − ξi

2� ,

Nkx =
∂Nk,i,j

∂x
=

ηi − ηj

2� , Nky =
∂Nk,i,j

∂y
= −ξi − ξj

2� ,

(1.39)

where � denotes the signed area of triangle �PiPjPk and was given by

�PiPjPk =
1

2
[ξi ξj ξk]

⎡
⎢⎣ ηj − ηk

ηk − ηi

ηi − ηj

⎤
⎥⎦ .

Note that the Cauchy strain tensor ε = [εxx, εyy, εxy]
T was formulated as

εxx =
∂u

∂x
,

εyy =
∂v

∂y
,

2εxy =
∂u

∂y
+

∂v

∂x
.

(1.40)

Substituting Eqs. 1.38 and 1.39 into Eq. 1.40 and then substituting the consequential

Cauchy strain tensor into Eq. 1.36, we have

Ui,j,k =
1

2

[
uT

i uT
j uT

k

]
Ki,j,k

⎡
⎢⎣ ui

uj

uk

⎤
⎥⎦ , (1.41)

where stiffness matrix Ki,j,k can be decomposed into two as follows:

Ki,j,k = λJi,j,k
λ + µJi,j,k

µ . (1.42)
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Matrices Ji,j,k
λ and Ji,j,k

µ have the following forms:

Ji,j,k
λ =

h

4�PiPjPk

⎡
⎢⎣ Aj,k; j,k Aj,k;k,i Aj,k; i,j

Ak,i; j,k Ak,i;k,i Ak,i; i,j

Ai,j; j,k Ai,j;k,i Ai,j; i,j

⎤
⎥⎦ ,

Ji,j,k
µ =

h

4�PiPjPk

⎡
⎢⎣ 2Bj,k; j,k + Cj,k; j,k 2Bj,k;k,i + Cj,k;k,i 2Bj,k; i,j + Cj,k; i,j

2Bk,i; j,k + Ck,i; j,k 2Bk,i;k,i + Ck,i;k,i 2Bk,i; i,j + Ck,i; i,j

2Bi,j; j,k + Ci,j; j,k 2Bi,j;k,i + Ci,j;k,i 2Bi,j; i,j + Ci,j; i,j

⎤
⎥⎦ ,

(1.43)

where

Ai,j; l,m �
[

(ηi − ηj)(ηl − ηm) −(ηi − ηj)(ξl − ξm)

−(ξi − ξj)(ηl − ηm) (ξi − ξj)(ξl − ξm)

]
,

Bi,j; l,m �
[

(ηi − ηj)(ηl − ηm) 0

0 (ξi − ξj)(ξl − ξm)

]
,

Ci,j; l,m �
[

(ξi − ξj)(ξl − ξm) −(ξi − ξj)(ηl − ηm)

−(ηi − ηj)(ξl − ξm) (ηi − ηj)(ηl − ηm)

]
.

(1.44)

Note that matrices Ji,j,k
λ and Ji,j,k

µ depend on geometric quantities, say, coordinates of

nodal points alone. As a result, the global stiffness matrix K also can be decomposed

into two terms as follows:

K = λJλ + µJµ, (1.45)

where Jλ and Jµ are referred to as connection matrices. Both matrices also depend

on geometric quantities alone and can be calculated by incorporating matrices Ji,j,k
λ

and Ji,j,k
µ of each triangles based on the contribution of each triangle to the whole

triangle mesh. Let N be the number of nodal points in an FE triangle mesh. The

dimensions of both connection matrices are 2N × 2N .

After having the global stiffness matrix K, strain energy of the object was formu-

lated by

U =
1

2
uT

NKuN , (1.46)

where uN represents the nodal displacement vector. Taking the derivative of the

above strain energy relative to vector uN , we have the formulation of a set of elastic

forces generated on all nodal points as

Fela
2D = KuN = (λJλ + µJµ)uN . (1.47)
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Comparing Eqs. 1.32, 1.33, and 1.47, we found that the 2D stress-strain relation

Eq. 1.33 can be obtained from 1D relation Eq. 1.32 by replacing Young’s modulus

E by a matrix with two Lamé’s constants λ and µ. Furthermore, the 2D FE force-

displacement relationship Eq. 1.47 can be obtained from 2D stress-strain relation

Eq. 1.33 by replacing σ by Fela
2D, ε by uN , Iλ by Jλ, and Iµ by Jµ, respectively. In the

next section, we extend the 2D elastic formulation to a 2D rheological formulation.

二次元レオロジーモデル

A Maxwell model, as shown in Fig. 1.4(c), is a simplest physical model for simu-

lating rheological behaviors. The Maxwell model consists of an elastic and a viscous

elements connected in serial. The 1D stress-strain relationship of the Maxwell model

can be formulated as

σ̇ = −E

c
σ + Eε̇, (1.48)

Solving the above ordinary differential equation yields:

σ(t) =

∫ t

0

R(t − t′)ε̇(t′)dt′, (1.49)

where R(t − t′) = Ee−
E
c

(t−t′) is referred as a relaxation function, which determines

the nature of rheological deformation. Replacing two elastic constants λ and µ in

Eq. 1.33 by two relaxation functions yields a relaxation matrix in 2D isotropic

deformation of the Maxwell model:

R(t− t′) = rλ(t − t′)Iλ + rµ(t − t′)Iµ, (1.50)

where

rλ(t − t′) = λe−
E
c

(t−t′), rµ(t − t′) = µe−
E
c

(t−t′). (1.51)

Replacing R(t−t′) in Eq. 1.49 by Eq. 1.50, we have the 2D stress-strain relationship

of the Maxwell model as

σ(t) =

∫ t

0

[rλ(t − t′)Iλ + rµ(t − t′)Iµ] ε̇(t
′)dt′. (1.52)

From the above equation, replacing σ(t) by FMax
2D (t), ε by uN , Iλ by Jλ, Iµ by Jµ,

we have the 2D force-displacement relationship of the Maxwell model as

FMax
2D (t) =

∫ t

0

[
λe−

E
c

(t−t′)Jλ + µe−
E
c

(t−t′)Jµ

]
u̇N(t′)dt′. (1.53)
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Differentiating the above equation, we finally have

ḞMax
2D = −E

c
FMax

2D + (λJλ + µJµ)u̇N , (1.54)

Comparing Eq. 1.48 and Eq. 1.54, we find that the 1D constitutive law of Maxwell

model can be easily extended to 2D case by simple replacements as performed above.

Then, let us investigate the formulation of a parallel five-element model, as shown

in the last row of Fig. 1.5(b). The parallel five-element model consists of two

Maxwell models and one viscous element connected in parallel. Let σ1, σ2, and σ3

be the stress at the first, the second Maxwell models, and the third viscous element,

respectively. Let σ and ε be the stress and strain at the five-element model. Due to

the parallel configuration, the 1D stress-strain relationship can be formulated as:

σ̇1 +
E1

c1

σ1 = E1ε̇,

σ̇2 +
E2

c2

σ2 = E2ε̇,

σ3 = c3ε̇,

σ = σ1 + σ2 + σ3.

(1.55)

Following the same replacing procedures presented above, we can easily extend the

1D stress-strain relation Eq. 1.55 to 2D force-displacement relation as:

Ḟ1 +
E1

c1
F1 = (λela

1 Jλ + µela
1 Jµ)u̇N ,

Ḟ2 +
E2

c2
F2 = (λela

2 Jλ + µela
2 Jµ)u̇N ,

F3 = (λvis
3 Jλ + µvis

3 Jµ)u̇N ,

Frheo
2D = F1 + F2 + F3,

(1.56)

where F1, F2, F3, and Frheo
2D are force vectors corresponding to stress vectors σ1,

σ2, σ3, and σ, respectively. Parameters λela
1 , µela

1 , λela
2 , and µela

2 are Lamé constants

corresponding to E1 and E2 and can be calculated by Eq. 1.34. Parameters λvis
3 and

µvis
3 described the model’s viscosity and are defined as

λvis
3 =

c3γ

(1 + γ)(1 − 2γ)
, µvis

3 =
c3

2(1 + γ)
. (1.57)

Supposing that a 2D object is fixed on the ground and the top surface of the object

is pushed downward with a displacement function of d(t). These two constraints can
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be formulated as follows by using constraint stabilization method (CSM) [[44]].

AT üN + AT (2ωu̇N + ω2uN) = 0,

BT (üN − d̈) + BT [2ω(u̇N − ḋ) + ω2(uN − d)] = 0,
(1.58)

where matrices A and B denote which nodal points should be constrained on the

bottom and top surface, respectively. Scalar ω is a predetermined angular frequency

and is set to 2000 for both constraints.

Let M be an inertia matrix and �1 and �2 be the Lagrange multipliers which

denote a set of constraint forces corresponding to both geometric constraints. Using

the Lagrange dynamic method, dynamic equations of the nodal points are given by

−Frheo
2D + A�1 + B�2 − MüN = 0. (1.59)

Combining Eqs. 1.56, 1.58, 1.59, and considering vN = u̇N , we have a set of differ-

ential equations for simulating the 2D FE dynamic behaviors of a rheological object

under a pushing or pulling operations. In the next section, the 2D FE model will be

extended to 3D model by changing the triangle mesh to tetrahedral mesh and adding

the z-axis components in all the matrices and vectors. Figure 1.13 demonstrates 2D

simulation results of rheological behaviors. The center part of the top surface of a

2D rheological object was pushed downward from 0 s to 20 s with a constant velocity.

The deformation was then maintained for 20 seconds. From 40 s, the deformation

started to recover. Figure 1.13f shows the force responses on the bottom surface of

the object.

三次元レオロジーモデル

In our 3D FE formulation, an object is constructed by a set of tetrahedra. Let

Pi be a nodal point of a tetrahedron and [ξi, ηi, ζi]
T be coordinates of point Pi. Let

♦PiPjPkPl be a tetrahedron consisting of nodal points Pi, Pj , Pk, and Pl. Note that

linear isotropic elastic material satisfies

σ = Dε, (1.60)
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(a) 0 s (b) 10 s (c) 20 s

(d) 50 s (e) 60 s (f) force response

図 1.13: Simulation behaviors of a 2D rheological object: initial shape (a), deformed

shape (b) at time 10 s, (c) at 20 s, (d) at 50 s, (e) at 60 s, and (f) force response on

the bottom surface.

where

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ + 2µ λ λ 0 0 0

λ λ + 2µ λ 0 0 0

λ λ λ + 2µ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Stress vector σ and linear strain vector ε in 3D case are defined as

σ = [σξξ, σηη, σζζ, σηζ , σζξ, σξη]
T ,

ε = [εξξ, εηη, εζζ, 2εηζ , 2εζξ, 2εξη]
T .

Performing similar derivation as presented in 2D elastic deformation, we can obtain

a stiffness matrix Ki,j,k,l for a tetrahedron ♦PiPjPkPl as follows:

Ki,j,k,l = λJi,j,k,l
λ + µJi,j,k,l

µ , (1.61)
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where

Ji,j,k,l
λ =

1

36♦

⎡
⎢⎢⎢⎣

Aj,k,l; j,k,l −Aj,k,l;k,l,i Aj,k,l; l,i,j −Aj,k,l; i,j,k

−Ak,l,i; j,k,l Ak,l,i;k,l,i −Ak,l,i; l,i,j Ak,l,i; i,j,k

Al,i,j; j,k,l −Al,i,j;k,l,i Al,i,j; l,i,j −Al,i,j; i,j,k

−Ai,j,k; j,k,l Ai,j,k;k,l,i −Ai,j,k; l,i,j Ai,j,k; i,j,k

⎤
⎥⎥⎥⎦ ,

Ji,j,k,l
µ =

1

36♦

⎡
⎢⎢⎢⎣

2Bj,k,l; j,k,l −2Bj,k,l;k,l,i 2Bj,k,l; l,i,j −2Bj,k,l; i,j,k

−2Bk,l,i; j,k,l 2Bk,l,i;k,l,i −2Bk,l,i; l,i,j 2Bk,l,i; i,j,k

2Bl,i,j; j,k,l −2Bl,i,j;k,l,i 2Bl,i,j; l,i,j −2Bl,i,j; i,j,k

−2Bi,j,k; j,k,l 2Bi,j,k;k,l,i −2Bi,j,k; l,i,j 2Bi,j,k; i,j,k

⎤
⎥⎥⎥⎦

+
1

36♦

⎡
⎢⎢⎢⎣

Cj,k,l; j,k,l −Cj,k,l;k,l,i Cj,k,l; l,i,j −Cj,k,l; i,j,k

−Ck,l,i; j,k,l Ck,l,i;k,l,i −Ck,l,i; l,i,j Ck,l,i; i,j,k

Cl,i,j; j,k,l −Cl,i,j; k,l,i Cl,i,j; l,i,j −Cl,i,j; i,j,k

−Ci,j,k; j,k,l Ci,j,k;k,l,i −Ci,j,k; l,i,j Ci,j,k; i,j,k

⎤
⎥⎥⎥⎦ .

(1.62)

The signed volume of tetrahedron ♦ = ♦PiPjPkPl is given by

♦PiPjPkPl = ♦OPjPkPl + ♦PiOPkPl + ♦PiPjOPl + ♦PiPjPkO

= ♦OPjPkPl + ♦OPkPlPi + ♦OPlPiPj + ♦OPiPjPk,
(1.63)

where the signed volume of tetrahedron ♦OPiPjPk is defined as follows:

♦OPiPjPk =
1

2

1

3

∣∣∣∣∣∣∣
ξi ξj ξk

ηi ηj ηk

ζi ζj ζk

∣∣∣∣∣∣∣ . (1.64)

The matrices Ai,j,k; l,m,n, Bi,j,k; l,m,n, and Ci,j,k; l,m,n in Eq. 1.62 are defined as:

Ai,j,k; l,m,n �

⎡
⎢⎣ ai,j,kal,m,n ai,j,kbl,m,n ai,j,kcl,m,n

bi,j,kal,m,n bi,j,kbl,m,n bi,j,kcl,m,n

ci,j,kal,m,n ci,j,kbl,m,n ci,j,kcl,m,n

⎤
⎥⎦ ,

Bi,j,k; l,m,n �

⎡
⎢⎣ ai,j,kal,m,n 0 0

0 bi,j,kbl,m,n 0

0 0 ci,j,kcl,m,n

⎤
⎥⎦ ,

Ci,j,k; l,m,n �⎡
⎢⎣ bi,j,kbl,m,n + ci,j,kcl,m,n bi,j,kal,m,n ci,j,kal,m,n

ai,j,kbl,m,n ci,j,kcl,m,n + ai,j,kal,m,n ci,j,kbl,m,n

ai,j,kcl,m,n bi,j,kcl,m,n ai,j,kal,m,n + bi,j,kbl,m,n

⎤
⎥⎦ ,

(1.65)
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where

ai,j,k =

∣∣∣∣∣ ηi ηj

ζi ζj

∣∣∣∣∣ +

∣∣∣∣∣ ηj ηk

ζj ζk

∣∣∣∣∣ +

∣∣∣∣∣ ηk ηi

ζk ζi

∣∣∣∣∣ ,

bi,j,k =

∣∣∣∣∣ ζi ζj

ξi ξj

∣∣∣∣∣ +

∣∣∣∣∣ ζj ζk

ξj ξk

∣∣∣∣∣ +

∣∣∣∣∣ ζk ζi

ξk ξi

∣∣∣∣∣ ,

ci,j,k =

∣∣∣∣∣ ξi ξj

ηi ηj

∣∣∣∣∣ +

∣∣∣∣∣ ξj ξk

ηj ηk

∣∣∣∣∣ +

∣∣∣∣∣ ξk ξi

ηk ηi

∣∣∣∣∣ .

(1.66)

After having stiffness matrix on each tetrahedron as given in Eq. 1.61, we can

calculate the global stiffness matrix as follows by incorporating the contribution of

each tetrahedron:

K3D = λJ3D
λ + µJ3D

µ , (1.67)

The dimensions of connection matrices J3D
λ and J3D

µ are 3N × 3N . Therefore, a set

of elastic forces Fela
3D can be formulated as:

Fela
3D = K3Du3D

N =
(
λJ3D

λ + µJ3D
µ

)
u3D

N , (1.68)

where vectors Fela
3D and u3D

N consist of x-, y-, and z-axis components of all nodal points

and the dimensions of both vectors are 3N × 1. Comparing the above equation and

Eq. 1.47, the difference between 2D and 3D FE formulation is the calculation of

connection matrices and the configuration of force and displacement vectors. In 3D

deformation, the object is constructed with a set of tetrahedra and all the matrices

and vectors include the z-axis components in their formulations.

Similarly, we can extend 2D rheological FE formulation to 3D case. Replacing the

2D matrices and vectors in Eqs. 1.56, 1.58, 1.59 and considering v3D
N = u̇3D

N , we have

33



3D FE formulation of rheological deformation as follows:

u̇3D
N = v3D

N ,

M3Dv̇3D
N = A3D�3D

1 + B3D�3D
2 − Frheo

3D + Fext
3D ,

−AT
3Dv̇3D

N = AT
3D

(
2ωv3D

N + ω2u3D
N

)
,

−BT
3Dv̇3D

N = BT
3D

[
2ω

(
v3D

N − ḋ3D
)

+ ω2
(
u3D

N − d3D
)] − d̈3D,

Ḟ3D
1 = −E1

c1
F3D

1 +
(
λela

1 J3D
λ + µela

1 J3D
µ

)
u̇3D

N ,

Ḟ3D
2 = −E2

c2
F3D

2 +
(
λela

2 J3D
λ + µela

2 J3D
µ

)
u̇3D

N ,

F3D
3 =

(
λvis

3 J3D
λ + µvis

3 J3D
µ

)
v3D

N ,

Frheo
3D = F3D

1 + F3D
2 + F3D

3 .

(1.69)

Note that the above linear equations are solvable since the coefficient matrix is

regular, implying that we can compute u̇3D
N , v̇3D

N , Ḟ3D
1 , and Ḟ3D

2 . Thus, we can

obtain the integrals of these variables using the Runge-Kutta method and finally

compute 3D rheological deformation and force behaviors. For example, Fig. 1.14

demonstrates simulated behaviors of a 3D cube. The entire top surface of the cube

was compressed downward with a constant velocity from time 0 s to 20 s. Before

releasing, the deformed object was maintained for 20 seconds. Then, the deformation

was partially recovered until time 50 s. The rheological force behavior is also given

in Fig. 1.14d. In addition, our FE model is not limited to regular-shaped objects. It

can be used to simulate objects with arbitrary shape as long as tetrahedra mesh is

available. For example, the deformation of a 3D index finger pushed by an external

cube was performed as shown in Fig. 1.15. Both 2D and 3D views are given for

the convenience of comparison. The contact modeling used in this example will be

discussed in Section 1.4.

The FE models presented so far are based on linear Cauchy strain tensor. Lin-

ear FE formulation has an advantage of constant connection matrices Jλ and Jµ,

which can be prepared before performing simulation. This results in more efficient

simulation comparing with nonlinear FE formulation. However, linear FE models

cannot cover large deformation and cannot simulate deformation with rotation mo-

tion, which may frequently happen in many applications, such as surgical simulation

and food products manipulation. We will therefore introduce the nonlinear Green

strain tensor into our FE model in the next section to deal with this problem.
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(d) force response

(a) 0 s (b) 20 s

(c) 50 s

図 1.14: Simulation behaviors of a 3D rheological object: initial shape (a), deformed

shape (b) at time 20 s, (c) at 50 s, and (d) force response on the bottom surface.

1.3.2 グリーン歪みを用いた有限要素モデル

二次元弾性モデル

The Green strain tensor is a nonlinear strain measure which can handle large

deformation and rotation. For 2D elastic material, the components of Green strain

tensor εg are formulated as:

εg
xx =

∂u

∂x
+

1

2

[(
∂u

∂x

)2

+

(
∂v

∂x

)2
]

,

εg
yy =

∂v

∂y
+

1

2

[(
∂u

∂y

)2

+

(
∂v

∂y

)2
]

,

2εg
xy =

(
∂u

∂y
+

∂v

∂x

)
+

(
∂u

∂x

∂u

∂y
+

∂v

∂x

∂v

∂y

)
,

(1.70)
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図 1.15: Simulation behaviors of a 3D finger pushed by an external cube: (a) initial

shape in 2D view, (b) deformed shape at 0.3 s in 2D view, (c) initial shape in 3D

view, and (d) deformed shape at 0.3 s in 3D view.

where u(x, y) and v(x, y) denote the displacement of arbitrary point P(x, y) along

x-axis and y-axis respectively. Note that neglecting the quadratic part from the right

side of the above equation yields the linear Cauchy strain tensor. Again assuming

a 2D object composed of elastic material and constructed by a set of triangles, the
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strain energy of arbitrary triangle �PiPjPk can be formulated as

Ui,j,k =

∫
�PiPjPk

1

2
(εg)T (λIλ + µIµ) εgh dS. (1.71)

Substituting Eq. 1.35 into the above equation and considering εg =
[
εg
xx, ε

g
yy, 2ε

g
xy

]T
,

we have

Ui,j,k = Uλ
i,j,k + Uµ

i,j,k, (1.72)

where

Uλ
i,j,k =

∫
�PiPjPk

1

2
λ

(
εg
xx + εg

yy

)2
h dS,

Uµ
i,j,k =

∫
�PiPjPk

1

2
µ

[
2 (εg

xx)
2 + 2

(
εg
yy

)2
+

(
2εg

xy

)2
]
h dS.

(1.73)

In the region of �PiPjPk, displacement vector uP = [u, v]T at arbitrary point P

inside �PiPjPk can be approximated by a linear combination of nodal displacements

ui = [ui, vi]
T, uj = [uj, vj ]

T, and uk = [uk, vk]
T as follows:

u = uiNi,j,k + ujNj,k,i + ukNk,i,j,

v = viNi,j,k + vjNj,k,i + vkNk,i,j,
(1.74)

where Ni,j,k, Nj,k,i, and Nk,i,j are the interpolating shape functions. Each of them

has a value of 1 at each nodal point Pi, Pj, or Pk, respectively and zeros at all other

nodal points. Taking partial derivatives of u and v relative to x and y respectively,

we have

∂u

∂x
= ui

∂Ni,j,k

∂x
+ uj

∂Nj,k,i

∂x
+ uk

∂Nk,i,j

∂x
,

∂u

∂y
= ui

∂Ni,j,k

∂y
+ uj

∂Nj,k,i

∂y
+ uk

∂Nk,i,j

∂y
,

∂v

∂x
= vi

∂Ni,j,k

∂x
+ vj

∂Nj,k,i

∂x
+ vk

∂Nk,i,j

∂x
,

∂v

∂y
= vi

∂Ni,j,k

∂y
+ vj

∂Nj,k,i

∂y
+ vk

∂Nk,i,j

∂y
.

(1.75)

Let [ξi, ηi]
T, [ξj, ηj ]

T, and [ξk, ηk]
T be initial coordinates of nodal points Pi, Pj , and

Pk, respectively. Partial derivatives of shape functions in Eq. 1.75 can be calculated
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as:

Nix =
∂Ni,j,k

∂x
=

ηj − ηk

2� , Niy =
∂Ni,j,k

∂y
= −ξj − ξk

2� ,

Njx =
∂Nj,k,i

∂x
=

ηk − ηi

2� , Njy =
∂Nj,k,i

∂y
= −ξk − ξi

2� ,

Nkx =
∂Nk,i,j

∂x
=

ηi − ηj

2� , Nky =
∂Nk,i,j

∂y
= −ξi − ξj

2� ,

(1.76)

where � denotes the area of triangle �PiPjPk. Substituting Eqs. 1.75 and 1.76 into

Eq. 1.70, we have

εg
xx = αTq,

εg
yy = βTq,

2εg
xy = ζTq,

(1.77)

where

α =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Nix

0

Njx

0

Nkx

0
1
2
(Nix)

2

1
2
(Nix)

2

1
2
(Njx)

2

1
2
(Njx)

2

1
2
(Nkx)

2

1
2
(Nkx)

2

NjxNkx

NjxNkx

NkxNix

NkxNix

NixNjx

NixNjx

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, β =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

Niy

0

Njy

0

Nky
1
2
(Niy)

2

1
2
(Niy)

2

1
2
(Njy)

2

1
2
(Njy)

2

1
2
(Nky)

2

1
2
(Nky)

2

NjyNky

NjyNky

NkyNiy

NkyNiy

NiyNjy

NiyNjy

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, ζ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Niy

Nix

Njy

Njx

Nky

Nkx

NixNiy

NixNiy

NjxNjy

NjxNjy

NkxNky

NkxNky

NjxNky + NkxNjy

NjxNky + NkxNjy

NkxNiy + NixNky

NkxNiy + NixNky

NixNjy + NjxNiy

NixNjy + NjxNiy

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ui

vi

uj

vj

uk

vk

(ui)
2

(vi)
2

(uj)
2

(vj)
2

(uk)
2

(vk)
2

ujuk

vjvk

ukui

vkvi

uiuj

vivj

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(1.78)

Substituting Eq. 1.77 into Eq. 1.73 and taking the partial derivative of Eq. 1.72

relative to displacement vector ui,j,k = [ui, vi, uj, vj, uk, vk]
T, we have the elastic force
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formulation with Green strain tensor as:

Fi,j,k
ela(g) = Fi,j,k

λ(g) + Fi,j,k
µ(g), (1.79)

where

Fi,j,k
λ(g) = λh� (

αTq + βTq
)
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

αT ∂q
∂ui

+ βT ∂q
∂ui

αT ∂q
∂vi

+ βT ∂q
∂vi

αT ∂q
∂uj

+ βT ∂q
∂uj

αT ∂q
∂vj

+ βT ∂q
∂vj

αT ∂q
∂uk

+ βT ∂q
∂uk

αT ∂q
∂vk

+ βT ∂q
∂vk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Fi,j,k
µ(g) = µh�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
(
αTq

) (
αT ∂q

∂ui

)
+ 2

(
βTq

) (
βT ∂q

∂ui

)
+

(
ζTq

) (
ζT ∂q

∂ui

)
2
(
αTq

) (
αT ∂q

∂vi

)
+ 2

(
βTq

) (
βT ∂q

∂vi

)
+

(
ζTq

) (
ζT ∂q

∂vi

)
2
(
αTq

) (
αT ∂q

∂uj

)
+ 2

(
βTq

) (
βT ∂q

∂uj

)
+

(
ζTq

) (
ζT ∂q

∂uj

)
2
(
αTq

) (
αT ∂q

∂vj

)
+ 2

(
βTq

) (
βT ∂q

∂vj

)
+

(
ζTq

) (
ζT ∂q

∂vj

)
2
(
αTq

) (
αT ∂q

∂uk

)
+ 2

(
βTq

) (
βT ∂q

∂uk

)
+

(
ζTq

) (
ζT ∂q

∂uk

)
2
(
αTq

) (
αT ∂q

∂vk

)
+ 2

(
βTq

) (
βT ∂q

∂vk

)
+

(
ζTq

) (
ζT ∂q

∂vk

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(1.80)

Substituting vectors α, β, ζ , and q of Eq. 1.78 into the above equation and perform-

ing a series of transformations, we can end up with a formulation of elastic forces

with green strain as follows, which has a similar form with Eq. 1.47:

Fi,j,k
ela(g) =

(
λJi,j,k

λ(g) + µJi,j,k
µ(g)

)
ui,j,k, (1.81)

where

Ji,j,k
λ(g) = Jcons

λ + Jvar1
λ + Jvar2

λ ,

Ji,j,k
µ(g) = Jcons

µ + Jvar1
µ + Jvar2

µ ,
(1.82)
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with constant matrices Jcons
λ and Jcons

µ given by:

Jcons
λ = h�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

N2
ix NixNiy NixNjx NixNjy NixNkx NixNky

NiyNix N2
iy NiyNjx NiyNjy NiyNkx NiyNky

NjxNix NjxNiy N2
jx NjxNjy NjxNkx NjxNky

NjyNix NjyNiy NjyNjx N2
jy NjyNkx NjyNky

NkxNix NkxNiy NkxNjx NkxNjy N2
kx NkxNky

NkyNix NkyNiy NkyNjx NkyNjy NkyNkx N2
ky

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Jcons
µ = h�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2N2
ix + N2

iy NiyNix 2NixNjx + NiyNjy

NixNiy 2N2
iy + N2

ix NixNjy

2NjxNix + NjyNiy NjyNix 2N2
jx + N2

jy

NjxNiy 2NjyNiy + NjxNix NjxNjy

2NkxNix + NkyNiy NkyNix 2NkxNjx + NkyNjy

NkxNiy 2NkyNiy + NkxNix NkxNjy

NiyNjx 2NixNkx + NiyNky NiyNkx

2NiyNjy + NixNjx NixNky 2NiyNky + NixNkx

NjyNjx 2NjxNkx + NjyNky NjyNkx

2N2
jy + N2

jx NjxNky 2NjyNky + NjxNkx

NkyNjx 2N2
kx + N2

ky NkyNkx

2NkyNjy + NkxNjx NkxNky 2N2
ky + N2

kx

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(1.83)
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Time-varying matrices Jvar1
λ and Jvar1

µ have the following symmetrical forms:

Jvar1
λ = h� (

αTq + βTq
)
⎡
⎢⎢⎢⎢⎢⎢⎣

N2
ix + N2

iy 0 2NixNjx + NiyNjy

0 N2
iy + N2

ix 0
NjxNix + NjyNiy 0 N2

jx + N2
jy

0 NjyNiy + NjxNix 0
NkxNix + NkyNiy 0 NkxNjx + NkyNjy

0 NkyNiy + NkxNix 0

0 NixNkx + NiyNky 0
NiyNjy + NixNjx 0 NiyNky + NixNkx

0 NjxNkx + NjyNky 0
N2

jy + N2
jx 0 NjyNky + NjxNkx

0 N2
kx + N2

ky 0
NkyNjy + NkxNjx 0 N2

ky + N2
kx

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Jvar1
µ = 2h� (

αTq
)
⎡
⎢⎢⎢⎢⎢⎢⎣

N2
ix 0 NixNjx 0 NixNkx 0
0 N2

ix 0 NixNjx 0 NixNkx

NjxNix 0 N2
jx 0 NjxNkx 0

0 NjxNix 0 N2
jx 0 NjxNkx

NkxNix 0 NkxNjx 0 N2
kx 0

0 NkxNix 0 NkxNjx 0 N2
kx

⎤
⎥⎥⎥⎥⎥⎥⎦

+ 2h� (
βTq

)
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

N2
iy 0 NiyNjy 0 NiyNky 0
0 N2

iy 0 NiyNjy 0 NiyNky

NjyNiy 0 N2
jy 0 NjyNky 0

0 NjyNiy 0 N2
jy 0 NjyNky

NkyNiy 0 NkyNjy 0 N2
ky 0

0 NkyNiy 0 NkyNjy 0 N2
ky

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+ h� (
γTq

)
⎡
⎢⎢⎢⎢⎢⎢⎣

2NixNiy 0 NixNjy + NjxNiy

0 2NixNiy 0
NjxNiy + NixNjy 0 2NjxNjy

0 NjxNiy + NixNjy 0
NkxNiy + NixNky 0 NkxNjy + NjxNky

0 NkxNiy + NixNky 0

0 NixNky + NkxNiy 0
NixNjy + NjxNiy 0 NixNky + NkxNiy

0 NjxNky + NkxNjy 0
2NjyNjx 0 NjxNky + NkxNjy

0 2NkxNky 0
NkxNjy + NjxNky 0 2NkxNky

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(1.84)
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Time-varying matrices Jvar2
λ and Jvar2

µ have the following unsymmetrical forms:

Jvar2
λ =

h�
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Nix(Hα
1 + Hβ

1 )Tui,j,k Nix(Hα
2 + Hβ

2 )Tui,j,k Nix(Hα
3 + Hβ

3 )Tui,j,k

Niy(Hα
1 + Hβ

1 )Tui,j,k Niy(Hα
2 + Hβ

2 )Tui,j,k Niy(Hα
3 + Hβ

3 )Tui,j,k

Njx(Hα
1 + Hβ

1 )Tui,j,k Njx(Hα
2 + Hβ

2 )Tui,j,k Njx(Hα
3 + Hβ

3 )Tui,j,k

Njy(Hα
1 + Hβ

1 )Tui,j,k Njy(Hα
2 + Hβ

2 )Tui,j,k Njy(Hα
3 + Hβ

3 )Tui,j,k

Nkx(Hα
1 + Hβ

1 )Tui,j,k Nkx(Hα
2 + Hβ

2 )Tui,j,k Nkx(Hα
3 + Hβ

3 )Tui,j,k

Nky(Hα
1 + Hβ

1 )Tui,j,k Nky(Hα
2 + Hβ

2 )Tui,j,k Nky(Hα
3 + Hβ

3 )Tui,j,k

Nix(Hα
4 + Hβ

4 )Tui,j,k Nix(Hα
5 + Hβ

5 )Tui,j,k Nix(Hα
6 + Hβ

6 )Tui,j,k

Niy(Hα
4 + Hβ

4 )Tui,j,k Niy(Hα
5 + Hβ

5 )Tui,j,k Niy(Hα
6 + Hβ

6 )Tui,j,k

Njx(Hα
4 + Hβ

4 )Tui,j,k Njx(Hα
5 + Hβ

5 )Tui,j,k Njx(Hα
6 + Hβ

6 )Tui,j,k

Njy(Hα
4 + Hβ

4 )Tui,j,k Njy(Hα
5 + Hβ

5 )Tui,j,k Njy(Hα
6 + Hβ

6 )Tui,j,k

Nkx(Hα
4 + Hβ

4 )Tui,j,k Nkx(Hα
5 + Hβ

5 )Tui,j,k Nkx(Hα
6 + Hβ

6 )Tui,j,k

Nky(Hα
4 + Hβ

4 )Tui,j,k Nky(Hα
5 + Hβ

5 )Tui,j,k Nky(Hα
6 + Hβ

6 )Tui,j,k

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

Jvar2
µ =

h�
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2Nix(Hα
1 )Tui,j,k + Niy(H

ζ
1)

Tui,j,k 2Nix(Hα
2 )Tui,j,k + Niy(H

ζ
2)

Tui,j,k

2Niy(H
β
1 )Tui,j,k + Nix(Hζ

1)
Tui,j,k 2Niy(H

β
2 )Tui,j,k + Nix(Hζ

2)
Tui,j,k
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(1.86)

From the above derivations we found that the connection matrices Ji,j,k
λ(g) and Ji,j,k

µ(g)

are no longer constant and depend on the time-varying displacement vector ui,j,k.

We were not able to prepare those two matrices before simulation and we have to

calculate them at every time step.
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二次元レオロジーモデル

Following the same replacement procedure presented in the previous section, we

can extend the above elastic model to a rheological model. Performing a series of

replacements to Eq. 1.56, we have

Ḟg
1 +

E1

c1

Fg
1 = (λela

1 Jg
λ + µela

1 Jg
µ)u̇N ,

Ḟg
2 +

E2

c2

Fg
2 = (λela

2 Jg
λ + µela

2 Jg
µ)u̇N ,

Fg
3 = (λvis

3 Jg
λ + µvis

3 Jg
µ)u̇N ,

Frheo
2D(g) = Fg

1 + Fg
2 + Fg

3,

(1.87)

where superscript g denotes the variables with a formulation of Green strain tensor.

Total connection matrices Jg
λ and Jg

µ were calculated by incorporating the matrices

Ji,j,k
λ(g) and Ji,j,k

µ(g) of each triangles based on the contribution of each triangle to the

whole triangle mesh. Vector Frheo
2D(g) is the rheological forces generated on each nodal

point.

For performing an operation on a virtual object, boundary constraints need to be

formulated. For example, we suppose a 2D object was fixed on the ground and the

top edge or some nodal points were pushed down or pulled up with a displacement

function of d(t). Two boundary constraints on both top and bottom edges can be

formulated as given in Eq. 1.58:

Let M be the inertia matrix of the object and �1 and �2 be the Lagrange multipliers

which denote a set of constraint forces corresponding to both boundary constraints.

Using the Lagrange dynamic method, a set of dynamic equations of all nodal points

is formulated as

−Frheo
2D(g) + A�1 + B�2 − MüN = 0. (1.88)

Combining Eqs. 1.87, 1.58, 1.88, and considering vN = u̇N , we can end up with a set

of differential equations which describe the 2D dynamic behaviors of a rheological

object formulated with nonlinear Green strain tensor. By numerically solving these

equations, we can calculate the deformation and forces at each nodal points of the

object.

コーシー歪みとグリーン歪みの比較

In order to show the difference between the linear Cauchy strain and nonlinear

Green strain, several FE simulations were performed with formulations of both strain
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図 1.16: FE simulations of rheological behaviors under an input of different displace-

ments, where the FE models were formulated with (b) Cauchy and (c) Green strain

tensors.

tensors. The first simulation is under an input of constant velocities. Within the first

2 seconds, 3 nodal points on the top surface of the objects were pushed downward to

a desired displacement of 0.01 m, 0.02 m, 0.03 m, and 0.04 m respectively, as shown

in Fig. 1.16a. The deformed shapes were then held unchange for 2 seconds before

releasing. The final recovered shapes and force responses from FE models with both

strain tensors were shown in Fig. 1.16b and 1.16c. The second simulation was

performed with different force inputs acting on the top right corner of the object,

as shown in Fig. 1.17a. The force input can be easily incorporated with the above-

mentioned FE model by adding an external force vector Fext into Eq. 1.88. In this

simulation, the top right corners of the objects were pulled upward with constant

forces for 2 seconds. The deformed objects were then released with 2 seconds for

recovery. The deformed and recovered shapes for both strain tensors were shown in

Fig. 1.17b and 1.17c respectively.

From Figs. 1.16b and 1.17b we find that linear model with Cauchy strain tensor
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図 1.17: FE simulations of rheological behaviors under an input of different forces,

where the FE models were formulated with (b) Cauchy and (c) Green strain tensors.

always yields linear behaviors, i.e., the output is always proportional to the input

and no matter the input is force or displacement. However, such behaviors will not

happen in real rheological objects when the deformation is getting large. This is

the limitation of the linear model. The nonlinear modeling is therefore necessary to

cover such large deformation. Figures 1.16c and 1.17c show that output behaviors

simulated with Green strain tensor do not have the proportional relationship with

the inputs of both forces and displacements. When the inputs take small values

(e.g., Dis=0.01 m in Fig. 1.16 and F=0.01 N in Fig. 1.17), the outputs behaviors

simulated by Cauchy and Green strain tensors have small differences. However, the

differences increased with the increase of input values as shown in Fig. 1.16 and 1.17.

Apparently, the simulation results with nonlinear Green strain tensor demonstrate

more natural behaviors when the deformation becomes large.

In order to further compare the ability of both models for handling deformation
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with rotation motion, pushing and rolling simulations with both models were per-

formed. An object with circular shape is pushed downward by an external instrument

for 5 seconds with a constant velocity of 0.01 m/s and then the instrument starts

to move left for another 5 seconds with the same velocity. The instrument is then

moved upward and let the deformation to recover. The total simulation time is 15

seconds. The material properties of the object are represented by a parallel five-

element physical model with parameters: E1 = 200 Pa, E2 = 500 Pa, c1 = 8000 Pa·s,
c2 = 5000 Pa·s, and c3 = 100 Pa·s. Several simulation snapshots using both models

are given in Figs. 1.18 and 1.19, respectively. From Fig. 1.18, we find that linear

Cauchy strain tensor results in some strange behaviors when simulating deformation

with rotation motion. The triangular mesh of the object is expanded during rolling

motion which should not happen in a real world object. After recovery, the object

become much bigger (Fig. 1.18d) comparing with the initial shape (Fig. 1.18a). On

the other hand, the object simulated with nonlinear Green strain does not show such

strange behaviors, as shown in Fig. 1.19. We therefore conclude that the nonlin-

ear Green strain tensor provide more natural deformation behaviors comparing with

linear Cauchy strain tensor for dealing with large deformation and rotation. The

modeling of contact between a rheological object and an external instrument shown

in Figs. 1.18 and 1.19 will be introduced in the next section.

1.3.3 多重粘性要素を用いた有限要素モデル

As presented in Section 1.2, a five-element physically-based model with two dual-

moduli viscous elements can yield simultaneous reproductions of both rheological

forces and deformation behaviors. Now, let us extend the 1D physically-based model

to a 2D FE dynamic model.

Recall that a stress-strain relationship in a Maxwell model is described by Eq.

1.48. Thus, replacing viscous coefficient c by dual-moduli viscous coefficient κα + c,

we have the stress-strain relationship in a Maxwell model with a dual-moduli viscous

element as:

σ̇ = − E

κα + c
σ + Eε̇. (1.89)

Then, by performing the same replacements for deriving 2D FE model (Eq. 1.56), we

have a 2D FE formulation with a physically-based model including two dual-moduli
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図 1.18: Simulation snapshots of a rheological object pushed and rolled by an external

instrument, where the model of the object was formulated by linear Cauchy strain

tensor.

viscous elements shown in Fig. 1.12b as:

Ḟ1 +
E1

κα1 + c1
F1 = (λela

1 Jλ + µela
1 Jµ)u̇N ,

Ḟ2 +
E2

κα2 + c2
F2 = (λela

2 Jλ + µela
2 Jµ)u̇N ,

F3 = (λvis
3 Jλ + µvis

3 Jµ)u̇N ,

Frheo
2D = F1 + F2 + F3,

(1.90)

This formulation also can be easily extended to 3D cases and models with the Green

strain tensor as well by performing similar replacements as we did here.

1.3.4 まとめ

In this section, the formulations of FE dynamic models for simulating rheological

behaviors were presented. We started from a 2D formulation of elastic model based

on generalized Hooke’s law and linear Cauchy strain tensor. The FE formulation of

elastic deformation was then extended to 2D rheological model and further extended
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図 1.19: Simulation snapshots of a rheological object pushed and rolled by an external

instrument, where the model of the object was formulated by nonlinear Green strain

tensor.

to handle 3D rheological deformation. Simulation results were given. In FE model

with linear Cauchy strain tensor, the connection matrices are constant and can be

prepared in advance which can yield more efficient calculations comparing with non-

linear models. However, FE model with linear Cauchy strain tensor is not suitable

for simulating large deformation and rotation. We have therefore introduced nonlin-

ear Green strain tensor to model large deformation and rotation. The derivation of

FE model with Green strain tensor was presented. It also starts from the formulation

of elastic deformation and further extended to rheological deformation by perform-

ing a series of replacements. Simulation results using FE models with Cauchy and

Green strain tensors were then given to compare the differences between both mod-

els. We found that the FE model with nonlinear Green strain tensor yields more

natural behaviors when dealing with large deformation and rotation. However, since

the connection matrices are no longer constant, we are not able to prepare these

matrices in advance and have to calculate them in every time step. This makes the

FE simulation with nonlinear Green strain tensor very time-consuming. At last,

we also presented FE model with a five-element physical model which includes two

dual-moduli viscous elements.
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1.4 非一様物体と接触のモデリング
The FE dynamic models presented in the last chapter are basically used to simu-

late uniform and isotropic objects. However most objects in the real world are not

uniform and may include several different layers with different material properties.

In addition, a contact interaction between an object and an external instrument may

often happen during handling or manipulation. We therefore investigate the mod-

eling of non-uniform layered objects and contact interaction between a rheological

object and external instruments in this chapter.

1.4.1 非一様層状物体の有限要素モデリング

When we started to model non-uniform objects, the first idea came to our mind is

to set different parameters to each triangle. However, this idea does not work well. If

we look at the dynamic equations presented in the last chapter, for instance, Eq. 1.56,

we find that all the parameters are associated with nodal points rather than triangles.

In other words, the physical parameters in our FE models are point-wise instead of

triangle-wise, which makes the difficulty of choosing appropriate parameters for the

boundary nodal points between two layers when dealing with layered objects. We

have therefore proposed the following idea for modeling non-uniform layered objects.

Considering a two-layered object with different material properties in each layer,

we artificially separate this non-uniform layered object into two uniform objects

with their own properties during simulation, as shown in Fig. 1.20. Note that the

boundary nodal points on both layers (i.e., the hollow nodes on the top layer and

the solid nodes on the bottom layer) always have the same displacements (as they

are in fact the same points), i.e.:

ubott = utop. (1.91)

The modeling of this layered object can therefore be divided into the modeling of two

uniform objects with a displacement constraint on the boundary nodal points. As

shown in Fig. 1.20, we imposed the displacements of the top boundary points onto

the bottom boundary points during simulation by applying a displacement constraint

of Eq. 1.91. Using the CSM, this constraint can be formulated as:

(übott − ütop) + 2ω(u̇bott − u̇top) + ω2(ubott − utop) = 0. (1.92)
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図 1.20: Modeling strategy for non-uniformed layered object.

Accordingly, the constraint forces generated on the bottom boundary points are

reacted back to the top boundary points, i.e., Ftop = −Fbott. By integrating Eq.

1.92 into the dynamic equations of the object on the bottom layer and substituting

Ftop as an external force into the dynamic equations of the object on the top layer,

we can derive an FE model for simulating rheological behaviors of a non-uniform

layered object. A typical deformation behavior of a two-layered object is shown

in Fig. 1.21, where the top layer is three times softer (all parameters are three

times smaller) than the bottom layer. Another example, as shown in Fig. 1.22, is

a semi-spherical object made of two types of materials (denoted by solid and dash

line, respectively) grasped by a robot hand. We can see that our modeling method

demonstrated natural behaviors of non-uniform layered objects. In addition, this 2D

FE model can be easily extended to a 3D case by changing the triangular meshes to

tetrahedral meshes and adding z-axis components to all the vectors and matrices.

1.4.2 接触のモデリング

The contact modeling is always required when dealing with interactions between

a deformable object and an external instrument and is important for many applica-
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図 1.21: Deformed shape of a two-layered object with soft material in the top layer.

tions, such as food manufacturing simulation and surgical operation. Depending on

the contact area between the object and the external instrument, we roughly divide

contact models into two categories, as shown in Fig. 1.23. The modeling of these

two kinds of contacts, however, is quite different. In wide area contact (Fig. 1.23a),

contact modeling only requires a detection of contact moment and a constraint con-

dition between the instrument and the object can then be imposed. On the other

hand, in small area contact (Fig. 1.23b), the object needs a remeshing or at least

a local remeshing to ensure that the contact nodes on the instrument are coincided

with some nodes on the object. Otherwise, the instrument and the object may pen-

etrate each other in some regions. In the following subsections, we will investigate

the contact modeling of both categories.

広域接触

In the modeling of wide area contact, we should keep the object mesh unchange

and only focus on the detection of contact moment, losing contact moment, and

imposing constraints on the contact nodes.

Contact Moment Detection As shown in Fig. 1.23a, the object and the instru-

ment are constructed by triangular meshes. Since the instrument is assumed to be

rigid, we can use a simplest mesh (only two triangles) for its modeling. During sim-

ulation, the instrument is moving downward with a constant velocity to compress
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(a) Initial shape

(c) Final-shape

(b) Held-shape

図 1.22: Deformation behaviors of a semi-spherical object made of two types of

materials grasped by a robot hand.

the object with a specific displacement. We virtually connect one node P on the

object with three nodes of a triangle (�ABC) on the instrument to construct three

triangles: �PAB, �PBC, and �PCA. Let �PiPjPk be an arbitrary triangle with

three vertices: Pi, Pj, and Pk. Coordinates of these vertices are [xi, yi], [xj , yj], and

[xk, yk], respectively. We define a signed area of a triangle as:

�PiPjPk =
1

2
[xi, xj, xk]

⎡
⎢⎣ yj − yk

yk − yi

yi − yj

⎤
⎥⎦ . (1.93)

This signed area is positive if the triangular loop (the order of the three vertices

of a triangle) is counter clockwise while is negative if the loop is clockwise. Now,

let us check the signed areas of the triangles �PAB, �PBC, and �PCA shown in

Fig. 1.23a, we find that the area of �PAB is negative. However, once the nodal

point P is located on any edge or inside of the triangle �ABC, each signed area of

above three triangles will became zero or positive. This can serve as a criterion to

detect the contact moment and start the contact constraint. In every time step, we

check all the nodal points on the object to see if any of them is in contact with the

instrument or not. The algorithm can be roughly described as follows:
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図 1.23: Two kinds of contact models: (a) wide area contact, and (b) narrow area

contact.

In each time step

for loop: each nodal point on the object (node P for instance)

for loop: each triangle on the instrument (�ABC for instance)

if �PAB ≥ 0 and �PBC ≥ 0 and �PCA ≥ 0

Start contact;

end if, for.

接触ノードにおける制約

Once the instrument was in contact with the object, the contact points on both

instrument and object would have the same displacement and velocity. Let vins
c ,

vobj
c , uins

c , and uobj
c be the velocity and displacement vectors of the contact points on

the instrument and object respectively after contact moment. Using CSM, a set of

constraint equations are formulated as:

CT (v̇obj
c − v̇ins

c ) + CT [2ω(vobj
c − vins

c ) + ω2(uobj
c − uins

c )] = 0, (1.94)

where constant matrix C denotes which nodal points on the object are in contact.

Note that vectors vins
c and uins

c of arbitrary point on edge AB (Fig. 1.23a) can be
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obtained from velocities and displacements of vertices A and B by using interpola-

tion. Combining Eq. 1.94 with the FE model presented in Chapter 3, we are able

to simulate the contact interaction between a rheological object and an external

instrument.

Losing Contact and Switching Parameters Once the instrument started to

move back after pushing and holding operations, we at first thought that it is neces-

sary to determine the losing contact moment and then release the constraint accord-

ingly. However, we found out that we do not have to do that and our contact model

has an ability to automatically lose the contact as long as the instrument started

to leave the object. Let us recall the idea of our contact model and dig a little bit

deeper. During each time step in simulation, if any nodal point on the object is lo-

cated inside the instrument, it will be pushed down to coincide with the instrument

boundary after this time step due to the CSM constraint. Note that this pushing

down action will happen in next time step but not in the current time step. In other

word, the CSM constraints for the points in contact are always performed one time

step later than the time step where the contact happens. Now, let us consider the

losing contact situation. When the instrument started to move back, the object will

also start to recover. If the recovery rate of the object is faster than the rate of

instrument moving back, the contact is still in effect. However, the recovery rate of

the object is always decreasing with time. In a certain time step, once the recovery

rate of the object is slower than the moving back rate of the instrument, the nodal

points in contact will be located outside the instrument boundary. This separation

will happen because the CSM constraints are always one time step later than the

detection of contact as we just discussed above. Once the separation happens, the

contact constraint therefore will be automatically released. This made our contact

model much simple and natural.

According to the above discussion, the moment of in contact and losing contact

can be determined without explicitly using of simulation time. This can also serve as

a good criterion for dual-moduli viscous element to switch parameters, as discussed

in Section 1.2.4. We therefore use a flag to memorize the contact points and to serve

as the criterion. The algorithm for contact modeling now becomes:

In each time step

for loop: each nodal point on the object (node P for instance)
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Initialize: flag(p)=0;

for loop: each triangle on the instrument (�ABC for instance)

if �PAB ≥ 0 and �PBC ≥ 0 and �PCA ≥ 0

flag(p)=1;

Start contact;

end if, for

We will switch the parameters when all contacting points lose their contacts. The

switch function κ now becomes:

κ =
{ −1 flag(p) = 0 ∀p ∈ object,

1 otherwise.
(1.95)

Now, we are able to perform the contact simulation with the parameter switching

strategy to reproduce both rheological force and deformation behaviors. The next

subsection will demonstrate some simulation results to show the ability of our contact

model.

Contact Simulation Using the proposed FE contact model, we are able to sim-

ulate deformation behaviors of the rheological objects undergoing a compressing,

holding, and releasing procedures. The first example is a semi-circular shaped ob-

ject deformed by a flat squared instrument. Total simulation time is 16 seconds. The

instrument moves down 25 mm in first 4 seconds with a constant velocity. Then, the

instrument stops pushing and maintains the deformed object for another 4 seconds.

The instrument then moves back to the original position within 4 seconds. After

the instrument moves back to the original position, the object still has 4 seconds

to recover. Some snapshots of simulation results are shown in Fig. 1.24, where the

FE model with dual-moduli viscous elements is employed. All the parameters used

here are estimated from real Japanese sweets materials and how to estimate these

parameters will be discussed in the next chapter. To compare the different perfor-

mance, simulation snapshots of FE model without dual-moduli viscous elements are

also given in Fig. 1.25. We can easily see the differences between Figs. 1.24 and

1.25. At simulation time 8.2 s, the instrument and object has lost contact in Fig.

1.24d but still in contact in Fig. 1.25a. The final recovered shapes of both cases are
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(a) 0 s (b) 2 s (c) 4 s

(d) 8.2 s (e) 12 s (f) 16 s

図 1.24: Simulation snapshots of a semi-circular object pushed down by a flat squared

instrument with parameter switching strategy.

also quite different. The deformation recovery takes longer time if we do not use the

dual-moduli viscous elements.

The second example is a circular object operated by two external instruments

with one from the top and another one from the bottom, as shown in Fig. 1.26.

The bottom instrument is static and the top instrument is moving down to push the

object. Figure 1.26b showed that the object have already deformed and contacted

with the bottom instrument due to gravity before the top instrument touches the

object. The final recovered shape is also not symmetrical relative to the horizontal

axis due to the gravity. Figure 1.26 shows the simulation results of FE model with

dual-moduli viscous elements. Some snapshots of simulation results without dual-

moduli viscous elements are also given in Fig. 1.27 to show the differences. In

addition, simulation results of contact model also can be found in Figs. 1.17 and

1.18 in the last chapter.
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(a) 8.2 s (b) 12 s (c) 16 s

図 1.25: Simulation snapshots of a semi-circular object pushed down by a flat squared

instrument without parameter switching strategy.

局所接触

Different with wide area contact, the modeling of narrow area contact requires

either a global remeshing or a local remeshing because the contact area of the instru-

ment is smaller than the area of the object as shown in Fig. 1.23b. Moreover,same

with wide area contact, narrow area contact also needs a detection of contact mo-

ment, which will serve as a trigger to start the performance of remeshing.

Object Remeshing In order to generate triangular mesh automatically, we have

employed a MATLAB toolbox of 2D meshing routines named MESH2D, which allows

automatic generation of unstructured triangular meshes for general 2D geometry. For

using MESH2D, one all need to do is to provide some boundary points which can

best describe the object shape (piecewise linear geometry input). By setting some

parameters, we also can control the mesh resolution or specify some special nodal

points and some special connections between some nodal points. In our application,

we only use the basic function and input several boundary points into MESH2D. In

every time step during integration, we perform the following processes:

1. Perform the contact detection to see if the instrument and the object are in contact

or not. If it is not in contact, jump to step 2. If it is in contact, jump to step 3

and perform the steps followed.

2. Using the initial triangular meshes for both object and the instrument to calculate

all the variables and finish the calculation for this time step.

3. Remember the current coordinates of the contact points on the instrument. These
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(a) 0 s (b) 2 s (c) 4 s

(d) 8.2 s (e) 12 s (f) 16 s

図 1.26: Simulation snapshots of a circular object operated by two instruments with

parameter switching strategy.

points and the initial boundary points will serve as a set of new boundary points

to generate the new mesh.

4. Perform the remeshing using MESH2D and recalculate all the required matrices,

such as the inertial matrix and connection matrices.

5. Use the new mesh and new matrices to calculate all the variables needed to be

integrated and finish the calculation of the current time step.

Note that since the remeshing and calculations of connection matrices, which are

usually quite large, must be performed inside the time integration, this contact

simulation with remeshing is quite time-consuming.
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(a) 8.2 s (b) 12 s (c) 16 s

図 1.27: Simulation snapshots of a circular object operated by two instruments

without parameter switching strategy.

Contact Simulation with Remeshing A simulation was conducted to show the

performance of narrow area contact model with remeshing. A 2D squared object

was deformed by a instrument whose contact area is a quarter of the contact area

of the object. The instrument and the object have an initial distance of 0.2 m.

The instrument was moved down 0.4 m from the initial position in 2 seconds with

a constant velocity. Before releasing, the deformed object was maintained for 2

seconds. Then, the instrument was moved back to its initial position in 2 seconds

with a constant velocity. After this, the deformed object still had another 2 seconds

to recover. The total simulation time is therefore 8 seconds. Several simulation

snapshots are given in Fig. 1.28. We can see that the instrument starts to contact

with the object at the moment of 1 s and the two contact points in the instrument

are not coincide with any nodal point on the object. In the next time step, the object

is remeshed and now two new points on the object are generated and are coincided

with the corresponding nodes on the instrument. The constraints are then imposed

on these contact points to perform the contact simulation.

1.4.3 まとめ

In this chapter, the modeling of non-uniform layered objects and contact inter-

action between rheological object and external instrument were formulated. We

artificially separated a non-uniform layered object into several uniform ones and

performed the uniform simulation independently. The non-uniform behaviors were
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(a) 0 s (b) 1 s (before remeshing) (c) 1 s (after remeshing)

(d) 2 s (e) 3.1 s (f) 8 s

図 1.28: Simulation results of narrow area contact with remeshing.

then obtained by imposing a constraint on the nodal points of the boundary between

both layers. This idea works very well for different shaped objects. For modeling

of contact interaction, we roughly divided the contact models into two categories

depending on the contact areas of the object and the instrument. For wide area

contact, the only thing we need to do is to detect the contact moment and then

impose constraints on the contacting points. However for narrow area contact, we

have to perform object remeshing or at least local remeshing during the simulation.

To conduct the remeshing, we need an automatic mesh generation during simulation.

This can be done by using a MATLAB toolbox named MESH2D. In each time step,

the detection of contact moment is also performed. Once the contact starts, the

remeshing is performed and then the constraints are also imposed on the contact

nodal points. Simulation results were performed to demonstrate the performance of

both contact models.
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1.5 力学パラメータの推定
In order to accurately simulate the behaviors of real objects, the properties (physi-

cal parameters) have to be determined in advance. However, the estimation of those

parameters is a challenging work, especially for rheological objects which always

yield residual deformation after a loading-unloading operation. These estimated pa-

rameters have to be able to regenerate the rheological force, deformed shape (e.g.,

the held-shape) during the operation and the final deformed shape (the final-shape)

after recovery as well. This section introduce the methods used in our work to esti-

mate physical parameters for simultaneous reproductions of both rheological forces

and deformation, especially the residual deformation behaviors. At first, let us in-

vestigate the contributions of mesh resolution and each parameter to the rheological

behaviors based on 2D FE simulation.

1.5.1 有限要素シミュレーションの解析

Let us take the FE model presented in Section 1.3 as an example to perform the

simulation analysis. This 2D FE model includes 6 unknown physical parameters, i.e.,

Young’s moduli E1, E2, viscous moduli c1, c2, c3, and Poisson’s ratio γ. We suppose

that a 2D flat-squared object with a size of 0.08 m×0.08 m was fixed on the ground

and the entire top surface was pushed down with a constant velocity of 0.002 m/s

during time 0 to 10 seconds. This time period is referred to as pushing phase. The

deformation was then held for 10 seconds before releasing. Similarly, this time period

is referred to as holding phase. The deformed shape in this phase is called held-shape

accordingly. After releasing the constraint, the deformed object still has 20 seconds

to recover from the deformation. The deformed shape in the end of simulation is

referred as final-shape accordingly. Therefore, the total simulation time is set to 40

seconds. Such pushing and holding procedures are used throughout our simulation

analysis and similar ones are also employed in our experimental validations. One

may ask why we use this simple simulation or experimental setups. We believe that

firstly the material properties (physical parameters) will not differ even though the

object may have different sizes or shapes or may be subjected to different operations.

Secondly, if we could estimate all the parameters by using a simple setup, there would

be no problem to estimate them using more complicated setups. Now, let us see how

the mesh resolution and physical parameters will affect the simulation behaviors.
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メッシュの解像度の影響

As we all known, mesh resolution in FE simulation significantly affects the simula-

tion cost and the simulation accuracy as well. In a certain application, we therefore

have to compromise between time cost and simulation accuracy. Since the objects

with flat-squared shape are used in most of our simulations and experimental tests,

it is necessary to investigate the influence of mesh resolution on our applications.

Simulation results with different mesh resolutions are given in Fig. 1.29, where mesh

resolution 2×2 means the width and height sides are both divided into two segments.

From Fig. 1.29, we can see that the mesh resolution of 4×4 is fine enough to simulate

the behaviors for this simple setup. Finer mesh resolutions do not yield significant

difference in both force and deformation behaviors. We have therefore employed 4×4

mesh resolution throughout our simulations and parameter estimation processes.

ヤング率の影響

Figures 1.30 and 1.31 show simulation behaviors using different Young’s moduli E1

and E2, respectively. We can see that both elastic moduli have similar influences on

the rheological behaviors. Larger values of those moduli yield larger force amplitudes

in the pushing phase and faster decay in the holding phase. This can be explained

by Eqs. 1.20 and 1.21, where the value of Ei/ci determines the increasing and

decreasing speed of force amplitude during pushing and holding phases respectively.

Note that the held-shapes with different Young’s moduli are exactly the same. On the

other hand, the final-shapes are dependent on these moduli. Larger values resulted

in larger residual (permanent) deformation. Considering the five-element physical

model (the last row of Fig. 1.5b), during pushing phase, all elastic elements (denoted

図 1.29: Simulation results with different mesh resolutions.
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by E1 and E2) and viscous elements (denoted by c1, c2, and c3) are compressed with

some deformation. During holding phase, the total deformation of the object is kept

unchange. However, the deformation generated in the elastic elements will change to

the deformation of viscous elements, which also yields the force relaxation (reduction)

behavior in holding phase. Larger elastic moduli (E1 or E2) therefore produce bigger

deformation changing rate and finally yield larger residual deformation in a certain

time period.

粘性率の影響

Figures 1.32 and 1.33 show different simulation behaviors using different viscous

moduli c1 and c2, respectively. We can see that parameters c1 and c2 also have similar

influences on the rheological behaviors. Larger values of c1 and c2 yield larger force

amplitudes in pushing phase and slower decay in holding phase. Explanations also

can be obtained by looking at Eqs. 1.20 and 1.21. Similarly, both parameters c1 and

c2 do not affect deformed shapes during holding phase. However, larger values of c1

and c2 yield smaller residual (permanent) deformation. During the holding phase,

larger viscous moduli c1 and c2 actually will slow down the deformation changing rate.

Therefore, less deformation will be changed to viscous element and more deformation

will be recovered after releasing, which results in less residual deformation.

Figure 1.34 shows different simulation results with different values of viscous mod-

ulus c3. If we compare Eqs. 1.20 and 1.21 at time tp (10 s in this case), we find that

cn+1 (c3 in this case) is responsible for the sudden drop in force at time tp. The force

behaviors in the holding phase are the same with different parameter c3, as shown in

Fig. 1.34a. Once again, the held-shape is not dependent on parameter c3. However,

c3 has a little effect on the final-shapes but not in a significant way, as shown in
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図 1.30: Simulation results with different Young’s modulus E1.
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図 1.31: Simulation results with different Young’s modulus E2.

Fig. 1.34c. Since parameter c3 does not affect simulated behaviors in a significant

way, one may ask why we have to include this viscous element in our FE model.

Actually, without using parameter c3, we are still able to reproduce rheological force

and deformation. However without using c3, vibration always happens in both force

and displacement curve after releasing, as shown in Fig. 1.10b. A small value of pa-

rameter c3 can remove this vibration and without changing the simulated behaviors

significantly.

ポワソン比の影響

Figure 1.35 shows different simulated behaviors using different values of Poisson’s

ratios γ. We can see that parameter γ affects all the rheological behaviors: force,

held-shape, and final-shape. Larger parameter γ results in larger force responses and

larger transverse deformation behaviors but does not affect the normal deformation

in both held-shape and final-shape. This coincides with the definition of Poisson’s

ratio, i.e., a ratio between the transverse strain and axial strain. We summarize the
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図 1.32: Simulation results with different viscous modulus c1.
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図 1.33: Simulation results with different viscous modulus c2.

influences of all physical parameters (five-element physical model for instance) on

rheological behaviors in Table 1.2. Interestingly, we find that only Poisson’s ratio

γ affect the held-shape and all the other parameters do not affect this shape at all.

This feature allows us to estimate Poisson’s ratio γ separately.

c
c
c
c

c

c

c

c

c
c

c
c

図 1.34: Simulation results with different viscous modulus c3.

表 1.2: Influences of physical parameters on rheological behaviors

Force in Force Held- Final-
Parameter

pushing relaxation shape shape

E1 © © × ©
E2 © © × ©
c1 © © × ©
c2 © © × ©
c3 © × × ©
γ © © © ©
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図 1.35: Simulation results with different Poisson’s ratio γ.

1.5.2 最適化に基づくパラメータ推定

Parameter estimation of deformable objects has been studied intensively, as pre-

sented in Introduction. One popular and robust method is based on optimization,

which aims at minimizing the difference between simulation or calculation results

and experimental measurements. When the simulation or calculation is performed

by using FE model, this optimization process is usually called inverse FE opti-

mization (Fig. 1.3), i.e., the FE simulation or calculation is iterated with updated

physical parameters until the differences between the simulation and experiment be-

comes minimal. In our work, this method was also used to determine the physical

parameters of rheological objects. However, due to the presence of residual defor-

mation, accurately reproductions of both rheological forces and residual deformation

are quite challenging and parameter estimation for capturing both force and resid-

ual deformation is also quite difficult. In order to deal with this problem, we firstly

proposed a parameter estimation method with the following three steps:

1. Minimize the held-shape to estimate Poisson’s ratio γ;

2. Calculate the summation
∑n

i=1 ci to approximate the final-shape;

3. Minimize the force differences to estimate the remaining parameters with a con-

straint of summation
∑n

i=1 ci from the second step.

The details about each step will be presented in the following subsections.

ポワソン比の推定

As we discussed in the last section, only Poisson’s ratio γ affects the held-shape

and other parameters do not affect this shape at all. We can therefore estimate
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γ separately by minimizing the difference of held-shapes between simulation and

experiments. The objective function used for this optimization is given by:

E(γ) =
m∑

i=1

‖xsim
i (γ) − xexp

i ‖2, (1.96)

where xsim
i (γ) and xexp

i are the displacement vectors from simulation and experiment,

respectively. Scalar m = 2N with N be the total number of nodal points calculated

in this optimization problem. The optimization is terminated when the tolerance on

the function value E(γ) is less than 1× 10−12 or the tolerance on parameter γ is less

than 1×10−6. Optimization results will be presented in the next section and we can

find a global minimum for this optimization problem actually.

粘性率の総和の計算

As we discussed in Section 1.2, we can calculate the residual strain by using the

integration of stress history and the summation of viscous moduli, as given in Eq.

1.27. By extending this 1D equation to 2D case, we have

MγuN (∞) =
1∑n+1

i=1 ci

∫ tp+th

0

F(t)dt. (1.97)

where

Mγ = γλJλ + γµJµ =
γ

(1 + γ)(1 − 2γ)
Jλ +

1

2(1 + γ)
Jµ.

Note that the residual displacements uN(∞) and force history F(t) can be obtained

from experimental measurements. Matrix Mγ can be prepared in advance and it only

depends on the initial geometrical coordinates and Poisson’s ratio γ. Therefore, Eq.

1.97 allows us to calculate the summation of viscous moduli
∑n+1

i=1 ci and this sum-

mation can be used as a constraint during the estimation of other parameters. Since

the residual displacements uN (∞) was included in this calculation, the calculated

value of
∑n+1

i=1 ci would guarantee a good reproduction of final-shape. Validation

results will be presented in the next section.

力誤差を基準とする最適化

After the first two steps as presented in the above, we have estimated one param-

eter γ and one constraint of
∑n+1

i=1 ci. Considering the FE model with the parallel
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five-element model as an example which totally includes 6 physical parameters, we

still have 4 independent parameters to be determined. This can be accomplished by

minimizing the difference in rheological forces between simulation results and exper-

imental measurements. The objective function of this optimization problem can be

formulated as:

E(Θ) =

n∑
i=1

‖fsim
i (Θ) − fexp

i ‖2, (1.98)

where vector Θ consists of the parameters to be determined. Vector fexp
i is the force

measurements from experiments at the i-th sampling time and vector fsim
i (Θ) is the

force response during simulation with parameter Θ. The threshold used to terminate

the optimization is the tolerance on E(Θ) or the tolerance on Θ less than 1× 10−6.

In both optimizations presented in the first and third steps, the optimization toolbox

of MATLAB and “Nonlinear Least Squares” method were employed to minimize the

objective functions.

From Eq. 1.98, we can see that this optimization process involves iterative FE

simulations, which is usually time consuming. Based on our experiences, this opti-

mization process takes hours or days depending on the initial setting of the param-

eters. However, this simulation-based optimization is quite robust. As long as the

simulation can be done, this optimization process can be performed as well and it

does not require any special treatments of the physical models. We have tested this

method with different physical models and it works well.

解析的計算による力誤差の最適化

As presented in Section 1.2, the analytical expressions of stress in pushing and

holding phases can be formulated as given in Eqs. 1.20 and 1.21. Extending these

two equations from 1D to 2D case, we have

F(t) =
n∑

i=1

ci

(
1 − e

−Ei
ci

t)
Mγv

Push
N , (0 ≤ t ≤ tp), (1.99)

F(t) =
n∑

i=1

ci

(
1 − e

−Ei
ci

tp
)
e
−Ei

ci
(t−tp)

Mγv
Push
N , (tp ≤ t ≤ tp + th), (1.100)

where vector vPush
N consists of velocities of all nodal points during pushing phase. We

assume that this is a constant vector which corresponding to the constant velocity

p used in Eqs. 1.20 and 1.21. During the pushing phase, if we push the top surface
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of the object with a constant velocity and if this pushing velocity is not significantly

big, this assumption can be satisfied. After we estimated the Poisson’s ratio γ, vector

vPush
N can be easily obtained by performing the simulation in the pushing phase with

all the other parameters taking arbitrary values since these parameters do not affect

the deformation behaviors during pushing phase. Based on Eqs. 1.99 and 1.100, we

are able to calculate the force responses during both pushing and holding phases and

these calculated forces can be then used in Eq. 1.98 (instead of the simulated forces)

to perform the force optimization. Since now there is no iterative FE simulations

involved in this optimization process, we can obtain a optimal solution within only

several seconds depending on the initial setting of parameters. However, this method

only can be used in parallel physical models in which force expressions can be an-

alytically derived. For other physical models, such as serial models, this method

cannot be used and we have to perform simulation-based optimization instead, as

proposed in the last subsection.

In some applications, if we only focus on reproducing force behaviors, the second

step proposed in Section 1.5 can be ignored and all parameters except Poisson’s ratio

γ should be included in the force optimization (the third step). This will yield the

best performance of force reproduction. But at the same time, we have to sacrifice

some accuracy of the reproduction of final-shape. Detailed validation and discussions

will be presented in the next section accompanying with various experimental results

and comparisons.

多重粘性要素を用いた有限要素モデルにおけるパラメータ推定

In the above discussions, we supposed that only one set of parameters was used

in the FE model. However, due to the linearity of the physically based models

(e.g., the parallel five-element model), it is difficult to reproduce both rheological

forces and residual deformation simultaneously for most rheological objects. We

have therefore introduced a dual-moduli viscous element into our FE formulation,

as presented in Section 1.3. This dual-moduli viscous element has an ability to

switch two parameters from one to the other during simulation. It can successfully

capture both rheological deformation and force behaviors simultaneously. We have

also proposed that the simulation time and losing contact moment can serve as a

criterion to start the parameter switching.

Note that we usually switch the parameters at the moment when the operation is

finished and the external instrument start to leave the object. During the operations
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(e.g., pushing and holding), the deformation only depends on the Poisson’s ratio γ.

This suggests that we can use the estimated parameters by force optimization to

reproduce both rheological force and deformation during operations. However, this

set of parameters cannot guarantee accurate reproduction of residual deformation

at the same time. We have therefore employed the dual-moduli viscous element

to switch parameters when contact was lost. Since parameters ci dominate the

residual deformation as shown in Eq. 1.97, we only need to switch parameters

ci for capturing residual deformation. For example, we suppose the viscous moduli

estimated by force optimization as cload
i which will be used during operation (loading).

We named another set of viscous moduli as cunload
i , which will be used after operation

(unloading). Our idea is to use those cunload
i as unknown parameters to optimize the

difference of final-shapes between experiments and simulation. Note that during this

optimization the parameter cload
i will be switched to cunload

i automatically when the

deformation starts to recover. The objective function of this optimization problem

can be formulated as:

E(cunload
i ) =

m∑
i=1

‖xsim
i (cunload

i ) − xexp
i ‖2. (1.101)

After having cunload
i , we can easily determine the parameters used in the dual-moduli

viscous elements by using the following equations:

ci + αi = cload
i ,

ci − αi = cunload
i .

(1.102)

Estimation results of FE model with dual-moduli viscous elements for objects made

of Japanese sweets materials will be presented in the next section.

1.5.3 まとめ

In this section, the parameter estimation methods were presented for capturing

both rheological forces and deformation behaviors simultaneously. At first, FE sim-

ulations were performed with different mesh resolutions and physical parameters to

investigate the influence of these factors on the simulation behaviors. We found that

a 4 × 4 triangular mesh is fine enough for the simple setup used in our parameter

estimation procedures. We also found that only Poisson’s ratio γ affect the held-

shape and all the other parameters do not affect this shape at all. This allows us to
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estimated Poisson’s ratio γ separately by minimizing the difference of held-shapes

between simulation results and experimental measurements. We have therefore pro-

posed a three-steps estimation method. Except estimating γ (the first step), we also

calculate the summation of viscous coefficients
∑n

i=1 ci (the second step) by using

the measured data of force and final-shape. This summation was then served as a

constraint during estimating the other parameters (the third step) by minimizing

the force differences. Depending on the force results obtained from FE simulation

or straightforward calculation, the third step can be perform in two different ways.

The simulation-based force optimization is robust and can be used in any model,

but it is time-consuming since iterative FE simulations are involved. On the other

hand, the calculation-based force optimization method is very efficient but only can

be used in parallel physical models. In some applications, these two methods can

be mixed to achieve the best estimation results. At last, the parameter estimation

method for FE model with dual-moduli viscous elements was also presented based

on the above-mentioned methods.

1.6 実験的検証
In the previous chapters, we have presented the FE models and parameter es-

timation methods for simulating rheological objects, especially focusing on the si-

multaneous reproductions of both rheological forces and deformation behaviors. In

this chapter, we will demonstrate a series of experimental results and comparisons

with simulation results for validating proposed FE models and parameter estimation

methods.

1.6.1 実験システム

As we mentioned before, a pushing-holding-releasing operation has been employed

through out our discussions. Such kind of operation is frequently encountered in real

applications and provides enough information to estimate the physical parameters in-

cluded in the FE model. We have therefore performed a series of experiments on two

different materials using this pushing-holding-releasing procedure. In order to per-

form such procedure, a testing device is necessary. At the same time, the force mea-

surements should be recorded for the follow-up parameter estimation. Experimental

setup used in our experiments is shown in Fig. 1.36. A motorized stage (KX1250C-L,
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図 1.36: Experimental setup used for compressive tests.

SURUGA SEIKI Co.) was used to perform the pushing-holding-releasing operation.

Force responses on the bottom surface of the object were measured by a tactile sensor

(I-SCAN100L, NITTA Co.). In addition, several static images including the initial,

deformed, and recovered shapes, were recorded by a camera (Canon Eos Kiss X2).

These measurements were used to estimate the rheological properties of the object.

1.6.2 圧縮試験

Two kinds of rheological materials were tested in our experiments, which are com-

mercial available clay and Japanese sweets materials. These two materials show

typical rheological behaviors under a loading-unloading operation.

粘土

The commercial clay is available in supermarket and is supposed to be played by

kids (the one we used is supposed to be play by children over 3 years old, as shown
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(b) (c) (d)

(a)

図 1.37: Commercial available clay product (a) and flat-squared objects used in

experiments made of different colors: (b) red, (c) blue, and (d) yellow.

(a) v=0.1mm/s (b) v=0.2mm/s (c) v=0.5mm/s  

図 1.38: Flat-squared objects made of white colored clay were compressed from the

center part of top surfaces with different pushing velocities.

in Fig. 1.37a). The clay is made of flour, salt, and water mixed with a special ratio.

Several different colors are available and were used to distinguish different pushing

velocities in our experiments. Several flat-squared objects made by different colored
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表 1.3: Detailed information of compression experiments with commercial clay

Object Object size Push Push Pushing time
Object

weight W H T velo. disp. tp th
color

(g) (mm) (mm) (mm) (mm/s) (mm) (s) (s)

red-06 37.75 52.0 52.5 12.0 6 12.07 303.78

red-08 43.36 60.5 60.0 10.5 0.5 8 16.10 304.78

red-10 45.01 58.0 61.0 10.5 10 20.12 311.82

blue-06 43.98 60.5 59.0 10.0 6 30.17 311.83

blue-08 45.04 61.0 59.5 10.0 0.2 8 40.24 321.88

blue-10 43.80 60.5 59.5 10.0 10 49.29 342.00

yellow-06 46.19 59.0 59.0 11.0 6 58.34 502.94

yellow-08 44.72 59.5 59.0 10.0 0.1 8 79.46 500.94

yellow-10 45.14 57.5 56.5 11.5 10 98.58 609.57

white-05 46.43 58.0 57.0 12.0 0.5 16.09 369.16

white-02 46.23 60.0 60.5 10.5 0.2 8 40.24 400.34

white-01 44.08 59.5 58.0 10.0 0.1 79.46 601.52

clays were prepared for compressive testing, as shown in Fig. 1.37b, 1.37c, and

1.37d. Some markers were drawn on the object surfaces for convenient capturing of

internal deformation. During testing, the entire top surfaces of these objects were

compressed downward with constant velocities. Different colors denote different ve-

locities, e.g., red color corresponding to the velocity of 0.5 mm/s, blue is 0.2 mm/s,

and yellow is 0.1 mm/s. For each color, three objects were prepared and compressed

with different displacements of 6 mm, 8 mm, and 10 mm, respectively. Measurements

of these 9 objects were then used to estimate the physical parameters. In order to

evaluate the estimated parameters, three white colored objects were prepared and

compressed from the center part of top surfaces with different pushing velocities

but same displacement, as shown in Fig. 1.38. Detailed information about these

experiments with commercial clay was given in Table 1.3. Experimental trials with

different pushing velocities (0.1, 0.2, and 0.5 mm/s) and different pushing displace-

ments (6, 8, 10 mm) were performed to investigate how the pushing velocity and

displacement affect the parameter estimation results.

75



(a) material 1 (b) material 2 (c) material 3

図 1.39: Flat-squared objects made by different Japanese sweets materials.

(a-1) material 1+2 (a-2) material 2+3 (a-3) material 1+3

(a) layered objects compressed from the top surface

(b-1) material 1+2 (b-2) material 2+3
(b) layered objects compressed from the center of top surface

図 1.40: Non-uniform layered objects compressed over the entire or at the center of

the top surfaces.

和菓子の材料

Three kinds of Japanese sweets materials were provided by OIMATU, a sweets

company in Kyoto. Each was made of flour, water, and bean powder mixed at spe-
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表 1.4: Detailed information of compression experiments with Japanese sweets ma-

terials

Object Object size Push Push Push Time

Material weight W H T type velo. disp. tp th
(g) (mm) (mm) (mm) (mm/s) (mm) (s) (s)

Mat. 1 52.43 58.0 59.5 12.0 28.87 182.06

Mat. 2 32.97 50.0 50.0 11.0 top 0.2 6 29.68 181.26

Mat. 3 34.99 50.0 50.0 11.0 29.97 181.46

Mat. 1+2 66.99 60.0 80.0 11.0 49.29 181.76

Mat. 2+3 69.12 60.0 80.0 11.0 top 0.2 10 49.49 181.47

Mat. 1+3 68.52 60.0 80.0 11.0 49.49 181.97

Mat. 1+2 66.99 60.0 80.0 11.0 center 0.2 10 49.69 181.86

Mat. 2+3 69.12 60.0 80.0 11.0 8 39.13 182.07

cific ratios. Three flat-squared objects, each composed of one material, were prepared

for the compression tests, as shown in Fig. 1.39. The entire top surfaces of these ob-

jects were compressed at a constant velocity of 0.2 mm/s and with a displacement of

6 mm. Several markers were drawn on the surfaces and force responses and deformed

images were recorded. These measurements were used to estimate the rheological

parameters of these sweets materials. In addition, to validate the FE model and the

estimated parameters, several non-uniform layered objects(each made of three layers

with two alternating materials) were compressed over their entire or at the center of

their top surfaces, as shown in 1.40a and 1.40b, respectively. Detailed experimental

information using Japanese sweets materials is given in Table 1.4. Note that the

pushing time tp was quite different between uniform object (about 30 s) and lay-

ered objects (about 40 or 50 s) because they were compressed with the same velocity

(0.2 mm/s) but different displacements (6, 8, and 10 mm). The holding time th, how-

ever, was quite similar (around 3 minutes, as shown in the last column of Table 1.4)

among these experimental trials. During the experiments, we manually controlled

the time th and concluded that 3 minutes was sufficient to obtain adequate infor-

mation on force relaxation behaviors. In addition, the compressing displacements

were chosen to be 6, 8, and 10 mm (see the eighth column of Table 1.4) based on

the small-deformation assumption of generalized Hooke’s law. We used the same
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compressing displacement (10 mm) for the three trials (middle three rows of Table

1.4) with layered objects compressed over their entire top surfaces to investigate the

performance of our model with different material combinations. Additionally, two

further trials (the last two rows of Table 1.4) with layered objects compressed at the

centers of their top surfaces were performed to validate our FE model and estimated

parameters with different operations and different compressive displacements (8 and

10 mm).

1.6.3 パラメータ推定の結果

Generally, the material property of an object will not differ even though the ob-

ject is subjected to different operations or it has different shape or size. This feature

allows us to use regular shaped objects with simple pushing operations to estimate

their physical parameters. Then, the estimated parameters should be able to sim-

ulate arbitrary shaped objects with any operations. In our experiments, we used

flat-squared objects pushed on the entire top surfaces with constant velocities to

estimate the parameters. As an example of our step-by-step estimation method, we

show the case of the object made by red colored clay pushed with a displacement of

8 mm, denoted by red-08 in Table 1.3. A parallel five-element model was employed

to model the rheological behaviors of this object. According to the discussions pre-

sented in the previous section, parameter c3 in the parallel five-element model was

mainly responsible for eliminating the vibration from the simulation. Based on our

experience, a small value of c3 comparing with c1 and c2 is enough to remove the

vibration and without significant effect on simulation results of force and deforma-

tion. Usually, parameter c1 and c2 of real materials have a magnitude about 105

or 106 Pa·s. We have therefore set a value of 100 Pa·s to parameter c3 in advance.

Now, we have 5 unknown parameters to be estimated, i.e., Poisson’s ratio γ, Young’s

moduli E1, E2, and viscous moduli c1, and c2.

ポワソン比の推定

In the first step, we estimated the Poisson’s ratio γ by minimizing the differences of

held-shapes. Since other parameters do not affect held-shape, we therefore assigned

some arbitrary values to the other parameters. Three trials were performed and

the arbitrary values for other parameters are listed Table 1.5. The optimization for
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表 1.5: Arbitrary values of E1, E2, c1, c2, and c3 for estimating γ

Case no. E1 (Pa) E2 (Pa) c1 (Pa·s) c2 (Pa·s) c3 (Pa·s)
trial 1 5 × 102 1 × 103 2 × 103 3 × 103 1 × 102

trial 2 5 × 103 1 × 104 2 × 104 3 × 104 1 × 102

trial 3 5 × 104 1 × 105 2 × 105 3 × 105 1 × 102

表 1.6: Estimation results for Poisson’s ratio γ

Case Initial Final E(γ) Iteration Cost

number value x0 value x∗ (×10−6 m2) count (hr)

0.15 0.29023634 3.7546 4 0.26

trial 1 0.25 0.29023308 3.7546 3 0.20

0.35 0.29023665 3.7546 4 0.25

0.15 0.29024458 3.7546 4 0.37

trial 2 0.25 0.29022518 3.7546 3 0.32

0.35 0.29021075 3.7546 4 0.42

0.15 0.29023707 3.7546 4 1.55

trial 3 0.25 0.29023282 3.7546 3 1.25

0.35 0.29023569 3.7546 4 1.63

minimizing the differences of held-shapes were then performed, as discussed in the

previsou section. Table 1.6 shows the estimated Poisson’s ratios γ at different cases

and different initial values. We find that parameter γ quickly (only 3 or 4 iterations)

converge to a global minimum of about γ = 0.2902. This value will be used in the

following calculation of
∑3

i=1 ci and force optimization.

粘性率の総和の計算

Using Eq. 1.97, we can easily calculate the value of summation
∑3

i=1 ci based

on experimental data on force and residual deformation. In this case, we found

that
∑3

i=1 ci = 9.6961 × 106Pa·s. Note that the value of
∑3

i=1 ci can guarantee a

good reproduction of final deformed shape since the residual deformation has been

considered during the calculation.
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表 1.7: Estimation results of E1, E2, and c1 using simulation-based optimization

Trial Initial Final F (Θ) Iteration Cost

number
Parameter

value x0 value x∗ (N2) count (hr.)

E1 (Pa) 4 × 104 2.4722 × 104

trial 1 E2 (Pa) 6 × 104 5.0771 × 104 90.519 36 4.47

c1 (Pa·s) 8 × 106 8.1142 × 106

E1 (Pa) 8 × 104 5.5790 × 104

trial 2 E2 (Pa) 6 × 104 3.8065 × 104 27.383 43 5.77

c1 (Pa·s) 4 × 106 4.5349 × 105

E1 (Pa) 3 × 104 3.7607 × 104

trial 3 E2 (Pa) 8 × 104 7.6996 × 104 24.536 33 4.79

c1 (Pa·s) 9 × 106 9.1985 × 106

パラメータの推定

After estimating Poisson’s ratio γ and the value of
∑3

i=1 ci, the other parameters

can be then estimated by minimizing the difference of rheological forces with a

constraint of summation
∑3

i=1 ci. However, depending on the way obtaining virtual

force data, the estimation of other parameters can be divided into two categories:

simulation- and calculation-based methods, as discussed in the previous sections.

Estimation Results of Simulation-Based Optimization In simulation-based

optimization, the FE simulations were iterated with updated parameters until the

differences between simulation results and experiment measurements becomes mini-

mal. Three optimization trials were performed with different initial conditions. The

estimation results associated with computation costs were given in Table 1.7. We can

see that the optimal solutions are quite sensitive with the initial setting of param-

eter values. The optimization curves (solution evolution) of these three trials were

shown in Fig. 1.41. We are not able to obtain a global solutions in this optimization

problem. We only can pick one local minimum by comparing the values of objective

function F (Θ). In this case, we pick the third trial as a solution. We also can see

that the simulation-based optimization took several hours to reach a local minimum

even with a very close setting of initial values (the third trial). Usually, it is quite

hard to find the close settings of initial values and we may have to perform a plenty

of trials to finally reach an acceptable solution. This method is time-consuming but
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図 1.41: Optimization curves of three trials given in Table 1.7.

quite robust and widely applicable. It can be used in any model to estimate the

parameters as long as the simulation can be done.

Estimation Results of Calculation-Based Optimization In calculation-based

optimization, the force results were calculated using Eqs. 1.99 and 1.100 instead of

running FE simulations. The calculated force results were then used in optimization

to minimize the force differences. Totally, five optimization trials were performed for

this case. The fist three trials used the same initial conditions with simulation-based

optimization (Table 1.7) for the convenience of comparison. The last two trials were

with other arbitrary initial values. The estimation results associated with computa-

tion costs are given in Table 1.8. We can see that all trials converged to the same

solution and it seems like we can find the global minimum by using this method. The

optimization curves of the first three trials were shown in Fig. 1.42. Comparing Figs.

1.41 and 1.42, we found that the values of objective function from both simulation-

and calculation-based optimization were start from the same value (because the ini-

tial parameter setting are the same) but converged to the different minimal values in

the end of optimization. Figure 1.41 shows that the curves in simulation-based op-

timization have more ladder-shaped regions which make the optimization easy to be

trapped into a local minimum. On the other hand, the curves from calculation-based

optimization are appears more smooth. Smaller tolerance used to terminate the op-

timization can yield better solutions, especially for simulation-based optimization

method. However, it will take much more computation time. From the estimation

results given in Tables 1.7 and 1.8, we can see that both optimization methods con-

verge to the very similar solutions, as shown in trial 3 of Table 1.7 and all trials of

Table 1.8. Note that the first and second layer Maxwell element are exchangeable in

a parallel five-element model. Therefore, the values of E1 and E2, c1 and c2 are also
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表 1.8: Estimation results of E1, E2, and c1 using calculation-based optimization

Trial Initial Final F (Θ) Iteration Cost

number
Parameter

value x0 value x∗ (N2) count (s)

E1 (Pa) 4 × 104 3.7730 × 104

trial 1 E2 (Pa) 6 × 104 8.0916 × 104 24.514 15 0.17

c1 (Pa·s) 8 × 106 9.2022 × 106

E1 (Pa) 8 × 104 8.0914 × 104

trial 2 E2 (Pa) 6 × 104 3.7730 × 104 24.514 20 0.20

c1 (Pa·s) 4 × 106 4.9375 × 105

E1 (Pa) 3 × 104 3.7730 × 104

trial 3 E2 (Pa) 8 × 104 8.0917 × 104 24.514 14 0.19

c1 (Pa·s) 9 × 106 9.2023 × 106

E1 (Pa) 2 × 103 8.0952 × 104

trial 4 E2 (Pa) 3 × 104 3.7731 × 104 24.514 23 0.23

c1 (Pa·s) 4 × 105 4.9381 × 105

E1 (Pa) 6 × 105 8.0917 × 104

trial 5 E2 (Pa) 4 × 105 3.7730 × 104 24.514 16 0.18

c1 (Pa·s) 2 × 105 4.9375 × 105

exchangeable, which makes the solutions of trials 1, 3, and trials 2, 4, 5 of Table 1.8

actually very similar. In addition, the computation costs in the calculation-based

optimization were extremely short (less than 1 second in all trials listed in Table

1.8) since there is no FE simulations involved during optimization. However, the

disadvantage is that this method only can be used in parallel models which provide

the analytical expressions of forces.

粘性率の総和を用いない推定

The value of
∑3

i=1 ci calculated separately before force optimization will guarantee

a good reproduction of final deformed shape. In the last subsection, this value was

used as a constraint during the force optimization. Since this constraint makes the

optimization problem losing one independent variable, the result of force optimiza-

tion will be suffered. We have to compromise the accuracy between the reproductions

of final-shapes and force behaviors. Note that the held-shape is affected only by Pois-

son’s ratio γ. Therefore, we do not have to do the same compromise for held-shapes.
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図 1.42: Optimization curves of three trials given in Table 1.8.

表 1.9: Estimation results of E1, E2, c1 and c2 using simulation-based optimization

Trial Initial Final F (Θ) Iteration Cost

number
Parameter

value x0 value x∗ (N2) count (hr.)

E1 (Pa) 4 × 104 3.1736 × 104

trial 1 E2 (Pa) 7 × 104 7.1867 × 104 4.0351 24 24.9

c1 (Pa·s) 9 × 106 1.3298 × 107

c2 (Pa·s) 6 × 105 6.9787 × 105

E1 (Pa) 3 × 104 3.1735 × 104

trial 2 E2 (Pa) 8 × 104 7.1884 × 104 4.0351 39 39.8

c1 (Pa·s) 9 × 106 1.3298 × 107

c2 (Pa·s) 7 × 105 6.9787 × 105

E1 (Pa) 2 × 103 7.1851 × 104

trial 3 E2 (Pa) 3 × 104 3.1732 × 104 4.0351 26 26.7

c1 (Pa·s) 4 × 105 6.9809 × 105

c2 (Pa·s) 5 × 106 1.3300 × 107

In some situations, such as deformable objects handled by robotic hand, we may

care about the force response and the held-shape much more than the final-shape.

In such situations, we can just ignore the calculation of
∑3

i=1 ci during the param-

eter estimation procedure. Instead, we use all four parameters: E1, E2, c1, and c2

as unknown variables to perform the force optimization. This should give us better

results of force reproduction. In the following subsections, the estimation results of

these four parameters using both simulation- and calculation-based methods will be

presented. Note that γ = 0.2902 and c3 = 100Pa·s are still used in the following

discussions.
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表 1.10: Estimation results of E1, E2, c1 and c2 using calculation-based optimization

Trial Initial Final F (Θ) Iteration Cost

number
Parameter

value x0 value x∗ (N2) count (s)

E1 (Pa) 4 × 104 3.1752 × 104

trial 1 E2 (Pa) 7 × 104 7.2145 × 104 4.0766 25 0.3108

c1 (Pa·s) 9 × 106 1.3291 × 107

c2 (Pa·s) 6 × 105 6.9733 × 105

E1 (Pa) 3 × 104 3.1753 × 104

trial 2 E2 (Pa) 8 × 104 7.2147 × 104 4.0766 24 0.3205

c1 (Pa·s) 9 × 106 1.3291 × 107

c2 (Pa·s) 7 × 105 6.9731 × 105

E1 (Pa) 2 × 103 7.2131 × 104

trial 3 E2 (Pa) 3 × 104 3.1750 × 104 4.0766 26 0.3554

c1 (Pa·s) 4 × 105 6.9745 × 105

c2 (Pa·s) 5 × 106 1.3292 × 107

Estimation Results with Simulation-Based Optimization Three optimiza-

tion trials with different initial conditions were performed and the estimation results

were given in Table 1.9. The optimization curves are shown in Fig. 1.43. In this

case, we are able to find a global minimum and the solution is much better than

the ones shown in Tables 1.7 and 1.8 (by comparing the values of objective function

F (Θ)).

Estimation Results with Calculation-Based Optimization Estimation re-

sults using calculation-based optimization method were given in Table 1.10 and op-

図 1.43: Optimization curves of three trials given in Table 1.9.
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表 1.11: Estimation results with the constraint of
∑3

i=1 ci for all objects made by

clay materials
Trial E1 E2 c1

∑3
i=1 ci E(Θ)

name
γ

(Pa) (Pa) (Pa·s) (Pa·s) (N2)
red-06 0.2672 3.1706 × 104 6.4702 × 104 7.4606 × 106 7.9035 × 106 6.3658
red-08 0.2902 3.7730 × 104 8.0916 × 104 9.2022 × 106 9.6961 × 106 24.514
red-10 0.2367 2.7237 × 104 7.5406 × 104 5.4256 × 106 5.9092 × 106 31.5945
blue-06 0.2537 2.0182 × 104 4.4243 × 104 4.4555 × 106 4.9014 × 106 3.1863
blue-08 0.2292 2.6344 × 104 6.4348 × 104 6.9430 × 106 7.6884 × 106 5.5283
blue-10 0.2602 3.0593 × 104 7.5570 × 104 5.7866 × 106 6.5596 × 106 50.4884

yellow-06 0.2593 2.0820 × 104 3.9699 × 104 7.9776 × 106 8.5615 × 106 2.4562
yellow-08 0.2479 2.9216 × 104 4.6662 × 104 1.1663 × 107 1.2385 × 107 28.5041
yellow-10 0.2494 2.1480 × 104 4.1776 × 104 8.0970 × 106 8.9095 × 106 32.8334
average 0.2549 2.7256 × 104 5.9258 × 104 7.4457 × 106 8.0571 × 106 —

timization curves are shown in Fig. 1.44. Comparing with simulation-based method,

very similar results were obtained using calculation-based optimization but the com-

putation costs are significantly reduced. Figures 1.43 and 1.44 also show very similar

curves of solution evolution.

粘土

By following the same estimation procedures presented above, we can estimate

the physical parameters for all experimental objects made of clay materials. Note

that c3 = 100Pa·s and the calculation-based optimization method were used in all

trials. Estimation results for clay objects with and without the constraint of
∑3

i=1 ci

are given in Tables 1.11 and 1.12, respectively. Note that the estimated parameters

図 1.44: Optimization curves of three trials given in Table 1.10.
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表 1.12: Estimation results without the constraint of
∑3

i=1 ci for all objects made by

clay materials
Trial E1 E2 c1 c2 E(Θ)
name

γ
(Pa) (Pa) (Pa·s) (Pa·s) (N2)

red-06 0.2672 2.8650 × 104 6.0364 × 104 8.8323 × 106 5.4820 × 105 3.1418
red-08 0.2902 3.1753 × 104 7.2147 × 104 1.3291 × 107 6.9731 × 105 4.0766
red-10 0.2367 2.1954 × 104 6.7528 × 104 8.4719 × 106 6.8294 × 105 4.2865
blue-06 0.2537 1.6582 × 104 4.2801 × 104 6.0304 × 106 6.1032 × 105 0.3573
blue-08 0.2292 2.2164 × 104 6.0319 × 104 8.7880 × 106 9.6051 × 105 1.2468
blue-10 0.2602 2.2424 × 104 7.1494 × 104 9.3098 × 106 1.2391 × 106 1.8716

yellow-06 0.2593 1.7273 × 104 3.6229 × 104 1.0636 × 107 8.4945 × 105 0.2495
yellow-08 0.2479 2.1804 × 104 4.2930 × 104 1.9429 × 107 1.3657 × 106 0.6176
yellow-10 0.2494 1.5206 × 104 4.1475 × 104 1.4602 × 107 1.4882 × 106 0.5583

listed in Table 1.11 yield good reproductions of final-shapes while parameters in Table

1.12 result in good approximation of force responses. We can see that both sets of

parameters of some clay objects are quite close and the optimal values of objective

function (given in the last column of both tables) are also not very different. This

means that it is possible for those objects (e.g., red-06, blue-06) to use one set of

parameters to accurately reproduce both deformation and force behaviors. However

for most objects, the differences of parameters and objective function values are

significant, especially the values of
∑3

i=1 ci which dominate both final-shape and

force amplitude as discussed in Section 1.2. For these objects, one set of parameters

is not enough to reproduce both rheological deformation and force simultaneously.

和菓子の材料

The same parameter estimation procedures were also performed for objects made

by three kinds of Japanese sweets materials. Experimental information was given in

Table 1.4. Estimation results for these three objects with and without the constraint

of
∑3

i=1 ci are given in Tables 1.13 and 1.14, respectively. Comparing with results

of clay materials, two sets of parameters of sweets objects are very different with

each other. The values of
∑3

i=1 ci from Table 1.14 (not given directly but can be

easily calculated) are around 10 times larger than those given in Table 1.13. The

optimal values of objective function are even hundreds times different. This means

it is impossible for objects made by sweets materials to accurately reproduce both

rheological deformation and forces simultaneously. This problem comes from the
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表 1.13: Estimation results with the constraint of
∑3

i=1 ci for three objects made by

Japanese sweets materials
Trial E1 E2 c1

∑3
i=1 ci E(Θ)

name
γ

(Pa) (Pa) (Pa·s) (Pa·s) (N2)
material 1 0.3746 8.1002 × 103 9.7210 × 103 1.0804 × 106 2.3761 × 106 326.01
material 2 0.3353 1.0662 × 104 3.7979 × 103 1.2423 × 106 1.6849 × 106 186.48
material 3 0.3267 5.8791 × 103 7.3308 × 103 8.6015 × 105 1.9319 × 106 76.41

表 1.14: Estimation results without the constraint of
∑3

i=1 ci for three objects made

by Japanese sweets materials
Trial E1 E2 c1 c2 E(Θ)
name

γ
(Pa) (Pa) (Pa·s) (Pa·s) (N2)

material 1 0.3746 1.3468 × 104 2.4695 × 104 2.9631 × 107 7.2381 × 104 0.9152
material 2 0.3353 1.0553 × 104 3.7276 × 104 1.3213 × 107 1.1593 × 105 0.8385
material 3 0.3267 9.1565 × 103 5.0802 × 104 8.1809 × 106 1.3427 × 105 0.7208

physical model (e.g., parallel five-element model) itself and it cannot be resolved by

adding more basic elements to the physical model or changing the configuration of

the model. Further validation of this phenomenon with simulation results comparing

with experimental ones will be presented in the later of this chapter.

多重粘性要素を用いたモデルにおける推定

For some materials, such as clay materials discussed above, one set of parameters

seems enough to capture both rheological forces and deformation behaviors. However

for most rheological objects, such as Japanese sweets products, it is impossible to use

only one set of parameters to cover both force and deformation simultaneously. We

have therefore introduced FE model with dual-moduli viscous elements (Section 1.3)

to solve this problem. Here, we suppose that the FE model was formulated using

parallel five-element model with two dual-moduli viscous elements (Fig. 1.12b) and

we preassigned a value of 100 Pa·s to parameter c3. By following the estimation

procedure presented in the previous section, we can determine those parameters for

FE model with dual-moduli viscous elements and listed them in Table 1.15. Note

that the Poisson’s ratios are not listed in this table and they take the same values

as given in Table 1.14.
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表 1.15: Estimation results of FE model with dual-moduli viscous elements for sim-

ulating the objects made of Japanese sweets materials
Trial E1 E2 c1 c2 α1 α2

name (Pa) (Pa) (Pa·s) (Pa·s) (Pa·s) (Pa·s)
mat.1 1.3468 × 104 2.4695 × 104 1.4820 × 107 5.3855 × 104 1.4811 × 107 1.8527 × 104

mat.2 1.0553 × 104 3.7276 × 104 6.6096 × 106 7.8271 × 104 6.6034 × 106 3.7659 × 104

mat.3 9.1565 × 103 5.0802 × 104 4.0958 × 106 8.2198 × 104 4.0851 × 106 5.2072 × 104

1.6.4 検証結果

In the above sections, the experimental information was introduced and the physi-

cal parameters for clay and Japanese sweets materials were estimated using different

methods. In this section, the simulation results using the estimated parameters will

be compared with experimental measurements to show the performance of our FE

model and parameter estimation methods. Note that the physical parameters were

estimated by using measured data of the uniform objects (for both clay and sweets

materials) with compressing operations from the entire top surfaces. The measure-

ments of uniform objects compressed from the center-top surfaces (white colored

clay objects) and non-uniform sweets objects compressed from top and center-top

surfaces were used to evaluate the estimated parameters.

粘土

At first, the estimated parameters listed in Tables 1.11 and 1.12 were used to

simulate the corresponding clay objects to show performance of our optimization-

based estimation methods and also to demonstrate the difference between these two

methods with or without the constraint of
∑3

i=1 ci. Simulation results compared with

experimental measurements for three trials (denote by red-08, blue-06, and yellow-08

in Tables 1.11 and 1.12) were shown in Figs. 1.45, 1.46, and 1.47, respectively. From

these figures we can see that estimated parameters with the constraint of
∑3

i=1 ci

yield better results of final-shapes. On the other hand, estimated parameters with-

out this constraint result in better results in force approximation. This is coincide

with our theoretical analysis, i.e., the summation
∑3

i=1 ci dominates the residual

deformation. We can also see that the estimated parameters with the constraint

always under-approximated the force amplitudes, especially in the end of the hold-

ing phases. On the other hand, the estimated parameters without the constraint
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図 1.45: Validation results for object red-08 (a) with and (b) without the constraint

of
∑3

i=1 ci.

always over-approximated the final-shapes, especially for object yellow-08 shown in

Fig. 1.47. It can be explained that accurate approximation of final-shape requires

relative smaller values of
∑3

i=1 ci while accurate approximation of force behaviors

requires relative larger values. If we look at Tables 1.11 and 1.12, we find that the

values of
∑3

i=1 ci in Table 1.12 are always larger than those in Table 1.11. The object

yellow-08 has the largest difference (about 1.8 times) between two sets of parameters

among these three objects. This is why the differences in both force and deformation

behaviors shown in Fig. 1.47 are larger than those in Figs. 1.45 and 1.46. How-

ever, we can obtain good reproductions of both rheological forces and deformation

behaviors for objects red-08 and blue-06 within a relative short time (within 200

seconds) using the estimated parameters with the constraint of
∑3

i=1 ci. Actually

in most applications, the holding time may not be very long. In such cases, the

parameters listed in Table 1.11 are good enough to reproduce both rheological forces

and deformation behaviors simultaneously.

The simulation results shown in Figs. 1.45, 1.46, and 1.47 were performed using

their own estimated parameters. In other words, these validation results only showed
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図 1.46: Validation results for object blue-06 (a) with and (b) without the constraint

of
∑3

i=1 ci.

how well the force and shape optimizations were performed. These validation results

are thus quite insufficient. We therefore conducted three other experiments with ob-

jects made by white colored clay materials. In order to investigate how the estimated

parameters can handle different operations, we compressed these three objects from

the center area of the top surfaces instead of the entire top surfaces and also with

different compressing velocities of 0.5 m/s, 0.2 m/s, and 0.1 m/s, respectively. De-

tailed experimental information of these three trials can be found in Table 1.3. Note

that different colored clay materials actually denote different materials and they may

have different properties. However, since they were sold in the same pack and man-

ufactured at the same time, the difference in properties among them was supposed

to be negligible. Therefore, the average values of estimated parameters listed in

the last row of Table 1.11 were used to reproduce the rheological behaviors of these

three objects. The simulation results compared with experimental measurements

were shown in Fig. 1.48. Because the deformation behaviors are more complicated

(especially in the contact corners) than compressing from the entire top surfaces,

we have used a 16 × 16 triangular mesh instead of a 4 × 4 mesh to simulate the
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図 1.47: Validation results for object yellow-08 (a) with and (b) without the con-

straint of
∑3

i=1 ci.

behaviors of these white colored objects. In order to clearly show the deformation

comparisons between simulation and experiments, only 8×8 lattice mesh was shown

in Fig. 1.48. We find that both held-shapes and final-shapes are pretty well matched

between simulation results and experimental measurements and we can achieve good

reproductions of force behaviors in a short term (within about 200 seconds). We can

therefore say that we can obtain acceptable reproduction results of both rheological

force and deformation for clay objects by using our FE model and the estimated

parameters listed in Table 1.11.

和菓子の材料

The estimated parameters listed in Tables 1.13 and 1.14 were used to simulate

these three objects to see what happen for sweets materials with two estimation

methods with or without the constraint of
∑3

i=1 ci. Simulation results compared

with experimental measurements for these three trials are shown in Figs. 1.49, 1.50,

and 1.51, respectively. We can see that estimated parameters with the constraint of
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図 1.48: Validation results for white colored objects with a compressing velocity of

(a) 0.5 m/s, (b) 0.2 m/s, and (c) 0.1 m/s.

∑3
i=1 ci yield good results of final-shapes but bad results of forces. On the contrary,

estimated parameters without this constraint result in good results in force but bad

in final-shapes. This again proved our theoretical discussions of
∑3

i=1 ci dominating

both force amplitude and residual deformation. The values of
∑3

i=1 ci in Tables

1.13 and 1.14 are very different with each other. The ratios between these two set of

values
∑3

i=1 ci are 12.5, 7.91, and 4.3 (values in Table 1.14 divided by values in Table

1.13) for sweets materials 1, 2, and 3, respectively. We can see that material 1 has

the largest ratio and also the largest difference of the objective function values (listed

92



図 1.49: Validation results for sweets material 1 (a) with and (b) without the con-

straint of
∑3

i=1 ci.

in the right most column in Tables 1.13 and 1.14). We are not able to accurately

reproduce both forces and deformation behaviors simultaneously for sweets objects

by using only one set of parameters. Using one set of parameters, we can reproduce

either rheological forces or deformation behaviors alone. It is impossible to cover both

in the same time. If we use only one set of parameters, we always have to compromise

between the reproductions of force and deformation behaviors. We believe the reason

of this phenomenon arises from the nonlinearity of material properties. Our FE

model is based on linear Hooke’s law, which provided a proportional relationship

between stress and strain (force and displacement in 2D case). Most real materials

include nonlinear, rate-, and time-dependent properties. Therefore, it is hard to use

a linear model to approximate such nonlinear behaviors. We can introduce nonlinear

modeling, such as the model with Green strain tensor as presented in Section 1.3,

to cope with this problem. Such nonlinear models suffer from high computational

cost because of the complicated constitutive equations and the intensive calculation

for updating the stiffness matrices. Analytical expressions of force are usually not

available for such nonlinear models, which makes the parameter estimation more
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図 1.50: Validation results for sweets material 2 (a) with and (b) without the con-

straint of
∑3

i=1 ci.

difficult and sometimes inapplicable. We have therefore introduced dual-moduli

viscous elements into our FE model to deal with this problem and next section will

demonstrate validation results of this model.

多重粘性FEモデルの検証

The dual-moduli viscous element has an ability to switch two parameters from

one to the other during simulation. The FE model is still linear model and only

some parameters (c1 and c2 in the case of parallel 5-element model) change values

before and after the switching moment. This model can yield accurate reproductions

of both rheological forces and deformation behaviors simultaneously with the same

computation cost as a linear model with one set of parameters.

Validation Results for Corresponding Uniform Objects At first, we have

used the estimated parameters listed in Table 1.15 to simulate the corresponding

objects made by three sweets materials. The simulation results compared with ex-
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図 1.51: Validation results for sweets material 3 (a) with and (b) without the con-

straint of
∑3

i=1 ci.

perimental measurements are shown in Fig. 1.52, where the solid line denotes the

results from experimental measurements and dashed line (may be hard to distin-

guish) denotes the results from simulation. We can see that this model successfully

captured both rheological forces and deformation behaviors simultaneously.

Validation Results for Non-Uniform Layered Objects Made by Sweets

Materials Again, the simulation results shown in Fig. 1.52 were performed using

their own estimated parameters. These validation results therefore only demonstrate

how well the parameter estimation procedures were conducted. In order to further

evaluate the estimated parameters, several other experimental trials with layered

objects, as shown in Fig. 1.40, were performed. Each object consists of three layers

and two different materials, with the materials of the top and bottom layers being

identical. These types of layered structures are often encountered in food products,

such as sandwich and sushi. Different combinations of two materials were tested,

e.g., in Fig. 1.40a-1, the object was made of Materials 1 and 2 with Material 1

in the middle. The objects were compressed over their entire top surfaces (Fig.
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(a-1) force (a-2) held-shape (a-3) final-shape
(a)

(b-1) force (b-2) held-shape (b-3) final-shape
(b)

(c-1) force
(c)

(c-2) held-shape (c-3) final-shape

図 1.52: Validation results of FE model with dual-moduli viscous elements for objects

made by Japanese sweets material 1 (a), 2 (b), and 3 (c).

1.40a) or at the center (Fig. 1.40b) of the top surfaces with a constant velocity

of 0.2 mm/s. Detailed experimental information can be found in Table 1.4. The

estimated parameters listed in Table 1.15 were then used to simulate these layered

objects. Comparisons of the simulation results and experimental measurements are

shown in Figs. 1.53 and 1.54. In Fig. 1.54, the object images are from experiments

and the blue and red lines are obtained from simulations. Because the objects

compressed over their entire top surfaces showed simple deformation behaviors, 4×8
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(a-1) Force (a-2) Held-shape (a-3) Final-shape

(a) 

(b-2) Held-shape

(b) 
(b-1) Force (b-3) Final-shape

(c) 
(c-1) Force (c-2) Held-shape (c-3) Final-shape

図 1.53: Validation results of layered objects compressed over the entire top surfaces.

The layered objects made by materials 1+2 (a), 2+3 (b), and 1+3 (c), respectively.

triangular meshes are sufficient for their simulations, as shown in Fig. 1.53. On the

other hand, the objects compressed at the center of top surfaces demonstrate more

complicated deformations around the contact corners. We therefore use triangular

meshes with finer resolution (16× 32) to reproduce these deformation behaviors. In
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(a-1) Force (a-2) Held-shape (a-3) Final-shape

(b-1) Force (b-2) Held-shape (b-3) Final-shape

(a) 

(b) 

図 1.54: Validation results of layered objects compressed at the center of the en-

tire top surfaces. The layered objects made by materials 1+2 (a) and 2+3 (b),

respectively.

Fig. 1.54, only 8 × 16 lattice meshes are given for the convenience of comparisons

with the experimental images. The validation results in Figs. 1.53 and 1.54 show the

successful reproductions of both deformation behaviors and force responses for these

layered objects. But the simulations results shown in Fig. 1.54 exhibited larger errors

than those in Fig. 1.53, especially the force behaviors. This suggests that better

validation results might be obtained if the operation conditions used in parameter

estimation and application are identical. Even though the force reproductions in

Fig. 1.54 suffer from some errors, the errors are still in acceptable range for most

applications.
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1.6.5 まとめ

In this section, experimental setup and compressing tests were demonstrated and

simulation results were compared with experimental measurements to validate our

FE models and parameter estimation methods. Two kinds of rheological materials,

commercial available clay and Japanese sweets materials, were employed in our ex-

periments. Flat-squared objects made by these two materials were compressed using

a linear stage with a pushing-holding-releasing operations. The force data and static

images were recorded for estimating the physical parameters. The estimation meth-

ods presented in the previous chapter were used to estimate the physical parameters

for these objects. Two sets of parameters with or without the constraint of
∑3

i=1 ci

were given to compare the differences. The simulations were then performed using

the estimated parameters and comparisons between simulation results and experi-

mental measurements were done to validate the proposed FE models and parameter

estimation methods. We found that the estimated parameters with the constraint of∑3
i=1 ci yield better reproduction of final-shapes while parameters without

∑3
i=1 ci

result in better force reproductions. For some objects made by clay materials, good

reproductions of both rheological forces and deformation behaviors can be achieved

simultaneously by using only one set of parameters. However for other objects, this

is impossible and the reason caused the failure is the linearity of the physically-based

models. Fortunately, after introducing the dual-moduli viscous elements into our FE

models, we have finally solved this problem and successfully reproduced both rheo-

logical forces and deformation behaviors simultaneously. The estimated parameters

from uniform objects can also be used in simulating non-uniform layered objects

even with different compressing operations.

Note that the measurement requirements for our estimation methods included

three static images of the object: the initial shape, the held-shape, and the final-

shape, and the force responses during the experiments. In addition, we have used

regular shaped objects with some markers drawn on the surfaces throughout our

experiments. However, our estimation method is not limited by the shape of the

object and can be applied to arbitrary object as long as the deformation field of

some feature points is available. Besides, the loading position is also not limited to

the top surface but may be anywhere, even at just one point convenient for force

measurements.
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1.7 結言

1.7.1 結論

Modeling and simulation of deformable objects has been playing an important

role in many applications, such as surgical simulation, robotic manipulation, food

engineering, and so on. Many modeling methods have been proposed, such as MSD,

FEM, and particle-based methods, etc. They all have their own advantages and

disadvantages. There are even many commercial softwares available for simulating

deformable objects, such as ANSYS and ABAQUS. However, the modeling and

simulation of deformable objects is still a unmature and hot research field. This is

not only because the development of computation technology makes more methods

applicable, but also because the diversity of deformation behaviors demonstrated in

real world objects.

The work presented in this dissertation is focusing on modeling and reproducing

the behaviors of rheological objects, which include both elastic and plastic properties

and always yield residual deformation after loading-unloading operations. The diffi-

cult part of this subject is how to accurately reproduce both rheological forces and

deformation, especially residual deformation behaviors simultaneously. The main

contributions of our current work are as follows:

1. We have summarized the physically-based models which can be used to simulate

rheological behaviors. We categorized such physical models into serial and parallel

models and proposed a criterion to choose an appropriate one for certain applica-

tion. We have derived the generalized constitutive laws for both models and found

a corresponding relation between the two models. We then derived the analytical

expressions of rheological forces and residual deformation for generalized parallel

models. Through a series of analysis, we found that there is contradiction between

accurate reproductions of rheological forces and residual deformation. In order to

cope with this contradiction, we have proposed a dual-moduli viscous element and

integrated it with our physically-based models.

2. We have developed 2D and 3D FE dynamic models for simulating rheological

behaviors based on the physically-based models and linear Cauchy strain tensor.

In order to simulate large deformation and deformation with rotation motion, the

nonlinear Green strain tensor has also been introduced into our FE formulations.

The FE dynamic model with dual-moduli viscous elements was also derived. We
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have then extended our FE model to deal with non-uniform layered objects and

contact interaction between rheological objects and external instruments. We

found that the losing contact moment can serve as a perfect criterion for dual-

moduli viscous element to switch the parameters.

3. We have proposed several methods for estimating the physical parameters of rhe-

ological objects. The basic idea is to minimize the difference between simulation

results and experimental measurements with updated physical parameters. In or-

der to capture both rheological forces and deformation behaviors, we proposed

a three-step method with a separate estimation of Poisson’s ratio γ and calcula-

tion of summation
∑n

i=1 ci. Both simulation- and calculation-based optimization

methods were investigated and compared. The simulation-based method is ro-

bust but time-consuming, while the calculation-based method is very efficient but

limited to only parallel models. we found that the three-step method works well

for some rheological objects but failed to others. We have therefore estimated

the parameters of FE model with dual-moduli viscous elements. We employed

the calculation-based optimization method to minimize the force difference and

simulation-based method to optimize the difference of final-shapes.

4. A series of compressing tests were performed using objects made by commercial

available clay and Japanese sweets materials. Experimental measurements of uni-

form objects with compressing from the top surfaces were used to estimate the

physical parameters. The estimated parameters were then employed to simulate

uniform objects with compressing operation from the top-center surfaces and even

non-uniform layered objects. Through various validations, we proved the contra-

diction between the reproductions of rheological forces and residual deformation.

For several clay objects, this contradiction phenomenon is not obvious and we

could obtain acceptable results for both force and deformation using only one set

of parameters. For other objects, however, this contradiction phenomenon is very

strong and it is impossible to use one set of parameters to cover both rheological

forces and deformation behaviors. This coincides with our theoretical discussions.

The FE model with dual-moduli viscous elements and estimated parameters were

then employed to solve this problem and finally we successfully reproduced both

rheological forces and deformation behaviors simultaneously.

Even though our current work concentrated on reproductions of rheological be-

haviors, most of our discussions and methods can be easily applied to elastic, visco-
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elastic, and plastic models as long as the physically-based models were used. Since

our attention is focusing on the reproduction accuracy of both forces and deforma-

tion, we have to sacrifice the computation costs and real-time performance is not of

concern in the current situation.

1.7.2 今後の課題

According to our current works, we have done a systematic analysis of modeling

for simulating rheological behaviors and we have established efficient methods for

estimating physical parameters of rheological objects. In the future, we plan to

make our efforts on the following directions:

1. 3D validation of our FE model and estimated parameters. 3D FE formulation has

been presented in this dissertation. But we did not perform any simulation vali-

dation for real objects with estimated parameters. The physical parameters were

mainly estimated by using 2D FE model and they are supposed to be applicable

in 3D simulation. Thus, we need experimental validations of this issue. If the

proposed methods are not applicable, new parameter estimation methods with

3D model have to be investigated. This is theoretically feasible but practically

difficult because the computation costs.

2. Therefore, the second future target is to speed up our FE simulation. We plan

to use the new computing architecture called GPGPU (General Purpose Graphic

Processing Unit) to achieve this target.

3. In the current experiments, only two kinds of materials were tested. This is quite

limited. We will perform more experiments with other rheological objects, such

as Japanese tofu and various kinds of sushi. There might be some interesting

behaviors which have not been discovered.

4. We are now working on particle-based model, such as Smoothed Particle hydro-

dynamics (SPH). This could be another option for simulating rheological objects.

Comparing with FE model, SPH model has advantages of low computation costs

and convenient implement for complex operations, such as cutting and reforming.

The SPH model also need parameter estimation when dealing with real materials.

The parameter estimation ideas presented in this dissertation can serve as a good

reference.
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第2章 人指の内部変位計測と変形シ
ミュレーション

2.1 緒言
人は，意識していなくても手を使い物体を把持したり，操作することができる．こ

のような人の巧みな操作を解明，実現するために，様々な分野で人の巧みな動作を
解明する試みが行われている．従来より，人の軟組織が物体の安定な把持，操作に
貢献していることは指摘されていたが，指先の面接触による摩擦の増加や指先への
衝撃力の緩和などの簡単な議論しかされてこなかった．そこで，ロボティクスの分
野では，軟組織を含む系を力学的に解析することで，軟組織が人の巧みな動作にど
のように貢献しているかを解明する努力がなされている．その結果，軟組織がポテ
ンシャルエネルギー場を形成することで，物体の安定な把持や操作に貢献している
ことが明らかになりつつある．しかし，このような解析を行う場合，指の軟組織の
部分には半球体の単純な系の柔軟指が用いられることが多い．ゆえに，実際に人が
指先で物体を把持や操作している場合に同じ理論が使用できるかは分かっていない．
また，実際に人の巧みな動作を行う人間型のロボットハンドの研究や開発もなされ
ている．しかし，このようなロボットハンドの指先には金属やプラスティック樹脂
などの剛体指が使用されることが一般的である．たとえ，指先に柔軟な素材が使わ
れていたとしても，物体の把持，操作の際に使われる制御則は剛体指と同様の制御
則が用いられることがほとんどである．ゆえに，柔軟指の特徴が考慮されておらず，
制御則としては適しているものであるとは言い難い．
著者らはこれまでに，人の巧みな動作における軟組織の役割の解明を試みた．そ

の結果，柔軟指における物体の安定的な把持，操作には指先の弾性ポテンシャルエ
ネルギーが大きな役割を果たしていることを解明することができた [45]．これは，硬
い板と半球体の柔軟物からなる指先において，弾性ポテンシャルエネルギーは柔軟
物の凹み量だけでなく，指と物体の姿勢にも依存し，物体の安定な把持，操作には
ポテンシャル場の極小により力学的に説明できるというものである．また，MRI等
の内部イメージング技術を用い，柔軟物内部の変形計測の研究がなされている [46]．
この研究では，FEモデルを用いたシミュレーションで，生体組織などの非一様な変
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形特性を持つ物体の力学パラメータの同定方法を確立することを目的としている．
本章では，三次元での人指の変形シミュレーションの作成とその評価を研究の目

的とする．まず，MR装置を用いて得られた画像から人指の内部変位を三次元的に
計測する．そして，人指の変形シミュレーションを作成し，計測結果と比較し，そ
の評価を行う．

2.2 指の変形シミュレーション
本節では，指の物体の接触判定法および指の変形シミュレーションについて述べる．

2.2.1 物体同士の接触判定

二次元での接触判定

物体の変形シミュレーションを行う場合，物体同士の接触を判定する必要がある．
図 2.1に二次元での物体同士の接触モデルを示す．板状物体は一定速度で図の下方
向に移動し，変形物体は固定されている．接触判定には，板状物体に含まれる三角
形要素�PiPjPkと物体の一つの節点Qを使用する．今，節点Qと�PiPjPkで構成
される三角形は，�QPjPk，�PiQPk，�PiPjQの 3個である．これら 3個の三角形
要素の面積は，図 2.2-(a)のように，節点Qが�PiPjPk内側にあるとき以下の条件
が成り立つ．

�QPjPk > 0, �PiQPk > 0, �PiPjQ > 0. (2.1)

このように，三角形要素の面積は全て正の値になる．しかし，図 2.2-(b)のように物
体の節点Qが外部にあるときは，3個の三角形要素の面積は，

�QPjPk > 0, �PiQPk > 0, �PiPjQ < 0 (2.2)

となり，�PiPjQが負の値となる．この性質を利用することで，物体の接触判定を
行うことが可能となる．つまり，物体に含まれる全ての節点と�PiPjPkで構成され
る 3個の三角形の面積を計算することで，物体同士の接触判定を行うことができる．

三次元での接触判定

図 2.3に三次元での接触モデルを示す．図のように硬い板状物体と節点Qがあると
する．板状物体は一定の速度で図中の下方向に移動し，節点Qと接触する．板状物体
に含まれる四面体要素♦PiPjPkPlを図のように設定したとき，節点Qと♦PiPjPkPl

104



図 2.1: 二次元での接触モデル

(a) 節点が外側にあるとき
(b) 節点が内部にあるとき

図 2.2: 二次元の節点の位置

で構成される四面体要素は，♦QPjPkPl，♦PiQPkPl，♦PiPjQPl，♦PiPjPkQの 4個
である．今，図 2.4-(a)のように節点Qが♦PiPjPkPlの内側にあるとき，これら 4個
の四面体要素は以下の条件を満たす．

♦QPjPkPl > 0, ♦PiQPkPl > 0, ♦PiPjQPl > 0, ♦PiPjPkQ > 0. (2.3)

つまり，全ての四面体要素の体積は 0より大きくなる．しかし，図 2.4-(b)のように
点Qが♦PiPjPkPlの外側にあるときは，

♦QPjPkPl > 0, ♦PiQPkPl > 0, ♦PiPjQPl < 0, ♦PiPjPkQ > 0 (2.4)

となる．したがって，物体同士の接触判定は板状物体に含まれる四面体要素と物体
の節点から生成される四つの四面体の体積を計算すればよい．ここで注意すること
は，二次元では接触判定には下側一つの三角形要素のみに注目していれば良かった
が，三次元では節点が板状物体のどの部分の四面体要素に接触するかはわからない．
そのため，板状物体に含まれる 5つの四面体要素それぞれについて体積計算を行わ
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図 2.3: 三次元での接触モデル

(a) 節点が外側にあるとき
(b) 節点が内部にあるとき

図 2.4: 三次元の節点の位置

なければならない．また，接触した節点は，制約安定化法によって板表面に固定さ
れ，板と同じ速度で移動する．

2.2.2 指のモデル

本節では変形シミュレーションで使用した指のモデルについて述べる．今回，シ
ミュレーションで使用した指のモデルはAIM@SHAPE[47]で公開されているOlivier

hand(図 2.5)を使用している．このWebサイトから入手できるのは，モデルのポイ
ントの座標データおよび表面を覆う三角形要素のデータである．このモデルから，人
差し指の第一関節以降の座標データおよび三角要素を抽出して使用している．しか
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図 2.5: ハンドモデル

(a) 斜め上からの図 (b) 横からの図

図 2.6: 指モデル

し，三次元で指の変形シミュレーションを行う場合，指表面を三角形要素で覆うだ
けではなく，指全体を四面体要素の集合でモデリングしなければならない．そこで，
TetGen [48]で公開されているプログラムを使用し，四面体要素を作成する．このプ
ログラムは，座標データと三角形要素のデータからDeraunay Triangulationによっ
てモデルを四面体要素の集合に変換する．図 2.6は，図 2.5の人差し指の第一関節以
降を抽出し，再構成した指のモデルである．
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(a) t = 0.0 (b) t = 0.1 (c) t = 0.2 (d) t = 0.3

(e) t = 0.4 (f) t = 0.5 (g) t = 0.6 (h) t = 0.7

(i) t = 0.8 (j) t = 0.9 (k) t = 1.0

図 2.7: 横から見る指変形のシミュレーション結果

2.2.3 シミュレーション結果

前節で示したモデルを使用して指の変形シミュレーションを作成した．本シミュ
レーションでは，指を一応な物体としてシミュレーションを行った．また，制約安
定化法により指の付け根の部分と爪の部分を動かないように固定してある．シミュ
レーションで用いたパラメータの値は，E = 2，C = 400，ω = 1000，νp = 0.35，で
ある．サンプリング時間は 1µs，シミュレーション時間は 1 sである．
図 2.7および図 2.8に指変形シミュレーションの結果を示す．図 2.8のシミュレー

ションの結果より，指と板状物体が接触した後，指の節点が板状物体と同じ速度で
動いていることがわかる．このことから，三次元での指の接触判定モデルは機能し
ていることがわかる．本シミュレーションでは，指の節点の変位量が大きくなるにつ
れ，色が青から赤に変わるように表示してある．シミュレーションの結果を見ると，
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(a) t = 0.0 (b) t = 0.1 (c) t = 0.2 (d) t = 0.3

(e) t = 0.4 (f) t = 0.5 (g) t = 0.6 (h) t = 0.7

(i) t = 0.8 (j) t = 0.9 (k) t = 1.0

図 2.8: 斜め上から見る指変形のシミュレーション結果

板状物体に押されている部分やその周辺の節点の変位量が大きいだけでなく，指の
爪側まで変位が出ていることがわかる．しかし，指の変形計測では押されている部
分が変位が大きく，その他の部分では変位が出ていない．これは，指を一様な物体
としたために起こってしまったと考えられる．そのため，より正確なシミュレーショ
ンを行うためには指モデルを一様な物体とせず，複数の領域に分けてシミュレーショ
ンを行う必要性がある．

2.2.4 まとめ

本節では，三次元での指の接触判定法と指変形のシミュレーションを示した．指
と物体の接触判定については，シミュレーションの結果より，板状物体と指の節点
が接触したときに，接触した節点が板状物体と同じ速度で移動していることからも
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正確に機能していることがわかる．指の変形シミュレーションでは，指が板状物体
に押されることで指の変形が外部変形だけでなく，指内部の変形も起こっているこ
とが確認できた．本シミュレーヨンでは，指は一様な物体としている．しかし，実際
の指は骨や皮膚といったパラメータの違う様々な体組織が存在する．そのため，正
確なシミュレーションを行うためにはそれら体組織を考慮し，指の四面体要素によっ
てパラメータを変える必要性がある．

2.3 人指の変形の計測
本章では，人指のMR装置による撮影条件，内部変位の計測について述べる．ま

た，Snake法による指の輪郭検出および指表面の変位計測について述べる．

2.3.1 計測手法

MRIによる指の撮影

本計測では，人指の内部変位を計測する．人指内部の変形の撮影には，核磁気共
鳴画像法 (Magnetic Resonance Imaging：MRI)を使用した．MRIは，核磁気共鳴現
象を利用して生体内部の情報を画像化する方法である．MRI は，超伝導電磁石を使
用することで強磁場を発生させる．これにより，本来ばらばらの方向である原子核
スピンの向きを揃え，磁場をかけた向きに巨視的磁場を発生させる．この核磁化に
特定の周波数のラジオ波を照射し，静磁場方向から傾けると，核磁化は静磁場方向
を軸として歳差運動を行う．MRIでは，このパルス照射を止め，定常状態に戻るま
での過程の違いをパルスシーケンスのパラメータにより画像化する．
本計測では，滋賀医科大学に設置してある診察用の 3 TのMRIを使用している．

MRIの環境下では，強磁場を発生しているため，金属物質を使用することができな
い．そのため，図 2.9に示すように木片に指を押し当て撮影を行った．指を木片に
わずかに触れる程度の指表面の変形が無い状態を初期状態とし，指をしっかり押し
当て，指の輪郭がしっかり変形した状態を変形状態としている．撮影の注意点とし
て，指の断面の位置を変形前と変形後で一致させるために，指先の撮影開始位置が
変化しないように撮影を行う必要がある．また，診断用のMR 装置では体などの比
較的大きな物体を対象としている．そのため，指という小さな対象物を撮影するた
めには撮影時間が長くかかってしまう．撮影中は指の位置がずれないように注意を
払う必要性がある．画像サイズは 512× 512 pixel，FOVは 120× 120 mmである．
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図 2.9: 木片に押し当てている指先

スライス間隔は 0.6 mmでスライス枚数はいずれも 64枚である．スライス枚数 64枚
のうち指断面が実際に写っているのは 49枚である．
図 2.10は指の変形前と変形後の同一スライスの画像である．図 2.10-(a)および

図 2.10-(b)は指の先端のMR画像で，図 2.10-(c)および図 2.10-(d)は爪の中腹付近
のMR画像である．また，図 2.10-(e)および図 2.10-(f)は第一関節付近のMR画像
である．そして，図 2.11は得られた 64枚のMR画像を構築し，指の初期状態と変
形状態を三次元イメージとして示したものである．
図 2.10-(a)および図 2.10-(b)より，指先端が現れるスライスが同じであることや

形状に大きな差異が見られないことから初期状態と変形状態でスライス間のずれは
ほぼ起きていないと思われる．また，画像がぼやけず鮮明に写っているため，撮影
中に指が動くといったことは起こっていないといえる．医療診断用のMR装置では，
主に水素原子のスピンを計測している．そのため，指の皮膚や神経，血管などといっ
た水分を多く含む部分が画像に写っていることがわかる．しかし，爪や骨，木片な
どどいった水分を含まないであろう体組織や物体については，画像に一切写ってい
ないことがわかる．
指内部の説明を図 2.12に示す．指の皮下組織の部分には，神経や血管といった体

組織が写っている．指の内部変位量は，これら図中の皮下組織の移動量より求めて
いる．

指の変位量の計測

MRIによって得られた画像から，指の内部変位量を三次元的に計測した．指の変
位量計測は，張が作成したプログラム [49]を用いて行った．内部変位計測はSIFTを
用いて特徴点を抽出し，それらの移動量を三次元的に計測することで変位量を求め
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(a) 初期状態の指先端のMR画像 (b) 変形状態の指先端のMR画像

(c) 初期状態の爪付近の指のMR画像 (d) 変形状態の爪付近の指のMR画像

(e) 初期状態の第一関節付近の指のMR画像 (f) 変形状態の第一関節付近の指のMR画像

図 2.10: MR装置による指の断面画像
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(a) 初期状態の三次元MR画像 (b) 変形状態の三次元MR画像

図 2.11: 指の三次元MR画像

図 2.12: 指のMR画像

ている．内部変位計測の手順としては，まず，MR画像に写っているノイズを削除
し，指の断面図の部分のみを残す．そして，指の変形前と変形後の指の位置や姿勢
を一致させる．その後，それぞれの断面画像からボリュームデータを作成する．得
られたボリュームデータを用い，特徴点を検索する範囲を指定し，変位量を求めて
いる．特徴点の検索範囲は，同一スライス内のみではなく，前後のスライス間でも
検索する．
以下に内部変位計測の結果を示す．それぞれの結果の画像は，変形後の指の形で

あり，変位量が大きくなるにつれ色が緑から黄色に変化していく．図 2.13は指の腹
側の変位状態である．また，図 2.14，図 2.15はそれぞれ，指の背中側，指の腹側か
ら見た変位状態である．図 2.13より，指の押された部分が変形していることがわか
る．しかし，指の背中側では変位があまり出ていない．これは，爪などの硬い組織
の影響によるものと思われる．これらの計測は，指内部の変位に注目している．そ

113



図 2.13: 指の腹側の内部変位

図 2.14: 横側から見た指の内部変位

図 2.15: 爪側から見た指の内部変位
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(a) Snake法の初期状態 (b) Snake法の最終状態

図 2.16: 指の三次元MR画像

図 2.17: 指の爪付近の輪郭抽出

のため，指の形状ははっきりとはでていない．

2.3.2 Snake法による輪郭抽出

Snake法について

指表面の変位を計測するため，Snake法による輪郭抽出を行った．Snake法とは，
閉曲線が形を変えることで物体の輪郭をとらえる動的輪郭検出法の一種である．輪
郭検出方法として，色の濃度や閉曲線の形を評価関数として扱い，輪郭線上に閉曲
線がのったときに評価関数の値が一番小さくなるように設定することで輪郭検出を
行う．Snake法の閉曲線は，正確には点と点を結んだものである．そのため，抽出し
たい輪郭のサイズによって点の数を調整しなければ，点が同じ場所で重なるなどし，

115



図 2.18: 上から見た Snake法による輪郭抽出の結果

輪郭の検出が不正確になってしまう．
図 2.16-(a)および図 2.16-(b)は，指の第一関節付近の輪郭抽出の初期状態の画像

と輪郭検出が終了した最終状態の画像である．これらの画像から，MR 画像に写る
指の輪郭は正確に抽出できている．また，図 2.17に示すように，指の爪付近のよう
に輪郭が複雑な場合でも検出が可能である．

Snake法による輪郭抽出結果

図 2.18および図 2.19に Snake法による変形状態の指の輪郭抽出の結果を示す．
図 2.19は斜め下から見た状態である．図 2.18より，爪部分などの複雑な形状であっ
てもその形状をよくとらえていることがわかる．また，図 2.19より，指の腹の部分
が押さえつけられ，輪郭が大きく変形していることがわかる．

2.3.3 まとめ

MR装置を用い指の断面の撮影を行った．また，得られたMR画像から指の変位
量を計測した．内部変位計測では，指を押し当てた部分の変位量が大きく，その他
の部分の変位はあまり見られないという結果が出た．これは，骨などの硬い生体組
織が皮下組織の変形に影響しているためだと思われる．
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図 2.19: 下から見た Snake法による輪郭抽出の結果

2.4 計測結果を用いた指モデルの変形シミュレーション
本章では，前章で得られた指の計測データを用いて指モデルを作成する．そして，

そのモデルを用いて指の変形シミュレーションを行う．

2.4.1 シミュレーションで用いた指モデル

図 2.20に変形シミュレーションで用いた指のモデルを示す．本章の指モデルでは
前章の計測で得られた指の輪郭データを使用している．ここで，指の変形シミュレー
ションには有限要素法を用いるため，計測で得られた節点全てを用いるとシミュレー
ション時間が長くなってしまう．そのため，シミュレーション時間短縮のために指
の形状がわかる程度に節点を削減している．

MR装置から得られた 64スライスの画像から，4スライス間隔に 16スライス使用
する．そして，Snake法で得られた指の輪郭から 10点使用した．その表面を三角形
要素で覆い，TetGenを使用して四面体要素の集合に変換した．
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(a) 斜め上からの図 (b) 横からの図

図 2.20: 計測データを用いた指のモデル

2.4.2 シミュレーション手法

指は一様な物体と仮定し，制約安定化法により指の付け根の部分と爪の部分を固
定する．シミュレーションで用いたパラメータの値は，E = 2，C = 400，ω = 1000，
νp = 0.35，である．サンプリング時間は 1µs，シミュレーション時間は 0.5 sである．

2.4.3 シミュレーション結果

図 2.21に横から見たシミュレーション結果を，図 2.22に斜め上から見たシミュ
レーション結果を示す．本シミュレーション結果では，指モデルの押されている部
分が大きく変形しているが，その他の部分では変位が見られないことがわかる．こ
の結果は，指の内部変位計測の結果と似ている．

2.4.4 まとめ

本章では，MR画像から得られた計測データを使用して指モデルを作成した．ま
た，そのモデルを用いて指の変形シミュレーションを行った．指モデルの作成では，
計測したデータ全てを用いず，節点を減らして使用している．この理由として，FE

モデルでシミュレーションする場合，節点の数が多いとシミュレーション時間が長
くなるという問題があるためである．また，表面や内部のメッシュ分割を行うこと
が困難になるという問題もあったためである．
指の変形シミュレーションでは，指と板状物体の接触している部分以外ではほと

んど変形が見られなかった．これは，前章の指変位の計測結果と比較しても妥当な
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(a) t = 0.0 (b) t = 0.05 (c) t = 0.1 (d) t = 0.15

(e) t = 0.2 (f) t = 0.25 (g) t = 0.3 (h) t = 0.35

(i) t = 0.4 (j) t = 0.45 (k) t = 0.5

図 2.21: 横から見る指変形のシミュレーション結果

ものであるといえる．しかし，より正確に行うためには体組織を考慮した複数のパ
ラメータ設定が必要となる．

2.5 結論
本章では，人指のモデルを作成した．そして，三次元空間での接触判定法を提案

し，変形シミュレーションを行った．また，MR装置を用いて人指を撮影し，得られ
た画像から人指の内部変位量および表面変位量を計測した．人指の変形シミュレー
ションでは，三次元での物体同士の接触判定を提案し，変形のシミュレーションを
行った．その結果，三次元空間でも物体同士の接触を行えることを示した．また，指
の変形シミュレーションでは接触部分から遠ざかるにつれ変位量が小さくなるとい
う結果を得ることができ，実際の変形に近い結果を得ることができた．しかし，指
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(a) t = 0.0 (b) t = 0.05 (c) t = 0.1 (d) t = 0.15

(e) t = 0.2 (f) t = 0.25 (g) t = 0.3 (h) t = 0.35

(i) t = 0.4 (j) t = 0.45 (k) t = 0.5

図 2.22: 斜め上から見る指変形のシミュレーション結果

を均一な物体と仮定しており，内部変位は全体的に押し上げられるように変形して
いる．このため，より正確な変形シミュレーションを行う場合，骨などの体組織を
考慮したパラメータ分割が必要になってくる．人指の変位量計測では，MR画像か
ら骨や皮下組織などの体組織を画像処理を使用して抽出し，それらのマッチングを
行うことで三次元的に内部変位量を計測できることを示した．また，Snake法を用い
ることで指表面の輪郭を抽出し，それによって得られたデータから指表面の形状を
計測した．最後に，MR画像から得られた計測データを用いて指のモデルを作成し，
変形シミュレーションを行った．指の変形シミュレーションでは有限要素法を用い
ているため，節点が多いとシミュレーションに膨大な時間がかかってしまう．その
ため，指モデルを作成する際には指の形状がわかる程度に節点を削減している．ま
た，指の変形シミュレーションでは指の接触している部分が変位量が大きく，その
他の部分では変位があまり見られなかった．これは，内部変位の計測結果と比較し
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ても妥当なものであるといえる．しかし，より正確に行うためには体組織を考慮し
たパラメータ分割が必要になると思われる．
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第3章 MR画像からの内部変形場の
計算

3.1 緒言
本章では，軟組織のMR画像から内部変形を計算する手法を述べる．変形前と変

形後のMR画像を撮影し，これらを比較することにより内部変形を計算する．変形
場の計算においては，画像のアフィン変換に加えて画像の変形に対処する必要があ
る．また，軟組織のMR画像は，解像度が少なく輪郭が明瞭でない場合が多い．こ
のようなMR画像に対して，ロバストに画像間の対応点を求め，変形場を計算する
アルゴリズムが求められる．本章では，局所不変特徴量を用いた変形場の計算手法
と，SACとTPSを用いた変形場の計算手法について述べる．

3.2 局所不変特徴量を用いた変形場の計算
本節では，局所的に不変な特徴量を用いて画像間の対応点を計算し，変形場を求

める手法について述べる．
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A Local Geometric Preserving Approach For Interior Deformation
Fields Measurement From MR Volumetric Images of Human Tissues

Penglin Zhang and Shinichi Hirai

Abstract— While a variety of different features matching
algorithms have been reported in rigid areas, few features
matching algorithm used in non-rigid area have been reported.
This work is concerned about interior deformation fields
measurement of non-rigid, non-uniform human tissue or organs
from 3D magnetic resonance volumetric images. In this paper,
a local geometric preserving approach was proposed to find
homologous features from a given features in MR volume
obtained at the initial state. Three dimension invariant moment
and geometric preserving property of a local 3D region have
been used to design the function which was used to measure the
strength of match of the candidate feature pair. Interior density
deformation fields is then inferred to use a linear approximate
approach in an irregular tetrahedra finite element model. To
test the validity of the proposed approach, it is applied to actual
MR volumetric images obtained from a volunteer’s finger. The
primary result is consistent with the fact.

I. INTRODUCTION

Because magnetic resonance imaging (MRI) affords su-
perb anatomic images with excellent spatial resolution and
contrasts among soft tissues, it is widely used in computer-
assisted medical applications, such as clinical diagnosis,
surgery simulation, operation planning, and evaluation of
physical characteristics of biological tissues. Therefore, as
basic techniques, interior deformation fields or motion mea-
surement of biological tissues from magnetic resonance
(MR) volumetric images are becoming the focused research
branch in medical image processing. Moreover, interior de-
formation fields or motion estimation are also the foundation
of medical virtual reality and medical virtual simulation.

Generally, the approach for estimation of deformation
from MR volumetric images can be classified into three
types: elastic deformation models based methods, tagging
methods and feature matching based methods.

The elastic deformation models based method can be clas-
sified into either parametric or geometric active models [3].
In order to obtain the deformation information of object,
the parametric active contours, also called snakes, tries to
minimise a defined cost function so that it deforms a given
initial contour toward the boundary of the object. it was
first introduced by Kass et al. in 1987 [4], and subsequently
developed and used by Lang et al. [5], Cho et al. [2] and
Matuszewski et al. [1] to estimate deformation motion of
non-rigid objects. In the geometric active model [3], [6], [7],

This work was supported by the freedom research plan of Wuhan
University (6081008)

P.L. Zhang is with School of Remote Sensing and Information Engineer-
ing, Wuhan University, 430079 Wuhan, China zplcy@263.net
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[8], the curve and surface of object was first to be detected,
then the deformation propagation of curve and surface are
used to track the motion. However, no matter what elastic
deformation models are, disadvantages exist in deformation
estimation. Such as, the parametric active model cannot
handle changes in the topology of the evolving contours
when implementations of deformation are performed directly,
and specially, often heuristic, topology handling procedures
must be used [8]. In the geometric active model, when
contrast is poor and boundaries are not clear or continuous in
the images, the contours tend to leak through the boundary
[9]. The tagged images must have a regular grid pattern in
the imaging plane, and if the number of tagged points is
low,the accuracy of the measurements will be poor. More
important than the former two aspects, no matter what
elastic deformation models are, they can only handle the
deformation on the boundary of non-rigid object, not the
interior deformation.

The MRI tagging method was proposed by Zerhouni [10],
and has been subsequently developed. Amini et al. [11]
introduced a coupled B-snake grids and constrained thin-
plate splines to analyze 2D tissue deformations; Wang et
al. [13] proposed to use subspace approximation techniques
to compute motion fields and introduced a spline technique
to reconstruct dense displacement fields; Chen et al.[14]
introduced an approach for tracking the tags; and Huang et
al.[12] introduced an environment to fit and track volumetric
tagged MRI data by a 4D deformable B-spline model. In all
these MRI tagging methods, a set of radio-frequency (RF)
pulses are used to make trackable tags in thin slices which
are perpendicular to the imaging plane [11].

Different from the former two types methods, in our
previous work [17], [18], our method presents a feature
matching combine with interpolation approach for measure-
ment interior deformation fields of non-rigid object using MR
images. Its primary idea is to obtain local deformation fields
based on homologous feature pairs inner images, then, the
deformation fields of each pixel or voxel will be interpolated
to use the local deformation fields of adjacent homologous
feature pairs.Obviously, the key problem of the approach is to
find enough homologous feature pairs in the MR volumetric
images obtained at initial situation (initial volume) and MR
volumetric images obtained at deformed situation (deformed
volume), respectively. Therefore, to further improve the pro-
posed feature matching based approach, this paper proposes a
local geometric preserved approach. In the Section 2, we will
describe the approach and give examples and preliminary
experimental results in Section 3. In the final section, we
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will present a discussion and conclusions.

II. METHOD

In general, our approach is consists of four steps: Fea-
tures extraction, Affine transformation, Feature matching
and Deformation fields measurement. Here, to find enough
homologous feature pairs, it is necessary to extract enough
features from the initial and deformed volumes. In this study,
high curvature 3D points as features are pre-extracted from
MR volumetric images. In this case, we extend 2D Harris
operator [24] to a 3D operator for extracting features from
MR volumetric images [15].

In addition, because the initial volume and deformed
volume are acquired at different time, conditions and MRI
device without any calibration, they only have local coordi-
nate systems, respectively. Thus, to make them into a global
uniform coordinate system to ensure result correctly, in this
case, we choose a set of corresponding features around bone
which can be regarded as rigid as control points. Then,
affine transformation operation is applied to the initial and
deformed volumes using affine registration approach defined
in [17] and [21].

In the next subsections, we will present feature matching
method and interior deformation fields measurement method
in succession, which are key part of this work.

A. Local Geometric Preserving Feature Matching Algorithm

Finding enough robust homologous feature pairs, also
called feature matching, is the central work of the proposed
approach. On the global view, because of the non-uniform
characteristic of human tissues or organs, when force is
applied on them, the magnitude and orientation of defor-
mation in different location must be different. However, for
a local region,the difference of deformation we take note
is slight. Thus, we can suppose that deformation fields in
a local region are consistent. Based on this hypothesis, a
local geometric preserved feature matching algorithm has
been developed as following. The performance process of
algorithm is iterative.

1) Invariant Moment of Local Region: Three dimension
(3D) moment can characterize the surfaces of objects effec-
tively and each of size, position and orientation [20]. Thus, it
is widely used in the area of computer vision, the recognition
and understanding of 3D objects [19], [20]. In this case, for a
given region in initial volume , 3D moment invariants is used
to recognise its corresponding region in deformed volume.
We suppose that g(x, y, z) represents the intensity function of
a region in 3D MR volumetric image, so that its 3D moment
of order i+ j + k can be defined as [20]:

Mijk =

∫ ∫ ∫
xiyjzkg(x, y, z)dxdydz (1)

writing in discrete form, we yield:

Mijk =
∑∑∑

xiyjzkg(x, y, z) (2)

Then, we assume that f(x, y, z) is the intensity function of
a 3D region around feature point P in the initial volume, let

Ii be the i-th order moment. literature [19] and [20] show
that 1st, 2nd and 3rd order moment can be given as follow:

I1 = M200 +M020 +M002, (3)

I2 = M200M020 +M020M002 +M002M200 −
−M2

011 −M2
101 −M2

110, (4)

I3 = M200M020M002 + 2M011M101M110 −
−M2

011M200 −M2
101M020 −M2

110M002. (5)

In the same way, the 1st, 2nd and 3rd order moment of the
intensity function f ′(x, y, z) which is a region around feature
point P ′ in deformed volume can be obtained as follows:

I ′1 = M ′
200 +M ′

020 +M ′
002, (6)

I ′2 = M ′
200M

′
020 +M ′

020M
′
002 +M ′

002M
′
200 −

−M ′2
011 −M ′2

101 −M ′2
110, (7)

I ′3 = M ′
200M

′
020M

′
002 + 2M ′

011M
′
101M

′
110 −

−M ′2
011M

′
200 −M ′2

101M
′
020 −M ′2

110M
′
002 (8)

where I ′1, I ′2 and I ′1 represent the 1st, 2nd and 3rd order
moment of the intensity function f ′(x, y, z), respectively.

For non-uniform, non-rigid objects, though the deforma-
tion is different in different location, the deformation in a
small local region can be thought as rigid deformation ap-
proximately. Moreover, literature [19] and [20] have proved
that the 1st, 2nd and 3rd order 3D moment are absolute
moment invariants undering rigid transformation. Therefore,
if P11 in deformed volume is the corresponding feature of
P21 in initial volume, then, the Euclid distance between the
3D invariant moment of the 3D region around them must be
the least. Namely,

DI(P11, P21) < DI(P11, P2i | i = 0, 2, 3, · · ·, n), (9)

where DI(P1i, P2j) represents the Euclid distance between
3D regions which around P1i and P2j , it is defined as:

DI(P1i, P2j) =
√∑

(Ii − I ′j)
2, i, j = 1, 2, 3, ···, n. (10)

2) Strength of Match: Intensity correlation between two
local image regions around match features is the most widely
approach to measure the strength of match (SOM). However,
for a non-rigid object, the deformation greatly changes the
intensity in MR volume. Obviously, intensity correlation is
inadequate in features match of MR volumes from non-rigid
object. In this case, a type of geometric correlation has been
introduced to improve the reliability of match. Such as Fig.1,
let c1 and c2 be moment center of point set from initial
volume (PTS1) and its projection in point set from deformed
volume (PTS2), P1i and P2j be the i-th and j-th point in
PTS1 and PTS2, respectively.



Fig. 1. Local geometric preserve consistency

We suppose that P11, P12, and P13 are lay in a local
region, and P21, P22, P23 are their corresponding features
respectively, we yield:

d(P11, c1)

d(P21, c2)
≃ d(P12, c1)

d(P22, c2)
≃ d(P13, c1)

d(P23, c2)
= µ (11)

where d(P1i, c1) represents distance between P1i and c1,
d(P2j , c2) represents Euclid distance between P2j and c2,
µ represents the Euclid distance ratio. Eq.11 shows the mag-
nitude of deformation in a local region preserves consistency
approximately. Thus, we conclude that if a pair of features
are potential match (PM) each other, then, each pairs in
potential match set (PMS) of a local region around PM
must be formed a strong correlation PMS. Here, correlated
score is used to describe the correlation of PMS. In detail,
let Pd1 = {d1i=d(P1i, c1) | i=1,2,3,· · ·,n} be the distance
which consists of d(P1i, c1), and Pd2 = {d2j =d(P2j , c2) |
j=1,2,3,· · ·,n} be the distance which consists of d(P2j , c1),
Ed1 and Ed2 be expectation of Pd1 and Pd2 , respectively,
then, the geometric correlation score gCor(Pd1 ,Pd2) be-
tween Pd1 and Pd2 is given by:

gCor(Pd1 ,Pd2) =

∑
ωij(d1i − Ed1

)(d2j − Ed2
)√

(
∑

(d1i − Ed1)
2
∑

(d2j − Ed2)
2

(12)
where ωij is the weight, which defines the contribution of a
match pair in local region for geometric correlation score. If
ωij is large, it shows that the pair may be strong pair, thus,
its contribution must be large too. Let η be the ration of Ed1

and Ed2 (see Eq.13), and the ωij is defined as Eq.14.

η =
Ed1

Ed2

(13)

ωij =
1.0

1.0 + |µ− η|
(14)

Because the value of gCor(Pd1 ,Pd2) lies in [-1,1], normal-
ize Eq.12 yields:

NgCor(Pd1 ,Pd2) =
gCor(Pd1 ,Pd2) + 1

2
(15)

So far, we have already defined the invariant moment and
geometric correlation between two local regions. To integrate
these two approaches, a robust SOM can be defined as:

SOM(P1i,P2j) =
NgCor(Pd1

,Pd2
)+IoM(Pd1

,Pd2
)

2.0 (16)

3) Cost Function: To eliminate false match and increase
the reliability of successful match as soon as possible, in
this case, relaxation technique is used in the process of
feature match. The relaxation technique is first proposed by
Rosenfel et al. [22], who uses iterated local context updates
to achieve a global consistent result [23]. As an iterative
process, relaxation technique requires a cost function to
ensure it works well. In this paper, the cost function is
defined as the average of SOM of all candidate matches,
as follows:

ε =
1

N

N∑
i,j=1

SOM(P1i,P2j) (17)

where N represents the total numbers of matched pairs in
PMS at time t.

The matches can be disambiguated by maximizing the
energy function ε, using an iterative procedure. Here, we note
that if the PMS varies dynamically, the SOM (16) also varies.
Therefore, potential matches can be constantly updated in
iteration, and this process will be stopped when the value
of cost function ε began to decrease. Here, matches in PMS
consist of a robust potential matches set (RPMS), which is
the final match result.

B. Density Deformation Fields Computation

After obtaining a potential matches set by using methods
mentioned above sections, next, we will describe the method
used for obtaining the interior density deformation fields of
objects. In this study, the methods proposed in our previous
work [25] is used to obtain interior density deformation
fields. In summary, the interior density deformation fields are
interpolated by sparse deformation fields using finite element
model (FEM). In detail, the magnitude of sparse deformation
fields was first computed by corresponding pair in RPMS
using Euclid distance. The start point and end point of
field direction are defined by points of a corresponding pair.
Next, non-rigid object was reconstructed by using tetrahedra,
whose nodes are points in RPMS. Here, density deformation
fields then can be interpolated by using following finite
element method.

Let P be an arbitrary volume voxel at x = (x, y, z) within
a tetrahedron ♢PiPjPkPl. Its displacement may be approx-
imated by weighting the finite element’s node displacements
ui by their shape function [25]

u(x) =
4∑

n=1

unNn (18)

where Nn is the shape function of nodal n = (i, j, k, l),
which is given by

Nn =
♢PPjPkPl

♢PiPjPkPl
. (19)



Finally, approximation displacements of all voxels xi in
the volume can be obtained by using Eq.18.

III. EXPERIMENTS AND RESULTS

Some experiments are designed to demonstrate the ca-
pabilities of the proposed approach. All experiments are
performed by using our own tool developed with Visual C++,
which runs on Microsoft Windows XP. And all experimental
results described below are obtained on a Lenovo Portable
PC with a 2.20 GHz Intel(R) Core(TM) 2 Duo CPU T6600
and 4 GB of RAM.

Here, the initial MR volume and deformed MR volume are
acquired from a volunteer’s finger tip using an MR scanner
under initial and deformed situations, respectively, refering
to Fig.2. The size of initial MR volume and deformed MR
volume are all 512 × 512 × 52 voxels. Figure 3 illustrates
some slices in initial and deformed MR volume are used in
the experiments.

Fig. 2. The illustration of obtaining MR volume

Fig. 3. Some slices used in experiment

First of all, 1000 features have been extracted from initial
volume and deformed volume, respectively. Next, intensity
correlation approach presented in [16], [17] is used as first
match. The iterative match algorithm is applied on the
result of first match resulted to an RPMS with 252 pairs.
Doubtlessly, false matches must exist in RPMS, but, we
note that most of them are robust,through checking it one by

one artificially. This viewpoint will prove by the subsequent
experiment too.

Fig. 4. The process of match result checking

Fig.4 is the process of feature match result checking. In
the Fig.4, the red cross in the red ellipse represents location
of the 248-th match pair in the RPMS.

Next, sparse deformation fields and density deformation
fields are computed to use method mentioned in above
subsections. Fig.5 shows the density fields model. From the
figure, we note that the large deformation takes place in tip
and bottom side of finger. this result is consistent with the
fact.

Fig. 5. The finger volume model with density deformation fields

IV. CONCLUSIONS AND FUTURE WORKS
A. Conclusions

We propose a local geometric preserved approach to find
the homologous feature for feature in initial MR volume so
that a robust PMS can be built. The PMS is used to compute
sparse deformation fields of non-rigid object.Moreover, the
deformation field of each voxels is interpolated by using
deformation fields of the nodes of tetrahedron.The prelim-
inary experiment reveals that result obtained from using the
proposed approach is consistent with the fact. In summary,
advantages of the proposed approach include:

1). The proposed approach takes full advantage of the local
geometric properties of non-rigid object. Compared to the
traditional intensity based approaches, the geometric based
approach is not sensitive to the noise in image.



2). The feature matching based approach for deformation
measurement does not need the initial contour of an object.
This is independent shape of the initial contour.

3). The proposed approach provide an option for feature
match in MR volume of non-rigid, non-uniform objects.

B. Future Works

1). The concave on the surface of object could not be effec-
tivelly handled when the volume of object are reconstructed.
This will lead that the volume model is inconsistent with
the actual situation. An effective method for reconstructing
the volume model need to be developed so that the density
deformation fields can be correctlly and intuitionisticaly
visualized.

2). False matches existing in the PMS will lead the low
precision result of interior deformation fields. Therefore, a
effective method for eliminating the false matches need to
be developed in future work.
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3.3 SACとTPSを用いた変形場の計算
本節では，Spatial Association Correspondence (SAC)とThin Plate Spline (TPS)

を用いて，局所的な対応点探索と大域的なモデル更新を交互に実行することで，変
形場を計算する手法を述べる．
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Abstract-Due to the nonlinear and nonuniform local 

deformation of the nonrigid tissues, it is difficult whereas 
important to extract and correctly match a considerable number 
of feature points from the MR images for deformation 
measurement. Current approaches are dissatisfying towards this 
issue. In this paper, firstly the authors use SURF algorithm to 
extract the feature points in the initial MR image, and take every 
point in the deformed MR image as the feature point. Then the 
SURF descriptors and Spatial Association Correspondence 
(SAC) of the neighborhood pixels is adopted to match the 
corresponding feature points between the initial and deformed 
MR images. Finally, by clustering the coordinate differences 
between the deformed points matched by SURF-SAC with the 
corresponding points calculated by affine transformation, most 
of wrong match points are eliminated. The experimental results 
prove that the proposed method can extract and match more 
correct corresponding feature point pairs than SURF and SIFT 
methods.  

Key words—SURF, Spatial Association Correspondence, 
Clustering, Feature point, Matching, Deformation 

I. INTRODUCTION 

Deformation field measurement of nonrigid biological 
tissues from MR (Magnetic Resonance) images is often 
required for clinical diagnosis, surgery simulation, operation 
planning, and evaluation of physical characteristics of 
biological tissues [1-4]. Usually we need to measure the local 
irregular deformations accurately between the two MR 
images obtained at different rotation, displacement, and soft 
tissue deformations. In our opinions, current nonrigid medical 
image registration and deformation measurement methods 
can be classified into four categories, transformation model 
estimation [5-7], physical model method [8-12], mutual 
information [13-14], and feature points combined with TIN 
(Triangular Irregular Network) [1-2].   

The space transformation model such as low degree 
polynomial [5], thin plate splines (TPS) [6], and B-splines [7] 
can be applied to measure the nonlinear deformation of 
images. According to such approaches, the interpolation and 
matching of images is based on many feature points. Actually, 
it is difficult to extract and correctly matched a considerable 
number of feature points between the deformed images.  

The typical methods of physical model include elastic 
deformation model [8-9], viscous fluid [10], optical flow [11], 
and finite element [12]. In elastic deformation models, 
popular parametric deformation model cannot handle 
topological changes [8], and geometric active model cannot 
measure the interior deformation and tends to leak through 
the weak boundary [9]. The viscous fluid method tends to 
wrong matching when there are some different tissue fabrics 
with similar pixel intensity distribution. When the gradient 
information is weak, the optical flow method cannot behave 
well in the deformation image estimation. The deformation 
measurement accuracy of finite element model depends on 
the matching boundary of image fabric, which is difficult to 
obtain.       

The maximal mutual information method is originally 
applied in the rigid image registration. Now it is widely 
adopted to match the nonrigid deformed images when 
combined with the other methods, such as thin-plate splines, 
B-splines, optical model and so on. In these cases, the mutual 
information method mainly acts as a global estimate of the 
image registration accuracy, so that it cannot avoid the 
limitation of the other combined methods.   

Zhang presented a deformation field measurement method 
based on the feature point tracking and Delaunay TIN. 
Considering the irregular local deformation of nonrigid and 
nonuniform tissues, Zhang extracts and matches a 
considerable number of feature points in MR images by 
means of Harris algorithm and relaxation labeling method, 
and then the Delaunay TIN is constructed based on feature 
points to measure the deformation fields. While in this 
method, the initial rough match is based on the points around 
the rigid bone, and actually, a certain number of wrong 
matched points which have negative effect on measurement 
accuracy cannot be eliminated automatically [1], [2].  

According to above discussion, we can see that the 
extraction and correct matching of a considerable number of 
feature points is very important to the deformation 
measurement of nonrigid biological tissues, also it is a key 
difficult to be solved.      



 Extraction and matching of the feature points, which 
should be robust against the change in illumination, scaling, 
rotation, and noise or slight distortion, is one of the most 
important methods used to detect the correspondences 
between the images. A wide variety key point detectors and 
descriptors have already been proposed in the literature [15-
18]. The most widely used detector probably is the Harris 
corner detector [19], based on the eigenvalues of the second-
moment matrix. However, Harris corners are not scale-
invariant. Lindeberg introduced the concept of automatic 
scale selection, which detects interest points with their own 
characteristic scale [15].  Mikolajczyk and Schmid created 
robust and scale-invariant feature detectors with high 
repeatability, called Harris-Laplace and Hessian-Laplace [20].  

Lowe presented the Scale Invariant Feature Transform 
(SIFT) approach, which approximated the Laplacian of 
Gaussian (LoG) by a Difference of Gaussians (DoG) filter 
[16], and can bring speed at a low cost in terms of lost 
accuracy [21], [22]. Shown in the literature [22], SIFT 
outperforms the other feature descriptors like Gaussian 
derivatives [23], moment invariants [24], complex features 
[25], phase-based local features. Various refinements on the 
SIFT scheme have been proposed, the PCA-SIFT and the 
GLOH methods are known well in them [18], [22]. 

Bay Herbert presented SURF (Speeded-UP Robust Feature) 
in 2006 [26], it is invariant to scaling, rotating, illumination 
change, affine transformation, and is robust to noise and 
detection errors. By using the ‘Fast-Hessian’ to approximate 
the Laplacian, describing a distribution of Haar-wavelet 
responses within the interest point neighborhood, reducing 
the descriptor to 64 dimensions, and exploiting integral 
images, the SURF is more repeatable, distinctive, robust, and 
furthermore the computing velocity is three times more than 
SIFT.  In the experimental results, Bay also proved that, 
SURF outperformed the other methods such as GLOH and 
PCA-SIFT [22], [26], [27]. 

Unfortunately, when we attempted to evaluate the 
deformation measurement by SURF, the experimental results 
were not inspiring. The amount of the matched points was too 
few and not enough to construct the TIN which was very 
important to the accurate deformation measurement.  

In order to obtain more correct matched points, the authors 
combined the SURF with the analysis of spatial association 
correspondence to extract and match the feature points 
between the initial and deformed MR images. Secondly, in 
order to eliminate the wrong matched point pairs, we apply 
clustering to analyze the coordinate differences between the 
deformed corresponding points matched by our method and 
the theoretic corresponding points calculated by the affine 
transformation. The points which are not included in the 
range of the maximum clustering are regarded as the wrong 
matching points. 

In our experiments, the SIFT, SURF, and the method 
combined SURF, SAC and clustering are compared, and the 
results showed that SURF-SAC can obtain more correct 

corresponding points, furthermore, most of wrong matching 
feature points can be eliminated by adopting coordinate 
difference clustering algorithm. 

II. SURF 

The interest point detector of SURF is based on the Hessian 
matrix. It relies on integral images to reduce the computation 
time and called ‘Fast-Hessian’ detector [20]. On the other 
hand, the descriptor of interest point describes a distribution 
of Haar-wavelet responses within the interest point 
neighbourhood. 

A. Fast-Hessian Detector 
Rather than using a different measure for selecting the 

location and the scale as the Hessian-Laplace detector [20], 
SURF relies on the determinant of Hessian for both. Given a 
point ),( yxp = in an image I, the Hessian matrix ),( σpΗ  
in P at scale σ  is defined as follows 
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where σ is the scale factor, Lx,x (p, σ) is the convolution of 
Gaussian second order derivative with the 
image I in point p, and similarly for Lx,y(p, σ) and Ly,y (p, σ). 

)()/( 22 σgx∂∂

As Gaussian filters are nonideal in any case, and given 
Lowe’s success with LoG approximations, Bay further 
applied the box filters to approximate the second order 
Gaussian derivatives. The other hand, the integral images is 
applied to accelerate the process of interested point detection 
and descriptor estimation, independently of the image size. 
The 9×9 box filters Dx,x, Dx,y and Dy,y in Fig. 1 approximate 
Gaussian second order derivatives with the lowest scale σ = 
1.2, and the grey regions in the figures equal to zero. 
 

  
Figure 1. The box filters Dx,y and Dy,y used to approximate Gaussian 

second order partial derivatives in xy-direction and yy-direction 
 

The weights, 1 in black regions while –1 in white regions, 
applied to the rectangular regions are kept simple for 
computational efficiency. Bay proposes the following 
formula as an accurate approximation for the Hessian 
determinant using the approximated Gaussians: 

 
2)9.0()det( xyyyxxapprox DDDH −=                (2) 

 
In SURF, the scale space can be created by applying 

kernels of increasing size to the original image. This allows 
multiple layers of the scale space pyramid to be processed 



simultaneously. The scale-space is divided into a number of 
octaves, where an octave refers to a series of response map 
layers covering a doubling of scale. In SURF the output of the 
above 9×9 filter is considered as the lowest level of scale 
space, which correspond to a real valued Gaussian with σ = 
1.2. The scales of subsequent layers can be evaluated by the 
following formula 

 
)9/2.1(⋅= terSizeCurrentFilapproxσ .      (3) 

 
In the lowest octave, the filter size of the first layer is 9×9, 

and the filter size increases by 6 between the two neighboring 
layers. For each new octave, the filter size increases double. 

B. Descriptor 
The SURF descriptor describes how the pixel intensities 

are distributed within a scale dependent neighbourhood of 
each interest point detected by the Fast-Hessian. This 
approach is similar to that of SIFT but integral images used in 
conjunction with filters known as Haar wavelets are used in 
order to increase robustness and decrease computation time. 
The first step consists of fixing a reproducible orientation 
based on information from a circular region around the 
interest point. Then describing the interest point by 
calculating the Haar wavelet responses over the square region 
aligned to the selected orientation. 

1) Orientation Assignment: Assigning the interest point a 
reproducible orientation is to achieve invariance to image 
rotation. To determine the orientation, Haar wavelet 
responses of size 4σ are calculated for a set of pixels around 
the detected point with a radius of 6σ, where σ refers to scale 
at which the point was detected.  

Once the wavelet responses are weighted with a Gaussian 
(2.5σ) centered at the interest point, they are represented as 
vectors in space with the horizontal response strength along 
the abscissa and the vertical response strength along the 
ordinate. The dominant orientation is estimated by calculating 
the sum of all responses within a sliding orientation window 
covering an angle of π/3. The longest responses vector lends 
its orientation to the interest point. 

2) Descriptor Components: The first step in extracting the 
SURF descriptor is to construct a square window around the 
interest point. This window contains the pixels which will 
form entries in the descriptor vector and is of size 20σ, where 
σ also refers to the detected scale. Furthermore the window is 
oriented along the dominant orientation such that all 
subsequent calculations are relative to this direction. 

As shown in Fig. 2 the descriptor window is divided into 4
×4 regular subregions. Within each subregion Haar wavelets 
of size 2σ are calculated for 25 regularly distributed sample 
points. If we refer to the x and y wavelet responses by dx and 
dy respectively, then for these 25 sample points (i.e. each 
subregion) we collect, 

 
[ ]∑∑∑∑= dydxdydxvsubregion  , , , .      (4) 

Therefore each subregion contributes four values to the 
descriptor vector leading to an overall vector of length 4×4
×4 = 64. The resulting SURF descriptor is invariant to 
rotation, scale, brightness and, after reduction to unit length, 
contrast. 

      
 

Figure 2. Left: Haar wavelet types for SURF (top the x-direction and bottom 
the y-direction). Right: SURF descriptor component. The brown arrow 
directs the dominant orientation, and the green rectangle refers to one of the 
descriptor subregion. 

 

III. SPATIAL ASSOCIATION CORRESPONDENCE 

Although SURF is outstanding to extract the invariant 
interest points in an image, the number of correctly matched 
point pairs is too few to measure the tissue deformation 
accurately. Actually, many interest points that SURF extracts 
between the initial and deformed images are not really 
corresponding because of the nonuniform elastic deformation 
of the nonrigid tissues. In this paper the Spatial Association 
Corresponding method is proposed to obtain more correctly 
matched point pairs.  

A. Spatial Association Correspondence 
The Spatial Association Correspondence method is based 

on the supposition that the neighboring pixels in the initial 
MR image would also be most probably neighboring in the 
deformed MR image although the elastic deformation. 

iP(0) iP(1)

iP(2)iP(3)iP(4)

iP(5)

iP(6) iP(7) iP(8)

     
Figure 3. A pair of corresponding pixel neighbourhood regions between 
initial and deformed MR images. Left: neighbourhood in initial image, Right: 
corresponding neighbourhood in deformed image. 

 
As shown in Fig. 3, there is a pixel neighbourhood region 

in initial and deformed image respectively. Because the pixel 
neighborhood has only 9 pixels and is very small, we only 
need consider the rotation and translation. We can suppose 
that if the initial point iP(0) is corresponding to the deformed 
point dP(0), the initial neighboring pixel iP(1) would be 
corresponding to the deformed neighborhood pixel dP(1). 



Pixels iP(2) through iP(8) also correspond to the dP(2) 
though dP(8). 

 

B. Feature Point Matching 
How to match the interest points between the images is 

based on the method as follows:  

dP(0_1) dP(0_2) dP(0_3) …… dP(0_k0)

dP(1_1) dP(1_2) dP(1_3) …… dP(1_k1)

dP(2_1) dP(2_2) dP(2_3) …… dP(2_k2)

dP(8_1) dP(8_2) dP(8_3) …… dP(8_k8)

…
…

 
Figure 4. Candidate corresponding points of the the neighbourhood of iP(0).  

 
1) Corresponding Candidates Searching: We extract and 

match several correctly corresponding point pairs between the 
two images by means of SURF and the ratio of the nearest 
and the second nearest neighbor (NN/SCN) matching method. 
Then approximate affine transformation model of deformed 
image is calculated with the several matching pairs.  

For the interest point iP(0) extracted, we only need to 
search a region in the deformed image. This region centered 
with the corresponding point of iP(0) calculated by the 
approximate affine transformation model, and the range of 
the corresponding region reflects a pre-estimation of 
maximum deformation. The SURF descriptors distances 
between iP(0) and all of the pixels in the corresponding 
region are compared. Usually, the point with the least 
descriptor distance to iP(0) may  not be the real 
corresponding point. So we can set a threshold which is a 
little bigger than the least descriptor distance to iP(0), the 
deformed pixels whose SURF descriptor distances to iP(0) 
are smaller than the threshold will be taken as the 
corresponding candidates such as dP(0_1) through dP(0_k0). 
For the other pixels in the 3×3 neighborhood of pixel iP(0), 
the corresponding candidates would be detected by the same 
process. For every point of iP(0) through iP(8) there are 
several corresponding candidates in the deformed image as 
shown in Fig. 4. 

2) Corresponding Point Detection: In this step, we need to 
detect the corresponding point of iP(0) from the 
corresponding candidates by using Spatial Association 
Corresponding as shown in Fig. 5. 

Firstly, we create a chain set C, which consists of the 
corresponding candidates of iP(0), those are dP(0_1) through 
dP(0_k0), as shown in the Fig. 5-a) are the red circles. 
Secondly, if every corresponding candidate of iP(1), which 
refers to the green circle, is adjacent to any corresponding 

candidates of iP(0), the two candidates are composed as a 
new binary chain element of the chain set C. Then check the 
set C, and eliminate the elements which consist of only one 
point, Such as the {dP(0_4)} and {dP(0_6)} in Fig. 5-b). 
Thirdly, if every corresponding candidate of iP(2), which 
refers to the blue circle, is adjacent with both of the 
corresponding candidates of iP(0) and iP(1) in one of the 
binary chain elements of C, and the spatial position 
relationship between the three candidates is the same as iP(0), 
iP(1) and iP(2) except the rotation, it is combined with the 
binary chain as a ternary chain element of C. Similarly 
eliminate the elements which consist of only two point, such 
as the {dP(0_5), dP(1_5)} in Fig. 5-c). 

Step by step, we check the corresponding candidate points 
of the other neighboring points iP(3) through iP(8) as the 
same process shown above. When only one element left in 
the chain set, we regard the first point of the element as the 
corresponding point of the pixel iP(0). 

 

Figure 5. Corresponding point detection process of iP(0). 
 

IV. CLUSTERING 

Actually, although matching the points between the initial 
and deformed images by means of the SURF and Spatial 
Association Correspondence, many feature points are 
incorrectly matched because of the deformation, blurry, noise, 
or other complex influence factors of the MR images. In 
order to eliminate the wrong matching points, the authors 
adopt the affine transformation and the clustering of the 
coordinate differences between the corresponding points 
matched by our method and the corresponding points 
calculated by the affine transformation method.  

A.  Affine Transformation 
Given a point P in the initial image, the corresponding 

point P’ in the deformed image matched by the affine 
transformation is as follows 

 

affineTpp ⋅=' ,                            (5) 
 

where Taffine is the affine transformation matrix, which can be 
calculate by 

 



transrotatescaleafine TTTT ××= ,             (6) 
 

where Tscale, Trotate and Ttrans are respectively scaling matrix, 
rotate matrix and translation motion matrix, given as follows: 
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There are five variables in the three matrices; the scaling 

parameter u and v are along x-direction and y-direction 
respectively, θ is the rotation angle, Δx and Δy are the 
displacement along  x-direction and y-direction. 

B. Difference Clustering 
In this paper, several correct matched pairs of points are 

detected by SURF, and the affine transformation was 
evaluated based on the least square method. Then, the 
difference cluster method is adopted to judge a pair of 
matching points is correctly corresponding or not.  

The difference clustering is as follows. Suppose that P(x, y) 
refers to a feature point in the initial image, P’(x’, y’) is the 
corresponding point in the deformed image calculated by the 
affine transformation Taffine, and P”(x”, y”) is the 
corresponding point in the deformed image matched by 
SURF-SAC. The difference between P’ and P” refers to 
difference point dP(dx, dy) is as follows 

 

⎥
⎦

⎤
⎢
⎣

⎡
′
′

−⎥
⎦

⎤
⎢
⎣

⎡
′′
′′

=′−′′=
y
x

y
x

ppdddp yx  )(),( .        (10) 

 
Difference clustering method is based on the supposition 

that if the point pairs are matched correctly the values of their 
difference points maybe most probably near to each other. 
Because the main tendencies of the biological deformation in 
the correct matched points are probably similar to each other, 
although the deformation displacements of them are not 
uniform. The other hand, the wrong matched point 
elimination is based on our method SURF-SAC, and the 
affine transformation can evaluate the great deformation such 
as scaling, rotation, and translation.   

Given R refers to the cluster radius, C(i) refers to a cluster 
centered with the difference point dP(i), and C(i) consists of 

the difference points whose distance with dP(i) is less than R. 
In this paper, every difference point is taken as the cluster 
center, and the cluster which includes the most difference 
points are considered as consisting of correctly matched 
feature points. 

V. EXPERIMENT RESULTS ANALYSIS 

In our experiments, SIFT, SURF, and the proposed SURF-
SAC are compared. An initial MR 2-D slice image and a 
deformed MR 2-D slice image of the volunteer’s calf are 
tested. For SIFT and SURF method, the image pyramid 
consists of 3 octaves, every octave have 4 layers with the 
different scales (more octaves and more layers are not better 
to this experiments), and after the feature points are extracted, 
the method of NN/SCN is adopted to match the feature points 
between MR images. The procedure of SURF-SAC is as 
follows. 1) Extract the feature points in the initial MR image 
by SURF; 2) Take all the points in the deformed MR image 
as the feature points, and match the feature points between 
the two images based on SURF-SAC; 3) Eliminate the wrong 
matched pairs by coordinate difference clustering. We 
showed the experiments results from Fig. 6 to Fig.10. 

The experiment results of SIFT were shown in Fig. 6.  We 
can see that only 9 pairs of points are matched, which were 
signed in Fig. 6-b). Furthermore, the pairs 7 and 9 are 
matched incorrectly obviously.  

The experiment results of SURF were shown as Fig. 7. The 
parameter T is defined as the threshold value of the 
determinant of the Fast-Hessian, the point whose fast-Hessian 
determinant is smaller than T would not be extracted. We set 
T equal to 0.0004. In SURF experiments, among many 
feature points extracted by SURF, there are 41 pairs of points 
are matched, even though the ratio of NN/SCN is assigned to 
0.9 to obtain more matched pairs. Furthermore only 11 pairs 
of points are matched correctly, and the matching correct rate 
is 26.83%.  

The experiment results of SIFT and SURF showed that the 
correct matched points was few, which are not enough to 
used to measure the deformation field of nonrigid nonuniform 
biological tissues. Actually in SIFT and SURF methods, 
many interest points of initial image could not obtain the 
really corresponding points among the interest points in the 
deformed image, when the MR images are blurry and 
especially with nonuniform elastic deformation in the tissues. 
On the other hand, the match method such as the ratio of 
NN/SCN behaved not well in this case. 

 

         
a) Feature points extracted by SIFT 



        
b) Matched points between initial and deformed MR image 

Figure 6. The results of SIFT. Left: initial slice, Right: deformed slice. 
 

        
a) Feature points extracted by SURT 

        
b) Matched points between initial and deformed MR image (41 pairs) 

        
c) Correctly matched points (11 pairs) 

Figure 7. The results of SURF 
 

         
a) Feature points extracted by SURT 

          
b) The results of background segmentation 
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c) The matched points used for affine transformation evaluation 

          
d) Searching region evaluated by affine transformation (radius = 30) 

           
e) Matched points between initial and deformed MR image (93 pairs) 

      
f) Correctly matched points (52 pairs) 

  
g) Coordinate difference points distribution h) The results of the clustering 

       
i) The matching points after clustering (48 pairs) 
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j) The wrong matched points are not eliminated by clustering (6 pairs) 

     
k) The correct matched points missed by clustering (10 pairs) 

Figure 8. The results of SURF-SAC and Clustering 
 
The experiment results are shown in Fig. 8. We used 

SURF-SAC to extract and match the feature points from the 
two MR images. In SAC method, we adopted spatial 
association corresponding relationship of two points in the 
neighbourhood of feature point, because when the number of 
the point increase the correct matched pairs decrease although 
the correctly match rate increase in this experiment. The 
matched points extracted by SURF-SAC are shown in Fig. 8-
a). Fig. 8-b) showed the results of background segmentation, 
we used seed fill algorithm to segment the background, which 
avoided estimating the feature point in the background.   

The evaluation of the affine transformation is based on the 
4 pairs of matched points extracted by SURF (parameter T = 
0.0004) and matched by NN/SCN with the ratio is of 0.65, 
which is shown in Fig. 8-c). The parameters of the affine 
transformation are θ = –14.19, u = 13.869, v = 0.8974, Δx = 
44.73, and Δx = –13.68. Given a feature point in the initial 
image, we only need to search the region centered with the 
corresponding point of affine transformation in the deformed 
image. The radius of the rectangle region equal to 30, and it 
reflects a pre-estimation of maximum deformation. Fig. 8-d) 
shows this step. By means of SURF-SAC, we obtained 93 
pairs of matched points, and 52 pairs of points were correctly 
matched as shown in Fig. 8-e) and 10-f). The number of the 
correctly matched points was much more than that of SURF 
(or SIFT).  

After this, for all initial points of the 93 matched pairs by 
SURF-SAC, we calculated the coordinate differences 
between the deformed points estimated by SURF-SAC with 
the corresponding points of affine transformation. Then we 
adopted clustering of the differences to eliminate the wrong 
matched points. The initial affine transformation model is 
estimated by the 4 points obtained by SURF, which is shown 
in Fig. 8-c). We set radius of the cluster circle equal to 5, and 
the difference points located in the cluster circle are used to 
calculate the affine transformation model again. Then the 

second affine transformation model is adopted to estimate the 
coordinate clustering. This process is repeated, and it can 
reduce the error introduced by the initial transformation 
model, which only adopted 4 points. In this experiment we set 
the iterative time equal to 10, more times are proved no much 
use to the results. The distribution of coordinate difference 
points is shown in Fig. 8-g), and results of clustering after 10 
times iterative process is showed in Fig. 8-h), where the red 
points in the green circle denote to the correctly matched 
pairs. 

There are 48 pairs of points are left after clustering, as 
shown in Fig. 8-i), and 6 wrong pairs are not eliminated by 
clustering as shown in Fig. 8-j). The correct rate reaches to 
87.5%, especially in Fig. 8-j), the initial points and the wrong 
matched deformed points seem very likely to corresponding 
to each other although they are not the really corresponding 
pairs actually. Furthermore, there 10 correct pairs are missed 
by this means as shown in Fig. 8-k).  

From the results of the experiments by our method, we can 
see that, SURF-SAC method can obtain more correctly 
matched point pairs between the initial and deformed MR 
images of the elastically deformed biological tissues than 
SURF (or SIFT) combined NN/SCN method. Furthermore, 
the coordinate difference clustering method can eliminate a 
large number of the wrong matched pairs. 

VI. CONCLUSION 

Current methods such as the transformation model 
estimation, physical model method, mutual information, and 
feature points combined with TIN cannot measure the 
nonrigid and nonuniform biological tissues deformation 
accurately. The extraction and matching of considerable 
number of feature points and elimination of the wrong 
matching pairs are the key issues of accurate elastic 
deformation field measurement.  

SURF maybe the most outstanding method of feature point 
extraction, while unfortunately, when used in the deformation 
field measurement with the MR images of the nonrigid 
nonuniform biological tissues, the correctly matched points 
detected by SURF is too few to measure the local elastic 
deformation accurately.   

In order to detecting more correct matching points between 
the initial and deformed MR images, the authors present 
Spatial Association Correspondence method combined SURF 
(SURF-SAC) to extract and match the feature points. SAC is 
based on the supposition that the neighboring pixels in the 
initial MR image would be probably neighboring in the 
deformed MR image. Further, clustering of the coordinate 
difference method is adopted to eliminate the wrong matched 
point pairs. 

In the experiments, SIFT, SURF, and SURF-SAC are 
compared in the feature points extraction and matching of the 
MR images of the volunteer’s calf. The experiment results 
show that SURF-SAC can detect more correctly matched 
points. For the elastic local deformation of nonrigid 



nonuniform tissues, the accurate deformation is better to be 
measured by getting more correctly matched features. The 
other hand, the clustering of the difference between the 
deformed points matched by SURF-SAC with the 
corresponding points calculated by affine transformation can 
eliminate most of the wrong matched pairs.  

While there are some limitations about our method, such as 
the computation cost is more than that of SIFT and SURF, 
and there are still some wrong matched pairs are not 
eliminated by clustering method also some correctly matched 
pairs are missed. 
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Abstract—The extraction and matching of feature points is 
very important for measuring deformation fields of MR 
images. Current methods cannot extract and match enough 
feature points correctly when non-rigid soft biological tissues 
are deformed in MR images. The authors have therefore 
used SURF to extract feature points from initial MR images, 
utilizing every point in deformed MR images as feature 
points. Subsequently, SURF descriptors and Spatial 
Association Correspondence (SAC) of neighboring pixels are 
utilized to match the corresponding feature points of the 
initial and deformed MR images. Finally, by clustering the 
differences between deformed points matched by SURF-SAC 
with the corresponding points calculated by affine 
transformation, most incorrect match points can be 
eliminated. Our experimental results show that the proposed 
method can extract and match more correct corresponding 
feature point pairs than SURF and SIFT methods.  
 
Key words—SURF, Spatial Association Correspondence, 
Feature point, Extraction, Matching, Deformed 
 

I. INTRODUCTION 
ATCHING the correspondence between two 
images is an important aspect of computer vision 

applications. Many actual problems depend on 
correspondences matching, including the detection of 
differences between images obtained at different times 
and under different conditions, the calculation of 
information on three dimensional objects from images 
obtained when the scene is changed or the imaging system 
is transformed, motion tracking, pattern identification and 
object recognition.  

Extraction and matching of the feature points, which 
should be robust against the change in illumination, 
scaling, rotation, and some noise or slight distortion, is 
one of the most important methods used to detect the 
correspondences between the images. Many key point 
detectors and descriptors have already been described [1] 
– [4]. The most widely used detector is likely the Harris 
corner detector [5], based on eigenvalues of the second-
moment matrix. Harris corners, however, are not scale-
invariant. Other important methods include automatic 
scale selection, which detects points of interest at their 
own characteristic scale [1] and robust, scale-invariant 
feature detectors with high reproducibility, called Harris-
Laplace and Hessian-Laplace detectors [6].  

The Scale Invariant Feature Transform (SIFT) approach 
approximates the Laplacian of Gaussian (LoG) by using a 
Difference of Gaussians (DoG) filter [2], resulting in 
greater speed with reduced loss of accuracy [7], [8]. SIFT 

has been shown to outperform other feature descriptors, 
including Gaussian derivatives [9], moment invariants 
[10], complex features [11], phase-based local features, 
and the descriptors representing the distribution of 
smaller-scale features within the area of the point of 
interest [12].  

SURF (Speeded-UP Robust Feature), first presented in 
2006 [13], uses the ‘Fast-Hessian’ to approximate the 
Laplacian, describing a distribution of Haar-wavelet 
responses within the area of the point of interest. By 
reducing the descriptor to 64 dimensions and exploiting 
integral images, the SURF is more reproducible, 
distinctive, and robust, with a computing velocity 3 times 
greater than that of SIFT. Experimentally, SURF 
outperformed other methods, such as GLOH and PCA-
SIFT [8], [13], [14]. 

Deformation field measurements of non-uniform and 
non-rigid biological tissues from magnetic resonance (MR) 
images are often required for clinical diagnosis, 
simulation and planning of surgery, and evaluation of the 
physical characteristics of biological tissues. Usually, 
there is a need to accurately measure local, non-regular 
deformations between initial and deformed images. When 
used to evaluate deformation fields, popular parametric 
deformation models cannot handle topological changes, 
whereas geometric active models cannot measure interior 
deformations [15], [16]. A deformation field measurement 
method, based on feature point tracking, has been found to 
overcome the disadvantages of deformation model 
methods. Using this method, there are a certain amount of 
wrong matched points which have negative effect on the 
measurement accuracy [17], [18].  

Using SURF, we attempted to evaluate deformation 
measurements, but our experimental results were not 
encouraging. Too few points could be matched or used to 
construct the triangle mesh necessary for accurate 
measurements of deformation. To obtain more correctly 
matched points, we combined SURF with Spatial 
Association Correspondence (SAC) to extract and match 
featured points in the initial and deformed MR images. 
We also analyzed differences between the deformed 
points matched by SURF-SAC and those calculated by 
affine transformation, using difference clustering methods 
to automatically eliminate incorrectly matched points.  

Experimentally, we compared the method combining 
SURF and Spatial Association Correspondence (SURF-
SAC) methods with the SIFT and SURF. We found that 
SURF-SAC can result in more correctly corresponding 
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points, and most incorrectly matched feature points can be 
eliminated by the difference clustering algorithm. 

II. SURF 
The interest point detector of SURF is based on the 

Fast-Hessian matrix, and the descriptor of each interest 
point describes a distribution of Haar-wavelet responses 
within the area of that point of interest.  

A.  Fast-Hessian Detector 
In contrast to the Hessian-Laplace detector [6], which 

uses different measures to select the location and the 
scale , SURF relies on the Hessian determinant for both. 
At a point ),( yxp = in an image I, the Hessian matrix 

),( σpΗ  in P at scale σ  is defined as  
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where σ  is the scale factor, ),(, σpL xx is the convolution 

of the Gaussian second order derivative )()/( 22 σgx∂∂   
with the image I at point p, and similarly for 

),(, σpL yx and ),(, σpL yy . 

Application of box filters to approximate the second 
order Gaussian derivatives results in very rapid 
evaluations using integral images, independent of size. 
The 9×9 box filters xxD , , yxD , and yyD ,  in Fig. 1 

approximate Gaussian second order derivatives with the 
lowest scale 2.1=σ , and the grey regions in the figures 
equal to zero. 
 

 
Fig. 1. The box filters yxD , and yyD , used to approximate Gaussian 

second order partial derivatives in the xy- and yy-directions. 
 
The following formula has been proposed as an 

accurate approximation for the Hessian determinant using 
the approximated Gaussians: 

   2)9.0()det( xyyyxxapprox DDDH −=              (2) 

In SURF, the scale space can be created by applying 
kernels of increasing size to the original image. This 
allows for multiple layers of the scale space pyramid to be 
processed simultaneously [13].  

B. Descriptor 
The SURF descriptor describes how pixel intensities 

are distributed within a scale dependent on the area 
surrounding each point of interest, as detected by the Fast-
Hessian. 

1) Assignment of Orientation: To determine the 
orientation, Haar wavelet responses of size σ4  are 
calculated for a set of pixels at a radius of σ6 around the 

point of interest, with σ  referring to the scale at which 
the point was detected.  

Once the wavelet responses are weighted with a 
Gaussian ( σ5.2 ) centered at the interest point, they can 
be represented as vectors in space, with the horizontal 
response strength along the abscissa and the vertical 
response strength along the ordinate. The dominant 
orientation can be estimated by calculating the sum of all 
responses within a sliding orientation window covering an 
angle of 3/π . The longest responses vector lends its 
orientation to the interest point. 

2) Descriptor Components: The first step in extracting 
the SURF descriptor is to construct a square window 
around the point of interest. This window contains the 
pixels that will form entries in the descriptor vector and is 
of size σ20 , where σ also refers to the detected scale. 
Furthermore the window is oriented along the dominant 
orientation, such that all subsequent calculations are 
relative to this direction. 

           
Fig. 2. Left: Haar wavelet types for SURF (top, x-direction; bottom, 
y-direction). Right: SURF descriptor component. The brown arrow 
shows the dominant orientation, and the green rectangle refers to one 
of the descriptor subregions. 
 
As shown in Fig. 2 the descriptor window can be 

divided into regular 4 × 4 subregions. Within each 
subregion, Haar wavelets of size σ2  are calculated for 25 
regularly distributed sample points. At x and y wavelet 
responses of dx and dy respectively, 25 sample points (i.e. 
each subregion) can be described as 

[ ]∑∑∑∑= dydxdydxvsubregion  , , ,       (4) 

Therefore each subregion contributes four values to the 
descriptor vector leading to an overall vector of length 4×
4×4 = 64.  

III. SPATIAL ASSOCIATION CORRESPONDENCE  
Although SURF is outstanding in its ability to extract 

the invariant interest points in an image, the number of the 
correct corresponding point pairs is too few to measure the 
tissue deformation accurately. Many points of interest 
extracted by SURF in the initial and deformed images do 
not correspond because of the non-uniform elastic 
deformation and blurriness of the MR images. In our 
opinions, only considering the distance between the SURF 
descriptor is not suitable, the other useful information can 
be used to match the feature points, such as the spatial 
association between the neighboring pixels is very useful 
to the interest point matching. 

 



A. Spatial Association Correspondence 
To obtain more correctly matched pairs of points, we 

developed the Spatial Association Correspondence 
method, which is based on the hypothesis, that 
neighboring pixels in the initial MR image would likely 
also be neighboring pixels in the deformed MR image, 
despite elastic deformation. 

    

iP(0) iP(1)

iP(2)iP(3)iP(4)

iP(5)

iP(6) iP(7) iP(8)

     
Fig. 3. A pair of corresponding pixel neighborhood regions in initial 
(left) and deformed (right) MR images. 
 
For example, Figure 3 shows a pixel neighborhood 

region in initial and deformed images. Because this pixel 
neighborhood, which consists of only 9 pixels, is very 
small, we need to consider only its rotation and translation. 
Thus, if the initial point iP(0) corresponds to the deformed 
point dP(0), the initial neighboring pixel iP(1) would 
correspond to the deformed neighboring pixel dP(1). 
Similarly, pixels iP(2) through iP(8) would correspond to 
pixels dP(2) though dP(8).  

B.  Feature Point Matching 
The method of matching the points of interest in the 

initial and the deformed images is based on Spatial 
Association Correspondence:  p g

dP(0_1) dP(0_2) dP(0_3) …… dP(0_k0)

dP(1_1) dP(1_2) dP(1_3) …… dP(1_k1)

dP(2_1) dP(2_2) dP(2_3) …… dP(2_k2)

dP(8_1) dP(8_2) dP(8_3) …… dP(8_k8)

…
…

 
Fig. 4. Candidate points corresponding to the points neighboring 
iP(0).  
 
1) Searching for Corresponding Candidates: For point 

iP(0), extracted by SURF from the initial image, all of the 
pixels in the deformed image are regarded as interest 
points, and the distances between their SURF descriptor 
vectors and that of iP(0) are compared. Usually, the point 
with the least descriptor distance to iP(0) may not be the 
real corresponding point. Therefore, we can determine a 
threshold slightly larger than the least descriptor distance 
to iP(0). Thus, the deformed pixels whose SURF 
descriptor distances to iP(0) are smaller than the threshold 
would be regarded as the corresponding candidates; e.g., 
dP(0_1) through dP(0_k0). For the other pixels in the 3×
3 neighborhood of pixel iP(0), the corresponding 
candidates would be detected by the same process. Every 
point, from iP(0) through iP(8), would therefore have 

several corresponding candidates in the deformed image 
(Fig. 4). 

2) Detection of Corresponding Points: The next step is 
to use Spatial Association Corresponding to identify the 
point corresponding to iP(0) from the corresponding 
candidates (Fig. 5). 

 
 
Fig. 5. Processing of detecting points corresponding to iP(0). 
 
The first step is to create a chain set C, which consists 

of the candidates corresponding to iP(0); this set, dP(0_1) 
through dP(0_k0) consists of the red circles in Fig. 5-a). 
Second, if any candidate corresponding to iP(1), 
designated by the green circles, is adjacent to any 
candidate corresponding to iP(0), the two candidates are 
used to compose a new binary chain element of the chain 
set C. By examining set C, any elements consisting of a 
single point can be eliminated (e.g., {dP(0_4)} and 
{dP(0_6)} in Fig. 5-b). Third, if every candidate 
corresponding to iP(2), indicated by the blue circles, is 
adjacent to both the candidates corresponding to iP(0) and 
iP(1) in one of the binary chain elements of C, and the 
spatial position relationship among the three candidates is 
the same as that iP(0), iP(1) and iP(2), except for rotation, 
it is combined with the binary chain to form a ternary 
chain element of C. This is followed by the elimination of 
elements consisting of only two points, e.g. {dP(0_5), 
dP(1_5)} in Fig. 5-c). 

Using this same process, we can determine the 
candidates corresponding to the points of interest of the 
other neighboring points, iP(3) through iP(8). When only 
one element is left in the chain set, the first point of the 
element is regarded as the point corresponding to pixel 
iP(0).  

IV. ELIMINATION OF WRONG MATCHING POINTS  
Actually, although matching the points by means of the 

SURF and Spatial Association Correspondence, many 
wrong matching feature points still existed because of the 
deformation, blurry, noise, or other complex influence 
factors of the MR images. To eliminate incorrectly 
matched points, we utilized clustering of differences 
between deformed points matched by our method and 
those calculated by affine transformation.  

A.  Affine Transformation 
For each point P in the initial image, the corresponding 

point P’ in the deformed image matched by the affine 
transformation may be described as  

{dP(0_1), dP(1_2), 
dP(2_1),  dP(3_6)}

{dP(0_1), dP(1_3), 
dP(2_6), dP(3_2)}

{dP(0_i), dP(1_j), 
dP(2_k), dP(3_l)}……

a) d) 

e) 

b) c) 

b) c) 



affineTpp ⋅='                             (5) 

where affineT  is the affine transformation matrix, which 

can be calculated as 

transrotatescaleafine TTTT ××=              (6) 

where scaleT , rotateT and transT  are the scaling, rotating 
and translation motion matrices, respectively, which can 
be described as: 
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There are five variables in the three matrices: the 
scaling parameters u and v along the x- and y-directions, 
respectively, the rotation angle θ , and the displacements 
along the x- and y-directions, xΔ and yΔ , respectively. 

B. Difference Clustering 
In this paper, we choose several correctly matched pairs 

of points to calculate the approximate affine 
transformation between the two images based on the least 
square method. This was followed by application of the 
difference cluster method, which was utilized to determine 
whether or not a pair of matching points corresponds 
correctly.  

Difference clustering was determined as follows: If 
) ,( yxp refers to a feature point in the initial image, then 

) ,( yxP ′′′ would be the corresponding point in the 
deformed image, calculated by the affine transformation 

affineT , and ) ,( yxP ′′′′′′ would be the corresponding point 

in the deformed image matched by SURF-SAC. The 
difference between P′  and P ′′  refers to the difference 
point ),( yx dddP , calculated as  
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The difference clustering method is based on the 
supposition that, if the two pairs are matched correctly, the 
values of their difference points would most probably be 
near to each other. Why we can draw the supposition is 
because of that although the deformation displacements of 
them are not uniform, the main tendencies of the 
biological deformation in the correct matched points are 
probably similar to each other. Furthermore, the wrong 
matched point elimination is based on our method SURF-
SAC, and the affine transformation can evaluate the great 
deformation such as scaling, rotation, and translation.    

If R refers to the cluster radius and )(iC  refers to a 

cluster centered at the difference point )(idP , then )(iC  
consists of the difference in points whose distance with 

)(idP  is less than R. In this paper, we regarded every 
difference point as the cluster center, with the cluster that 
included the most difference points considered as 
consisting of correctly matched feature points. 

V. ANALYSIS OF EXPERIMENTAL RESULTS  
In our experiments, SIFT, SURF, and the proposed 

SURF-SAC calculations were compared, using initial and 
deformed MR images of a volunteer’s calf. For the SIFT 
and SURF methods, the image pyramid consisted of 3 
octaves, each having 4 layers with different scales 
(increases in octaves and layers did not yield better 
results). Following extraction of the feature points, the 
NN/SCN method was used to match the feature points in 
the initial and deformed MR images.  The procedure for 
SURF-SAC consisted of 3 steps: 1) SURF extraction of 
the feature points in the initial MR image; 2) Taking all 
the points in the deformed MR image as the feature points, 
followed by matching the feature points between the two 
images based on SURF-SAC; 3) Elimination of wrongly 
matched pairs by evaluating affine transformation and 
difference clustering. Experimental results are shown in 
Fig. 6-12. 

The experimental results of SIFT are shown in Fig. 6.  
Only 9 pairs of points were matched, with pairs 7 and 9 
being matched incorrectly.  

The experimental results of SURF are shown in Fig. 7 
and 8. These two experiments utilized different values for 
the parameter T, defined as the threshold value of the 
determinant of the Fast-Hessian; thus, any point whose 
fast-Hessian determinant was smaller than T would not be 
extracted. Usually, the stabilities of the points of interest 
increase as the threshold T increases. Table I shows the 
relationship between the value of T and the number of 
feature points. Many feature points were extracted by 
SURF, with more extracted in Fig. 8 than in Fig. 7. 
Although 41 and 48 pairs of points were matched in Figs 8 
and 9, respectively, only 11 pairs were correctly matched 
in both, making the rates of correct matching 26.83% and 
28.92%, respectively.  

 

      
Fig. 6. Results of SIFT. Left two images: feature points extracted by 
SIFT. Right two images: matched points between two images 

 

    
Fig. 7. Results of SURF, T = 0.0004, Left two images: matched points 
(41). Right two images: correctly matched points (11). 
 

   



    
Fig. 8. Results of SURF, T = 0.00001. Left two images: matched 
points (48). Right two images: correctly matched points (11). 
 

TABLE I 
RELATIONSHIP BETWEEN VALUES OF T AND PN (NUMBER OF FEATURE 

POINTS) 
T 0.0000001 0.000001 0.00001 0.0001 0.001 0.01 0.1 

PN 150 148 123 102 65 3 0 

 

         
a) Feature points extracted by SURT 

         
b) Matched points between initial and deformed MR image (116 pairs) 

         
c) Correctly matched points (46 pairs) 

           
d) The matched points used for affine transformation evaluation 

 

 
e) Results of the difference Clustering. 

 

         
f) Matched points after clustering (38 pairs) 

        
g) The wrong matched points are not eliminated by clustering (2 pairs) 

.       Fig. 9. Results of SURF-SAC and SURF: T = 0.00001. 
 

Experimental results are shown in Fig. 9. We used 
SURF-SAC to extract and match the feature points from 
the two MR images. T equaled 0.00001, small enough to 
determine many feature points. In this case, 123 feature 
points were extracted (Table I). Although some of these 
feature points were not very stable, that had no effect on 
our experimental results.  The feature points extracted 
from the initial MR image are shown in Fig. 9-a), the 
matched points extracted by SURF-SAC shown in Fig. 9-
b), and the 46 pairs of correctly matched points are shown 
in Fig. 9-c), which are much more than the correctly 
matched pairs extracted by using SURF (or SIFT) and 
NN/SCN.  

The evaluation of the affine transformation was based 
on the 4 pairs of points correctly matched by SURF (Fig. 
9-d)). The parameters of the affine transformation were 

19.14−=θ , 3869.1=u , 8974.0=v , 73.44=Δx , and 
68.13−=Δy . Subsequently, for all initial points of the 

pairs matched by SURF-SAC, we calculated the 
differences between the deformed points matched by 
SURF-SAC with the corresponding points evaluated by 
affine transformation. We then clustered the differences to 
eliminate incorrectly matched points.  

TABLE Ⅱ 
RELATIONSHIP BETWEEN DIFFERENCE CLUSTERING RADII AND 
ELIMINATION OF INCORRECTLY MATCHED PAIRS (T = 0.00001) 

Radius 8 9 10 11 12 

NP 32 37 41 43 47 

NCP 30 35 37 39 40 

NWP 2 2 4 4 7 

NMP 16 9 9 7 6 

 
The radius of the clustering had a significant effect on 

the elimination of incorrectly matched points. In Table Ⅱ, 
NP (the number of the points in the biggest cluster), NCP 
(the number of correctly matched points in the biggest 
cluster), NWP (the number of wrongly matched points in 
the biggest cluster) and NMP (the number of correctly 
matched points missed by clustering) were compared. We 
can see that a clustering radius equal to 9 pixels gave the 
best results.  

The red points in the green circles in Fig. 9-e) denote 
correctly matched pairs decided by clustering. We found 
that 38 pairs of points were included in the biggest 
difference cluster (Fig. 9-f)), with only 2 wrongly matched 
pairs not eliminated by clustering (Fig. 9-g)). The rate of 
correctly matched pairs was as high as 94.74%, especially 
in Fig. 9-g), the wrongly matched points likely 
corresponding to each other although they are not really 
corresponding pairs. Furthermore, this method missed 9 
correct pairs.  



Another experimental comparison of our method with 
SIF and SURF also show that our method was much better 
(Figs. 10-12). We found that our SURF-SAC method 
could result in more correctly matched pairs of points in 
the initial and deformed MR images of elastically 
deformed biological tissues than the SURF (or SIFT) 
combined NN/SCN method. Furthermore, the difference 
clustering method could eliminate most of the incorrectly 
matched pairs. 

 

     
Fig. 10. Matching results of SIFT, showing that 10 of 14 pairs were 
matched correctly.  
 

    
Fig. 11. Matching results of SURF. Left two images: matched points 
(26 pairs); Right two images: correctly matched points (9 pairs). 

 

    

    
Fig. 12. The matching results of SURF-SAC and clustering. Top left 
two images: matched pairs (96 pairs). Top right two images: correctly 
matched pairs (50 pairs). Bottom left two images: clustering results 
(33 pairs). Bottom right two images: wrongly matched points were 
not eliminated by clustering (3 pairs).     

VI.  CONCLUSION 
Feature points are important for image registration, 

pattern identification, motion tracking, and tumor 
detection. Although SURF may be a superior method of 
feature point extraction, when used in deformation field 
measurements of MR images of non-rigid, non-uniform 
biological tissues, this method yields too few correctly 
matched points to accurately measure local elastic 
deformation.   

Our SURF-SAC method was able to detect more 
correctly matched points for accurate measurement of 
deformation, by extracting and matching feature points. 
Further, we used affine transformation and the clustering 
method to eliminate wrongly matched pairs of points. 

In the experiments, SIFT, SURF, and SURF-SAC are 
compared in the feature points extraction and matching of 
the MR images of the volunteer’s calf. The experiment 
results show that SURF-SAC could detect more correctly 
matched points, which is very important to the 
deformation field measurement. For elastic local 
deformation of non-rigid non-uniform tissues, accurate 
deformation is better measured by obtaining more 

correctly matched features. Furthermore, the clustering of 
differences between deformed points matched by SURF-
SAC with the corresponding points calculated by affine 
transformation can eliminate most incorrectly matched 
pairs.  

These two improvements may be very useful in 
measuring the deformation field of non-rigid non-uniform 
biological tissues, similar to other applications, such as 
image registration and motion tracking. 

Our method had some limitations, including a higher 
computation cost than SIFT and SURF. These limitations 
must be addressed in future research. 
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3.4 結言
本章では，軟組織のMR画像から内部変形場を計算する二つの手法，局所不変特

徴量を用いた変形場の計算手法とSACと TPSを用いた変形場の計算手法について
述べた．双方ともに，軟組織の変形にロバストな特徴量を用いており，軟組織の内
部変形場を計算することが可能になった．現在の手法は，二次元画像間における変
形場を計算することが可能である．変形前と変形後のMR画像の撮影において，変
形が主に撮像面内で生じる場合には，現在の手法で変形場を計算することができる．
しかしながら，変形前と変形後のMR画像の撮影において，軟組織の姿勢のずれが
無視できない，あるいはMRのスライス間で変形が生じる場合には，ボリューム画
像から三次元の内部変形場を計算することが必要になる．MRボリューム画像から
三次元の内部変形場を計算する手法は，今後の課題としたい．
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第4章 柔軟指操作の三次元力学モデル

4.1 緒言
It is well known that we can grasp and manipulate objects with outstanding dexter-

ity thanks to our highly developed brain, binocular vision, and abundance of motor

and sensory nerves in our hands and fingers. Human structure of fingertips may con-

tribute such dexterity in grasping and manipulation. It is well known that, not only

the anatomy of our hands, but also that of our fingers are well designed for grasping

and manipulating objects. In addition to allowing us to pick up small objects, the

fingernails are essential for the high level sensitivity and as a buttress for the pad.

Because our fingers are so good at grasping and manipulating, much research in the

field of robotics has focused on soft-fingered grasping and manipulation. However,

little research has considered the shape and function of our fingernails. Recently,

it has been reported that such structure consisting soft fingertips and hard finger-

nail behind contributes to stable grasping and manipulation [45, 50]. A mechanical

model of fingertips has been proposed and grasping and manipulation process has

been analyzed based on the proposed model. Unfortunately, the model and the

analysis were two-dimensional; three-dimensional grasping and manipulation have

not been formulated.

This paper focuses on three-dimensional grasping and manipulation by robotic

fingers with softtips. As shown above, we have proposed two-dimensional parallel-

distributed model of a soft fingertip to describe the dependency of its potential energy

to the relative orientation between the fingertip and the object. Here we extend

the previous two-dimensional model to three-dimensional model, incorporating the

rotation in three-dimensional space. We formulate the elastic potential energy stored

in a soft fingertip due to the contact with the planar surface in three-dimensional

space. We sketch the Lagrangian of the system consisting of a rigid prism grasped

by three fingers with soft fingertips.

Related work
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Fixed End

(a) normal deformation (b) tangential deformation

図 4.1: Parallel distributed model

Finite element (FE) analysis is often used when studying the deformation of ob-

jects, and can be used to describe deformation of a hemispherical soft fingertip ex-

actly [51, 52, 53]. However, though FE analysis can be used to simulate grasping and

manipulation numerically but cannot be applied to theoretical analysis of grasping

and manipulation due to its complex formulation. The Hertzian contact model pro-

vides a simple closed-form description of the contact between two quadratic surfaces

of elastic objects [54], but because the surfaces are assumed to be open-ended, it can-

not be applied to a hemispherical elastic fingertip with a rigid back plate. Arimoto

et al. formulated dynamics of pinching by a pair of soft fingertips [55], and used a

radially distributed deformation model to analyze the mechanics of a soft fingertip

[56]. Based on the concept of stability on a manifold, they showed theoretically that

a 2-DOF finger and a 1-DOF finger can together realize secure grasping and posture

control [57, 58].

Rolling contact in three-dimensional space yields nonholonomic Pfaffian constraints.

Rolling contact between rigid bodies has been formulated in [59] and rolling contact

between a soft fingertip and a rigid body has been formulated in [60, 61].

4.2 二次元平行分布モデル
We have proposed parallel distributed model of soft fingertips to formulate the

dynamics of planar soft-fingered grasping and manipulation [45, 50]. Figure 4.1-

(b) shows the parallel distributed model. Let a be the radius of a hemispherical

fingertip in its natural shape and E be Young’s modulus of the material of the

fingertip. When the soft fingertips contact the planar surface of the rigid object,

they deform, thereby applying elastic forces. Let d be the maximum displacement

of the soft fingertip and θp be the relative orientation between the fingertip and the
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object. In the parallel-distributed model, the contact force given by

Fperp =
πEd2

cos θp

. (4.1)

The force is perpendicular to the planar surface behind the fingertip, as illustrated in

the figure. Note that the force magnitude depends on both the maximum displace-

ment d and the relative orientation θp. This dependency is due to the hemispherical

shape of the soft fingertip subtended by a fixed rigid end, which is similar to a human

finger consisting of a soft fingertip and a hard fingernail. The parallel distributed

model reflects this structure consisting of a soft fingertip and a hard fingernail. The

potential energy of the fingertip is described as follows:

Uperp(d, θp) =
πEd3

3 cos2 θp
. (4.2)

Note that the energy depends on the maximum displacement d and the relative

orientation θp.

In addition, tangential deformation should be introduced into the parallel dis-

tributed model so that a pinched object can rotate on a plane when an external

force is applied, which happens in actual grasping and manipulation. Let us intro-

duce the tangential displacement of a fingertip shown in Figure 4.1-(b). Letting dt

be the tangential displacement, the total potential energy caused by the tangential

deformation is as follows:

Utangent(d, dt, θp) = πE{d2dt tan θp + dd2
t}. (4.3)

As the perpendicular and tangential displacements are not orthogonal, the above

equation shows the coupling between them. Consequently, the total potential energy

of a hemispherical soft fingertip in the parallel distributed model can be formulated

as follows:

Uparallel(d, dt, θp) = Uperp(d, θp) + Utangent(d, dt, θp). (4.4)

Note that this potential energy is dependent on the maximum displacement d, tan-

gential displacement dt, and relative angle θp.

4.3 一自由度三指による三次元操作の観察
It has been reported that a pair of 1-DOF fingers with soft fingertips can regulate

both grasping force and the orientation of a grasped object along 2D vertical space
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(a) 71◦, 71◦, 71◦

(b) 67◦, 71◦, 74◦

(c) 71◦, 71◦, 69◦

図 4.2: Grasping by three 1-DOF fingers with soft fingertips
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[45, 50]. Let us observe the grasping and manipulation of a rigid object by three

fingers with soft fingertips. Figure 4.2 shows the grasping of a rigid cylindrical object

by three 1-DOF fingers with hemispherical soft fingertips. Figure 4.2-(a) shows the

initial location where joint angles at the base of three fingers are constantly equal

to 71◦. The object is perpendicular to the planar surface. Figure 4.2-(b) shows

one location where three joint angles are 67◦, 71◦, and 74◦. The cylindrical object

grasped by the three fingers is inclined. Figure 4.2-(c) shows one location where

three joint angles are 71◦, 71◦, and 69◦. The object inclines toward the finger with

its joint angle 69◦. Through such experiments, we found that both the grasping force

and the direction of the cylindrical object can be regulated by the joint angles of the

three fingers. Noting that the direction of the cylindrical object is described by two

parameters, this implies that this spatial hand system consisting of three fingers can

regulate three variables; one for the grasping force and two for the object direction.

4.4 三次元操作における指と物体の幾何制約

4.4.1 法線方向の制約

This section formulates normal and tangential constraints between a soft fingertip

and a rigid object in 3D space, based on rolling contact kinematics in [59] and rolling

contact between a soft fingertip and a rigid body in [60, 61]. A hemispherical soft

fingertip of radius a is in contact with a planar surface S of a rigid object, as shown

in Figure 4.3. Let Σobj be a coordinate system attached to the object, Σfin be a

coordinate system attached to the finger, and Σspc be a system fixed to space. Let O

be the origin of Σspc and G be the origin of Σobj. The position of the object is given

by position vector xobj and its orientation is described by rotation matrix Robj. Let

us describe rotation matrix Robj by quaternions q0 through q3:

Robj =

⎡
⎢⎣ 2(q2

0 + q2
1) − 1 2(q1q2 + q0q3) 2(q1q3 − q0q2)

2(q1q2 − q0q3) 2(q2
0 + q2

2) − 1 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3 − q0q1) 2(q2
0 + q2

3) − 1

⎤
⎥⎦ .

Let nobj be the outward normal vector of plane S described in the object coordinate

system. The outward normal vector is then described in spacial coordinate system as

n = Robj n
obj. Let uobj and vobj be tangential vectors along the surface described in

the object coordinate system. Assume that nobj, uobj, and vobj form a right-handed
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図 4.3: Contact between fingertip and planar surface in 3D space

coordinate system. Namely, nobj, uobj, and vobj are unit vectors orthogonal one

another. The tangential vectors are then described in spacial coordinate system as

u = Robj u
obj and v = Robj v

obj. Let Q be a point on planar surface S and ξQ be its

position in the object coordinate system. The spacial position of point Q is given by

xQ = Robj ξQ +xobj. Any point on the planar surface then must satisfy the following

equation:

nT(x − xQ) = 0.

Let P be the center of the hemispherical fingertip and A be its foot of perpendicular

on surface S. Let xfin be the position of point P. Let dn be the maximum normal

displacement of the hemispherical soft fingertip. The positional vector of point A

is then given by xfin + (a − dn)(−n). Since this point is on surface S, we have the

following equation:

nT{xfin + (a − dn)(−n) − (Robj ξQ + xobj)} = 0.

This equation yields a normal constraint between a fingertip and an object:

Cn
�
= nT(xobj − xfin) − dn + a + (nobj)TξQ = 0. (4.5)

This constraint is holonomic. Note that the fourth term (nobj)TξQ is a constant

denoting a signed distance between the origin of Σobj and surface S.
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4.4.2 接線方向の制約

Assume that the deformation of a fingertip is at the maximum at point B. The

position of point B is given by xfin − an. Let V tip
obj be the velocity of point B on the

object. Since the orientation of the object is given by rotation matrix Robj, angular

velocity ωobj of the object is determined by[
ωobj×

]
= Ṙobj RT

obj.

Noting that
−→
GB= (xfin − an) − xobj, velocity V tip

obj is described as follows:

V tip
obj =

[
ωobj×

]
{(xfin − an) − xobj} + ẋobj (4.6)

where ẋobj denotes the translational velocity of the rigid object. The tangential

velocity of V tip
obj along surface S is described by its projection on the surface. Since

the projection matrix on surface S is given by uuT + vvT, the tangential velocity is

described as

(uuT + vvT) V tip
obj = (uTV tip

obj ) u + (vTV tip
obj ) v,

implying that velocity components along u and v are uTV tip
obj and vTV tip

obj , respec-

tively. Let us describe the orientation of a fingertip by rotation matrix Rfin. Let

V tip
fin be the velocity of point B on the fingertip. Since the orientation of the finger

is given by rotation matrix Rfin, angular velocity ωfin of the finger is determined by[
ωfin×

]
= Ṙfin RT

fin.

Noting that
−→
PB= −an, velocity V tip

fin is described as follows:

V tip
fin =

[
ωfin×

]
(−an) + ẋfin (4.7)

where ẋfin denotes the translational velocity of the fingertip. The tangential velocity

of V tip
fin along surface S is described by its projection on the surface, which is described

as

(uuT + vvT) V tip
fin = (uTV tip

fin ) u + (vTV tip
fin ) v,

implying that velocity components along u and v are uTV tip
fin and vTV tip

fin , respec-

tively. Let du and dv be tangential deformations along u and v. From the above
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discussion, we find that the time rate of the tangential deformations are described

by

ḋu = uT∆tip, ḋv = vT∆tip

where

∆tip �
= V tip

obj − V tip
fin

=
[

ωobj×
]
(xfin − xobj − an) +

[
ωfin×

]
an + ẋobj − ẋfin

denotes the relative velocity at point B. Note that when ḋu = 0 and ḋv = 0, we have

no tangential deformations. The above equations yield the tangential constraints

between a fingertip and an object given by

Ċu
�
= uT∆tip − ḋu = 0, (4.8)

Ċv
�
= vT∆tip − ḋv = 0. (4.9)

The above two are nonholonomic Pfaffian constraints.

4.5 三次元操作における指のポテンシャルエネルギー
Let us formulate elastic potential energy stored in a hemispherical soft fingertip

due to the contact with a planar surface of a rigid body. Recall that the surface can

slide along u and v with constant dn keeping. Let dt is the displacement along the

direction of inclination and ds is the displacement perpendicular to the inclination.

Displacement dn is described in Eq. (4.5). Let us formulate dt, ds, and θp in three-

dimensional grasping and manipulation.

Let us first derive derive the relative angle θp between a fingertip and a planar

surface. Let bfin be the unit normal vector of the plate behind a fingertip described

in the finger coordinate system. The unit normal vector is then described in spacial

coordinate system as b = Rfinbfin. The relative angle θp is given by the angle between

two unit vector, n and b. Thus, the relative angle is formulated as follows:

cos θp = nTb = (Robjn
obj)T(Rfinb

fin), (4.10)

sin θp =
√

1 − cos2 θp. (4.11)

Any non-zero θp shows that the object surface inclines to one direction with respect to

the back plate of a fingertip. The direction of inclination is given by the projection of
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b on planar surface composed of u and v. The tangential deformation takes positive

values in the negative direction of the projection. Consequently, the direction of

tangential deformation is described as

(uuT + vvT)(−b) = (−uTb)u + (−vTb)v,

implying that components of the direction vector along u and v are given by (−uTb)

and (−vTb). Letting φt be the angle between u and the direction vector, we have

cos φt =
−uTb

{(uTb)2 + (vTb)2}1/2
, (4.12)

sin φt =
−vTb

{(uTb)2 + (vTb)2}1/2
. (4.13)

Displacements du and dv are converted into dt and ds as follows:[
dt

ds

]
=

[
cos φt sin φt

− sin φt cos φt

] [
du

dv

]
. (4.14)

Potential energy is then described by

U =
1

2

∫
ell

k
{
(PQ + dt sin θp)

2 + (dt cos θp)
2 + (ds)

2} . (4.15)

Computing the above equation, we have

U = Unormal + Utangent + Uside (4.16)

where

Unormal(dn, θp) =
πEd3

n

3 cos2 θp
,

Utangent(dn, dt, θp) = πE{d2
ndt tan θp + dnd

2
t},

Uside(dn, ds) = πEdnd
2
s .

Potential energy Unormal is caused by normal displacement dt. Potential energies

Utangent and Uside are caused by tangential displacements dt and ds, respectively.

Note that letting ds = 0, the above equation coincide with two-dimensional model

Eq. (4.4).
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図 4.4: Three 1-DOF fingers grasping rigid hexagonal prism
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4.6 三次元操作の定式化
Assume that three 1-DOF fingers with hemispherical soft fingertips grasp a rigid

hexagonal prism, as shown in Figure 4.4. The hexagonal prism is inscribed to a

cylinder of radius w. The radius of each fingertip is given by a Fingertip 1 is in contact

with side face S1, fingertip 2 is in contact with side face S2, and fingertip 3 is in contact

with side face S3 of the hexagonal prism. Let O − xyz be the coordinate system

attached to space. Let G − ξηζ be the coordinate system attached to the prism.

Let xobj = [ xobj, yobj, zobj ]
T be the position of the prism and qobj = [ q0, q1, q2, q3 ]T

be quaternions describing the orientation of the prism. Let ωobj = [ ωξ, ωη, ωζ ]T be

the angular velocity of the prism. Let θk be the rotation angle of the k-th finger

and Rk be the rotation matrix from spacial coordinate system O − xyz to the k-th

finger coordinate system Fk−ξkηkζk. Let dnk be the normal displacement of the k-th

fingertip and duk and dvk are its tangential displacements.

Let us derive the Lagrange equations of motion in grasping by three 1-DOF fingers.

Generalized coordinates are xobj, qobj, θfin = [ θ1, θ2, θ3 ]T, dn = [ dn1, dn2, dn3 ]T,

du = [ du1, du2, du3 ]T, and dv = [ dv1, dv2, dv3 ]T. Kinetic energy is described as

follows:

T =
1

2
mobj ẋT

objẋobj +
1

2
ωT

obj Iobj ωobj +
3∑

k=1

1

2
Ifinθ̇

2
k

+
3∑

k=1

1

2
mnḋ

2
nk +

3∑
k=1

1

2
muḋ

2
uk +

3∑
k=1

1

2
mvḋ

2
vk. (4.17)

Potential energy is formulated as

U = U1 + U2 + U3 (4.18)

where

Uk = Unormal(dnk, θpk) + Utangent(dnk, dtk, θpk) + Uside(dnk, dsk)

=
πEd3

nk

3 cos2 θpk
+ πE

{
d2

nkdtk
sin θpk

cos θpk
+ dnkd

2
tk + dnkd

2
sk

}
, (k = 1, 2, 3).

Let τk be the torque to drive the joint of the k-th finger. Work done by external

torques is given by

W = τ1θ1 + τ2θ2 + τ3θ3. (4.19)
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Since the distance between origin G and the three side faces is constantly equal to

(
√

3/2)w, the normal constraint at the k-th fingertip is described as follows:

Cnk = (Robj nobj
k )T(xobj − Rk xfin

k − rk) − dnk + a + (
√

3/2)w = 0. (4.20)

Two tangential constraints at the k-th fingertip are described as follows

Ċuk = (Robju
obj
k )T∆tip

k − duk = 0, (4.21)

Ċvk = (Robjv
obj
k )T∆tip

k − dvk = 0, (4.22)

where

∆tip
k =

[
ωobj×

]
(xk − xobj − ank) +

[
ωk×

]
ank + ẋobj − ẋk. (4.23)

Summing holonomic constraints with Lagrange multipliers yields

CH = λQQ + λn1Cn1 + λn2Cn2 + λn3Cn3. (4.24)

Summing Pfaffian constrains with Lagrange multipliers yields

ĊP = µu1Ċu1 + µu2Ċu2 + µu3Ċu3 + µv1Ċv1 + µv2Ċv2 + µv3Ċv3. (4.25)

Let us introduce collective vectors consisting of Lagrange multipliers: λn = [ λn1, λn2,

λn3, ]T, µu = [ µu1, µu2, µu3, ]T, and µv = [ µv1, µv2, µv3, ]T. Lagrangian of the sys-

tem is then given as follows:

L = T − U + W + CH. (4.26)

Note that partial derivatives of the Lagrangian with respect to generalized coordi-

nates and their time derivatives are shown in the previous sections. Consequently,

applying the Lagrange equations of motion to the above Lagrangian, we can derive

dynamic equations of motion of the object and the three fingers with soft finger-

tips. Nonholonomic Pfaffian constraints are imposed to the equations of motion

with Lagrange multipliers [62].

4.7 シミュレーション
Let us simulate the spatial grasping and manipulation of a hexagonal prism via

three 1-DOF fingers with soft fingertips. The radius of the circumcircle of the
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図 4.5: Simulation result of three-fingered grasping (θ∗1 = 0◦, θ∗2 = 5◦, θ∗3 = 5◦).

hexagon is 25 mm and the height of the prism is 80 mm. Let the density of the prism

be 6.88× 102 kg/m3, implying that its inertial properties are mobj = 8.94 × 10−2 kg,

Iξ
obj = Iη

obj = 5.93×10−5 kg·m2, and Iζ
obj = 2.33×10−5 kg·m2. The inertial properties

of each finger are given by mfin = 100 g and Ifin = 582 kg·mm2. In this simulation,

we have assumed that the gravitational effect is negligible during grasping and ma-

nipulation. We have applied a simple PID law to control individual finger joints to

observe the motion of the grasped object during the control of three fingers. Letting

∆θk = θk − θ∗k, control input τk for the k-th finger joint is expressed as

τk = −KP∆θk − KDθ̇k − KI

∫ t

0

∆θk(τ) dτ, (4.27)

where KP, KD, and KI denote the proportional, differential, and integral gains,

respectively. Let us apply the same gain values of KP = 300 Nm, KD = 1 Nm·s, and

KI = 0.2 Nm/s to the three fingers.

Figures 4.5 through 4.7 show the simulation results when the desired angles of the

three finger joints are given at time 0 s. The desired angles are θ∗1 = 0◦, θ∗2 = 5◦,
and θ∗3 = 5◦ in Figure 4.5. As shown in Figures 4.5-(a) through (c), the joint angles

converge to their desired values within 0.05 s. Figures 4.5-(d) through (f) denote
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図 4.6: Simulation result of three-fingered grasping (θ∗1 = 5◦, θ∗2 = 0◦, θ∗3 = 5◦).
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図 4.7: Simulation result of three-fingered grasping (θ∗1 = 5◦, θ∗2 = 5◦, θ∗3 = 0◦).
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the coordinates of the grasped object. The coordinates converge, implying that the

object is stable with respect to the motion of three fingers. Let us investigate the

direction of the central axis of the hexagonal prism. The unit vector along ζ-axis,

which specifies the central axis, is described as [ 2(q1q3 − q0q2), 2(q2q3 + q0q1), 2(q2
0 +

q2
3) − 1 ]T. Note that this vector coincides with the third column of the rotation

matrix. Figure 4.5-(g) denotes the angle between the ζ-axis and the z-axis, which

is given by cos−1(2(q2
0 + q2

3)− 1). This angle represents the inclination of the prism.

Figure 4.5-(h) denotes the direction of the projection of the ζ-axis on the x − y

plane, which is given by atan2 (2(q2q3 + q0q1), 2(q1q3 − q0q2)). This angle represents

the direction of the inclined prism. The desired angles are θ∗1 = 5◦, θ∗2 = 0◦, and

θ∗3 = 5◦ in Figure 4.6. The desired angles are θ∗1 = 5◦, θ∗2 = 5◦, and θ∗3 = 0◦ in

Figure 4.5. Figures 4.5-(g), 4.6-(g), and 4.7-(g) suggest that the three fingers can

incline the prism toward any direction, implying that a set of three 1-DOF fingers

with soft fingertips can regulate the inclination and the direction of the grasped

object.

4.8 結言
This chapter focused on the formulation of grasping and manipulation via soft-

fingered hand in 3D space. First, we have formulated geometric constraints between a

hemispherical soft fingertip and an object planar surface. Second, we have formulated

the elastic potential energy stored in a soft fingertip due to the contact with the

planar surface. We proposed to decompose the energy into three terms: Unormal,

Utangent, and Uside. Finally, we have sketched the Lagrangian of the system consisting

of a rigid prism and three fingers with soft fingertips.

We have formulated soft-fingered grasping and manipulation in 3D space but not

performed its experimental verification yet. We are measuring the object posture

manipulated by three fingers with soft fingertips. We will compare the simulation

result and experimental result to validate the formulation in this chapter.
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第5章 柔軟指による視覚情報遅れ下に
おける物体操作

5.1 緒言
画像処理を施した物体情報をシステムにフィードバックし所望のタスクを実現し

ようとする従来のマシンビジョンシステムにおける制御手法では，画像取得間隔（フ
レームレート：fps or Hz）やカメラ画素数に相当するメモリへのアクセス時間（画
像処理時間）が，制御系の性能を大きく左右することになる．このような性能劣化
を防ぐためにより高速な制御周期が要求され，その要求をハード面から満たし得る
VGAで 1kHzを超える高速度カメラがシステムに導入される研究事例が近年数多く
見受けられ [63, 64, 65]，そのような方向性が確立しつつある．このような流れとは
逆に，人の運動制御メカニズムはロボット制御に比して，遅れの多いシステムである
と言える [66, 67]．体性感覚の物理的な伝達遅れが複合的に潜在する動的システムに
もかかわらず，人は適応的な制御を実現している．この”遅れ”は，人の運動制御に
おける α運動ニューロンの伝達速度に起因する．その値は筋の種類によって異なる
が，最大でも 100 m/sであり神経軸索上を神経パルスとして伝達される．筋張力が大
きく瞬発力のある大腿四頭筋の場合，神経パルスの発生から筋活動までに約 30∼40

ms かかると言われている [68]．また，ひとつの神経軸索が終端する筋線維数が少な
い動眼神経では約 80 ms の時間を要する反面 [68]，眼球運動はより細かく制御され
ることになる．また，視覚情報を処理する視神経に至ってはさらなる遅れが生じる．
以上のように，視覚情報処理という観点から考えると，ロボットの制御と人の運

動制御との間には，その進むべき方向性に隔たりがあると言える．このような観察
を下に，従来のマシンビジョンにおけるビデオフレームレート [69, 70]より遅いサン
プリングタイムでのビジュアルフィードバックシステムの検証を試みる．具体的に
は，ロボットビジョンでの画像取得と画像処理を故意に遅らせ，両者を含めた画像
更新間隔を最大 100 ms に設定する．生体運動に内在する大幅な信号伝達遅れを模
擬することで，本稿では 10 Hz (100 ms) の遅い視覚更新レートにおけるビジュアル
フィードバックシステムがロボットの制御に有効であることをシミュレーションと
実験を通して明らかにする．ここで例示するタスクは，対向構造の柔軟指を持つ 2指
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図 5.1: A block diagram of the proposed control method.

1自由度対ロボットハンドによる物体操りであり，把持物体の姿勢制御を行う．指の
物理的柔軟性が視覚遅れを伴った制御系において重要な役割を果たすことを示す．

5.2 柔軟指システムの運動方程式と制御則
柔軟指操作をモデル化しダイナミクスを表現する場合，指先の弾性モデルは欠か

せない．人指と共通する弾性材料の柔軟性に着目しモデル化を行った結果，指先弾
性力曲線に極小が存在することが明らかになっている [45, 71]．この知見は，指の柔
軟特性をうまく利用すれば柔軟指による物体操作が，脳機能や体性感覚による複雑
な制御や感覚フィードバックを介さなくても安定な把持と操りが実現可能であるこ
とを示唆する．柔軟指の平行分布モデルを含んだ 2指ハンドシステム全体での運動
方程式を以下に示す [72, 71]．

Mq̈ + C(q, q̇) + Dq̇ + fp − ΦTλ = fext + u. (5.1)

ここで，M は慣性行列，Cは遠心力・コリオリ力項・非線形項，Dは指先の粘性係
数行列，fpは指先弾性力と重力を含んだ一般化ポテンシャル力，Φは本システムに
存在する幾何拘束と速度拘束をまとめた拘束行列，λは拘束に伴う拘束力，fextは一
般化外力，uは指関節への制御入力を意味する．次に，本稿で与える把持物体姿勢
制御タスクを実現する制御則（直列連動 2段階制御則）を以下に示す [71]．

θ∗fi = −(−1)iKI

∫ T

0

(θobj − θ∗obj) dt, (5.2)

ui = −KP(θfi − θ∗fi) − KDθ̇fi + τbi. (5.3)

本制御手法のブロック線図を図 5.1に示す．式 (5.2)の 1段目積分器で物体姿勢を偏
差なくロバストに制御し，その過程で動的に生成される関節角目標を式 (5.3)の 2段
目PD制御器に代入することで安定な操り動作を実現している．また，2段目PD制
御器が負のトルクを生成しないように，定数バイアストルクを加えている．
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5.3 視覚情報の遅れとロボット制御周期との関係
ロボット制御に関わらず視覚情報取得を前提としたマシンビジョンシステムでは

従来，カメラによる画像取得と計算機内での画像処理時間の制御系に与える影響は
ほとんど議論されてこなかった．一方のシミュレーションにおいては，動的システ
ムの挙動を解くルンゲクッタ法による forループ内で，時間遅れのないカメラ取得と
画像処理が前提となっている．つまり，制御ループのある時点で瞬時に画像を取得
し処理を行っていることになる．これは，「カメラによる撮像時間と計算処理時間を
ゼロに仮定する」ことと等価である．しかし，これが理想的な条件であり実現不可
能であることは容易に理解されよう．一方で人の視覚情報処理過程においては，網
膜に結像した像が視神経路を介して神経パルス信号として一次視覚野（V1）に到達
し，その後，頭頂連合野や側頭葉下部においてパターン認識や空間認識が行われ視
知覚として処理されている [73]．各受容野からの視覚ニューロンは電気信号である
ため，5.1章で述べた神経軸索上の信号伝播速度を考慮すると，網膜に照射された像
が運動制御に役立つ情報として脳から取り出せるまでに，数十ms 程度の遅れを生
じることが知られている [74]．さらに，手指による物体把持操りタスクにおいては
指関節の角度制御が必要になるため，遠心性神経路を介した脳や脊髄からの神経系
伝達遅れを生じる．このようなことから，本稿ではまず，人の運動制御とロボット
の実制御とを比較して，マシンビジョンシステムの「情報伝達の遅れ」を以下のよ
うに厳密に分類し定義する．
I 処理遅れ（時間）Processing delay, Tp：撮像，画像転送，ならびに画像処理に費
やされる時間の合算であると定義する．これは同一のカメラ，コンピュータ，画像処
理アルゴリズムを利用している限り不変である．ただし，画像をロボット制御にお
けるフィードバック情報として用いない場合，画像をカメラからメモリ上に取り込
む必要がないため画像転送時間と画像処理時間が共にゼロとなり，処理遅れ時間=

撮像時間となる．また，画像処理時間は撮像時間や画像転送時間に比べて一般的に
長い．
II 伝達遅れ（時間）Transmission delay, Tt：計算し得られた視覚情報によって発射
された筋活動指令が神経路を通って末梢神経に伝播するということは，それに掛かっ
た時間分過去の視覚情報が伝わり，それに基づいて手指の運動制御が行われている
ことを意味する．この遅れ時間をロボット制御において模擬するために，人為的に
取得画像の更新を遅らせる．この時間を伝達遅れと定義する．
A 撮像時間, Tcp：撮像時間の長短はカメラ（CCDやCMOS）の光学素子の構造や
スペック，画素数に依存する．受光した撮像面の光電変換と走査によってピクセル毎
の電気信号（アナログ）を取り出す．
B 画像転送時間, Ttf：キャプチャプログラム内の指定された画像キャプチャ関数に
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Tp Tm TmTm TpTp

Tc Tu=

(a) continuous updating of a camera image

Tp Tm TmTpTmTm TmTm

Tc Tc

Not updated Not updated

Tc

Tu Tc = Tu( )

(b) irregular updating of a camera image

図 5.2: A conceptual diagram of the time-delayed robotic system in visual feedback

control.

よって 1フレームの画像情報をコンピュータメモリ（もしくは画像キャプチャカー
ド上のメモリ）に転送する時間．本稿で利用するカメラは VGAサイズで 200 fps で
あるため，Tcp + Ttf = 5 ms である．
C 画像処理時間, Tcm：メモリ上にプールしたフレーム毎の画像データから種々の画
像処理アルゴリズムを用いて，当該システムに必要な情報（2値画像処理，パターン
検出，特徴抽出等）を計算し求める時間．
以上の定義を制御ループを想定した時系列で考えた場合の，ビジュアルフィード

バックループを有するロボットの制御周期の概念を図 5.2のようにパターン分けす
ることができる．図内において，Tmはモータの動作指令にかかる時間であり，Tcは
ロボットの制御時間（周期）でありプログラム内では forループの周期に相当する．
また，画像の更新周期を Tuとし，伝達遅れを伴った場合は図 5.2-(b)のように，制
御周期 Tcと一致しない．結局図 5.2-(b)の例では，2Tm分画像情報の伝達が遅れて
いることになり，Tt = 2Tmの関係を満たす．また，Tmはおよそ数十 µs 以下であり，
一般的にカメラ画像の取得や処理に費やす時間に比して極端に短い．以上のように
本章では，遠心性神経路での信号伝達遅れを画像の更新遅れで模擬し，その更新周
期を 4通りに変更させ最大でTpのおよそ 4倍の更新遅れを有するロボットビジョン
システムの把持操り動作解析を行う．

5.4 ビジョンシステムのパラメータ同定実験
前章で述べた処理遅れ（時間）Tpは当該システムで利用されるカメラやコンピュー

タの性能に大きく依存する．したがって，本稿で用いるビジュアルフィードバック
ロボットシステムの Tpと Tmを基礎実験により同定する．本稿で取り扱うロボット
ハンドシステムを図 5.3-(a)に示し，各機器の仕様を表 5.1に示す．本同定実験では，
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CCD camera

Two-fingered hand
Cubic target

(a) total view (b) a binarized image

図 5.3: A robotic hand system with a monochrome camera.

表 5.1: Specifications in the verification test

Camera model Point Gray Research, Dragonfly Express

Interface IEEE 1394b (FireWire)

Imaging sensor Progressive scan CCD

Resolution VGA Grayscale image

Frame Rates 200 fps (Format 7 mode)

PC spec. Pentium 4 1.9 GHz

FSB & Cache 400 MHz, 256 KB

Memory 512 MB DDR 400 MHz × 1

OS Vine Linux 3.2 (kernel 2.4.31) Non-RT

黒色マーカを貼り付けた 50mm 四方の木片立方体をカメラの直下に置き（図 5.3-(a)

の上側），画像キャプチャを開始する．ここで得られる 2値化画像を図 5.3-(b)に示
す．したがって，画像処理時間 Tcmは画像データを得るためのメモリへのアクセス
から 2値化までに要する時間と言える．
まず，システム固有の処理遅れ時間 Tpを求めるために，人為的遅れのない図 5.2-

(a)のような設定でキャプチャと画像処理を開始する．よって，キャプチャプログラ
ム内の forループでは，Tcp，Tt，Tcm，Tmの合計Tp +Tmが計測される．この結果を
図 5.4-(a)に示す．ここで，Tp + Tmは 1ループの所要時間であるため制御周期 Tcに
等しい．結果から分かるように，画像取得と処理計算がおよそ 25 ms の定周期で実
行されている．次に，図 5.2-(b)の条件に準じて人為的に画像の更新を遅らせる．こ
こでは，50 ms 毎に一度だけ更新を行った結果を図 5.4-(b) に示す．この実験では制
御周期が一定ではなく二分されていることが分かる．制御周期が人為的に変えられ
ているために多少のばらつきはあるが，25 ms と 17～19 µs の制御周期とに分かれ
る．以上から，Tp ≈ 25 ms，Tm ≈ 18 µs の同定結果を得る．なお，Tcp + Ttf = 5 ms
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図 5.4: A wide gap in the control period, Tc, of a loop between the conditions of

Tc = Tp + Tm (図 5.2-(a)) and Tc = Tm (図 5.2-(b)).

表 5.2: Four patterns of control period

updating period (Tu) control period (Tc) time interval

continuous (25 ms) 25 ms constant

50 ms 25 ms (long period) 0～25 ms

18µs (short period) 25～50 ms

75 ms 25 ms 0～25 ms

18µs 25～75 ms

100 ms 25 ms 0～25 ms

18µs 25～100 ms

であることから Tcm ≈ 20 ms であることが分かる．他に，Tu = 25 msと Tu = 100

msの同定実験を行っている．それらと共にまとめると表 5.2を得る．表から分かる
ように，画像更新遅れのある下側 3つのパターンにおいて，画像取得を行っていな
い制御ループで制御周期が 18 µsのように極端に短くなっていることが確認できる．
これは，画像取得と処理に費やす時間が省略されているため，結果的にモータ制御
に限定した制御ループになっていることに因る．したがって，画像更新遅れが大き
くなればなるほど，高速な制御周期でロボットを動作させる時間が必然的に長くな
る．このように，画像更新遅れがある場合，可変な制御周期となっていることが分
かる．次章以降では，以上のような制御パターンに基づいて，操りシミュレーショ
ンと実験を行う．
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表 5.3: Simulation parameters

Parameters Values

KP 50 Nm

KD 1 Nm·sec
KI variable

τb 3 Nm

L 76.2 mm

2Wfi 98 mm

Parameters Values

a 20 mm

Wobj 50 mm

Mobj 86 g

Mi 88 g

Iobj 12 kg·mm2

Ifi 171 kg·mm2
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図 5.5: Orientation trajectory of a grasped object when Tu = Tp + Tm.

5.5 操りシミュレーション
本章では，画像更新間隔をTu = Tp +Tm，Tu = 50 ms，Tu = 75 ms，Tu = 100 ms

の 4通りに変化させたときの把持操りタスクの検証を行う．シミュレーションで用い
る 2指ロボットハンドのモデルには先行研究 [72, 75]で導出したモデルを用いる．2

指関節ベース間距離 2Wfi，指長L，立方把持物体の一辺長さWobj，指先半径 a，物
体重量Mobj，物体慣性 Iobj，指重量Mi，指慣性 Ifiをそれぞれ定義しそれらの値を
表 5.3に記す．また，操りタスクに適用される式 (5.2)と式 (5.3)で表される 2段階制
御則における各ゲインKP，KDを同時に示している．ロボットに与えた操りタスク
は把持物体の姿勢制御であり，1 sec 毎ステップ状に初期平行把持状態からカメラ側
から見て反時計周りに 3◦，8◦，-5◦，-10◦，10◦，0◦の順で切り換えた．本タスクでは
図 5.1と式 (5.2)，式 (5.3)のようなセンサベーストの閉ループ制御則を施し，把持物
体の姿勢をビジョンシステムによって精度良く計算可能であると仮定している．し
たがって，本制御手法において指先位置を求めるためのセンシングや運動学的手法
による計算は行っていない．また，本タスクでは画像更新が行われていない間，物
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図 5.6: Orientation trajectory of a grasped object when Tu = 50 ms.
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図 5.7: Orientation trajectory of a grasped object when Tu = 75 ms.

体姿勢も同様に更新されずに一定値となることに注意する．例えば，Tu = 100 msの
場合，その 100 ms間は常に直前で得られた物体姿勢がフィードバックされ目標値と
比較される．つまり，最大で 100 ms古い姿勢情報が目標値に返される．よって，そ
の誤差に基づいて式 (5.2)の第 1段制御器が動作することになる．
まず，伝達遅れのない例（Tu = Tp + Tm）を図 5.5に示す．図 5.5-(a)には与え

たステップ状目標軌道（太い点線）と，ケーススタディとして試行錯誤的に選んだ
KI = 0.08の場合の改善前の例（細い点線），ならびに，その 10倍であるKI = 0.8の
場合の改善応答例（実線）を図示している．ここで，結果から，応答の改善に寄与し
たパラメータは積分ゲインのみであることが理解できる．第 1段制御器（式 (5.2)）の
積分ゲインのみを 10倍することで，500 msから 900 ms 要していた各時間ステップ
での立ち上がり時間が劇的に改善されていることが分かる．この結果は，視覚情報処
理を考慮したロボットシステムにおいて，その視覚情報を用いたフィードバック系を
構築する場合，ゲインチューニングが容易であることを示唆する．次に，図 5.5-(b)，
(c) は，第 2段目制御器（式 (5.3)） での両指関節角の偏差を示しており，図 5.5-(a)

における改善例に対応するデータである．対象物姿勢が所望値に収束しているにも
かかわらず，大きな定常偏差を残している．つまり，1段目でターゲットとしている
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図 5.8: Orientation trajectory of a grasped object when Tu = 100 ms.

物体姿勢さえ収束させることができれば，両指の角度偏差は許容され得るものであ
ると言える．したがって，2段目制御器の役割は，把持物体の落下に直接結びつく負
の把持トルクを発生させないことであり，PD制御器で生じる可能性のある負のトル
クを相殺するために定数バイアストルク τbを印加している．次に，図 5.6はTuを 50

msに設定した場合の結果である．なお，本稿のシミュレーションにおいては（図 5.5

～図 5.8），積分ゲインに改善例としてKI = 0.8を，改善前の例としてKI = 0.08を
一貫して利用している．図 5.6-(a)から分かるように，画像更新が 50 ms遅れると，
改善前の例では物体姿勢が 1 s 以降で目標値に達していない．さらに，4 s ～ 5 s で
は物体姿勢の目標軌道を－ 10°から＋ 10°まで大きく変化させているため大きな定
常偏差を残している．加えて改善例では，図 5.5と同様に積分ゲインのみを 10倍す
ることで，著しく応答性能が向上している．また，第 1段制御器で動的に生成され
る仮想的な目標関節角と実関節角を比較した図 5.6-(b)，(c)においても同様に，”安
定的な”定常偏差が顕著に現れている．さらには，画像更新時間を 75 msまで遅らせ
た例（図 5.7）では，0 s ～ 1 sで示されている初期操り動作においても，目標値に
到達できず偏差が生じている．また，改善前の例では更新遅れの増大に伴って階段
状の不連続応答になっていることが見て取れる．さらに，改善例では図 5.5や図 5.6

と比較すると，ステップ状目標軌道を与えているにもかかわらず，急峻な動きが徐々
に目立たなくなっている．これは，更新遅れが 100 msまで拡張された図 5.8-(a)の
改善例において顕著である．これらの現象は両指関節角の挙動においても見受けら
れる．つまり，視覚情報の更新遅れが制御系に振動的振る舞いをもたらすのではな
く，与えられたタスクにおいてむしろ”コンプライアントな”立ち上がり性能を実現
しているのである．これらの結果には，解析モデルに用いられている柔軟指による
対象物との面接触が寄与していると考えられる [45]．また，図 5.8においては，積分
ゲインが低いままの状態では応答曲線が階段状となりさらに悪化している．しかし，
図 5.5～図 5.7の場合と同様に，積分ゲインのみを単純増加させることで応答を改善
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図 5.9: Experimental results of orientation trajectory of a grasped object when

Tu = Tp + Tm, KP = 40, KD = 0.001. KI is set at 12 in success and 1.2 in failure.
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図 5.10: Experimental results of orientation trajectory of a grasped object when

Tu = 50 ms, KP = 60, KD = 0.001. KI is set at 0.02 in success and 0.002 in failure.

できている．以上のように，視覚情報遅れが存在するマシンビジョンシステムにお
いてその遅れはもはや致命的ではなく，応答特性を”滑らかに鈍化”させ得るという
意味で利点を持つと言える．これらの知見を検証するために，次章では柔軟指を配
した 1自由度対ロボットハンドを用いた操り実験を行う．

5.6 操り実験

5.6.1 ステップ入力に対する応答

本実験で利用する 2指 1自由度対ロボットハンドを図 5.3-(a)に示す．与えたタス
クはシミュレーションと同様である．図 5.9で与えた積分ゲインは，シミュレーショ
ンと同様にケーススタディとして成功例においてKI = 12，改善前の例においては
KI = 1.2である．また，バイアストルクはすべての結果において τb = 0.55 Nm であ
る．結果から分かるように，積分ゲインを 10倍にすることで大きな定常偏差を含ん
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図 5.11: Experimental results of orientation trajectory of a grasped object when

Tu = 75 ms, KP = 60, KD = 0.001. KI is set at 0.01 in success and 0.001 in failure.
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図 5.12: Experimental results of orientation trajectory of a grasped object when

Tu = 100 ms, KP = 60, KD = 0.001. KI is set at 0.008 in success and 0.0008 in

failure.

だ応答を劇的に改善し，300 ms 以下の立ち上がり時間を達成している．また，更新
周期が 25 ms から 100 ms のように著しく大きいために，図 5.9-(a)から図 5.12-(a)

を概観すると成功例において徐々に反応が遅れ階段状の応答軌道が現れている．し
かし，各ステップでの更新回数が明らかに少ないにもかかわらず，積分ゲインのみ
を増大させることによって目標値にロバストに追従していることが分かる．また，
各タイムステップの初期に目標のステップ入力に対して，反応が他点より著しく遅
れて出力されていることが分かる．データを観察するとすべての結果（図 5.9-(a)～
図 5.12-(a)）において，更新間隔の倍の時間分遅れて立ち上がりの開始が見られる．
つまり，図 5.12-(a)では各ステップの初期に 200 ms 遅れて立ち上がっているように
見える．シミュレーションではこの現象は見られない．この原因は，カメラによる画
像取得と処理には Tpの実時間を要するが，その間プログラム内ではメモリへのアク
セス処理を実行しているため，モータ制御信号を変化させることができないためで
ある．図 5.12-(a)を例に挙げると，ある時刻で目標ステップが立ち上がり画像取得
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と処理を終了した後にモータ制御コマンドが発生する．その直後に次ループでの画
像取得と処理が始まるために，直前のモータ制御コマンドと画像取得開始との時間
間隔がTmとなり，モータ駆動電圧の微小変化によって生じる物体位置姿勢の変化を
画像として捉えることができない．その結果として，更新遅れ（Tu = 100 ms）の倍
の時間遅れることになる．次に，操り動作中の両指関節角の軌道を観察する．図 5.9

～図 5.12の (b), (c) を見ると，シミュレーション結果と同様に，物体姿勢の収束性
に関与しない”安定的な定常偏差”が現れている．これは，1段目制御器と 2段目制
御器とが仮想的な関節角目標を介して動的に連動していることに起因する．つまり，
ターゲットである物体姿勢が収束したときに初めて，最終的な関節角目標を決定す
るというアルゴリズムに起因する．結果的に，ビジュアルフィードバックに関わる 1

段目制御器の積分ゲインのみを単純に増加させることによって，視覚情報に関連す
る大幅な時間遅れが存在するシステムにおいて，把持物体の応答が著しく改善でき
ることを示した．

5.6.2 正弦波入力に対する応答

次に，連続的な動的タスクに対する提案制御手法の効果を検証するために，周期 2

秒の正弦波を目標入力として印加する．そのときの実験結果を図 5.13-(b)，(d)，(f)

に示し，比較のために図 5.13-(a)，(c)，(e)にシミュレーション結果を図示している．
また，画像更新遅れTuはすべて 25 msで統一している．なお，それぞれのキャプショ
ンに積分ゲインを示している．
結果から分かるように，どちらの結果においても積分ゲインを単純増加させるこ

とで応答軌道が改善しており，速応性のみならず振幅に対する誤差が著しく改善し
ている．このようなことから，本稿での 2段階制御則における積分ゲインの調整（増
加）が，ロボットハンドによる動的タスクにおいても制御性能を大きく向上させる主
因であることが理解できる．他方，実験結果を観察すると，タスク開始時に比較的
大きな振動的挙動が見受けられる．この原因は，タスク初期においては静止状態か
らの目標軌道入力になるため，それによって生じる静止摩擦による不感帯であると
考えられる．実際，本稿で利用しているロボットシステムのギヤ減速比が100対 1で
あることに起因する．以上のような観察を基に積分ゲインを増加させると図 5.13-(f)

のように，急峻な振動が抑制され追従性が向上していることが分かる．また，実験に
おいて見受けられる階段状の応答は，前記した高減速比によるクーロン摩擦やモー
タの比線形特性によって引き起こされていると推察される．
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図 5.13: Simulations and experimental results of the response of object orientation

in sinusoidal wave input.

5.6.3 考察

本節では，本稿で採用している 2段階制御則の積分ゲインの増加が把持物体の軌
道を劇的に改善する理由について，定性的な考察を加える．
まず，式 (5.2)と式 (5.3)をひとつにまとめると次式となる．

ui = −(−1)iKPKI

∫ T

0

(θobj − θ∗obj) dt − KPθfi − KDθ̇fi + τbi. (5.4)

上式から分かることは，ロボットへの入力トルクが物体姿勢積分制御に起因するト
ルクと，関節角PD制御によるトルク，バイアストルクの 3つの要素の線形和によっ
て構成されていることである．以下ではまず，上式右辺の各トルクの役割について
詳述する．
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右辺第 1項は 1段目制御器に比例ゲインKPを掛けることで生成されるトルクであ
る．この積分制御器は，”対向型ハンド”という把持形態の特徴を上手く利用してい
る．例えば，把持物体を時計回りに回転させる場合，指先上での転がりを上手く利
用すると，両指を同調して左回転するだけで良い．物体を反時計回りに回転させる
場合は，その逆手順を採れば良い．このような簡単な操りアルゴリズムに基づいて，
1段目制御器が設計されている．したがって，式 (5.4)の第 1項はどちらかの指で負
値になり得る．最終的なロボットへの制御トルクが定常状態でui > 0を満たさなけ
れば把持は失敗するため，関節角比例制御器によるトルク（第 2項）とバイアストル
ク（第 4項）によって定常的に ui > 0を維持しなければならない．逆言すれば，上
記条件を満たすようにKP, τbiを決定した上で，積分ゲインKIを調節（増加）する
ことで姿勢追従性能の向上を図ることが可能になる．また，姿勢制御が積分器のみ
で構成されていることから，KIの調節が速応性に直接的に寄与することになる．さ
らには，積分制御の制御工学的特徴を考慮すると，速応性のみならず定常偏差を解
消する機能も併せ持つことになる．したがって，図 5.5から図 5.12までのすべての
結果における改善前の例（安定把持はできるが操り動作の速応性が悪い）になるよ
うなKIが存在する限り，そのKIを増加させることで，偏差のない姿勢追従が可能
である．
以上のことから，続いて「柔軟指ハンドリングでの把持接触を保持する」という

観点から制御則を観察する．柔軟指による把持操りタスクでは指先が容易にかつ大
きく変形し得るため，指先と物体間で 2次元的なマス・バネ・ダンパ系として考え
ることができ，指先と物体が柔軟接触を保っている限り安定的な把持が実現される．
柔軟指が変形可能な分，剛体指によるハンドリングに比して，ゲインチューニング
が容易であり安定把持を保つ指関節角の取り得る範囲が広い．その範囲内に指関節
を維持することが，柔軟指による安定把持と操り動作には重要であることが分かる．
当然，指先変形の増減はいわゆる把持力の強弱に相当することになる．ここで，制
御則を再見する．式 (5.4)での関節角PD制御部分は見かけ上，局所的に 0 degを目
標値とした閉ループに相当する．一方で，式 (5.2)と式 (5.3)を見ると，1段目で生成
された目標関節角への動的な関節角追従制御であることが分かる．このように，目
標値に関して相違なる 2通りの解釈ができる場合考えるべきことは，従来の”目標値
に収束させる”のではなく，”誤差を許容する”ことであると言える．つまり，関節角
の定常偏差を残すようにKPを決定すれば良いことが理解できる．結局，前述したよ
うに，関節角度偏差が残ったとしても単純把持を成し得る範囲内に各関節角が入っ
ていさえすれば良いことになる．単純把持の実現をバイアストルクと関節角制御器
が担い，物体姿勢制御を 1段目積分制御器が担うという独立的な制御構造になって
いると結論付けることができる．他方，各種ゲインや制御パラメータの決定は，本
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システムの閉ループダイナミクスにおける入出力間の受動性を検証することで行う
ことができる．
また，本研究で用いている柔軟指が視覚情報遅れの存在する制御系の安定性に大

きな役割を果たす．柔軟指の受動的変形特性が指先と物体間の接触を滑らかにし，指
関節やロボット全体の振動を抑制する（タスクスペースに伝えない）一種のローパ
スフィルタの役割を果たしている．しかも，柔軟指の形状に起因するエネルギー曲
線（極小）が存在することが先行研究 [45, 72, 71]において明確になっており，両特
性が視覚情報遅れのあるタスクを可能にしていると考えられる．

5.7 結言
本稿では，ヒトの視覚系情報伝達遅れを模擬したマシンビジョンシステムと柔軟

指ロボットハンドシステムを組み合わせ，伝達遅れを仮定した画像更新周期が最大
100 ms 遅れた制御系において，タスクターゲットとしている把持物体の姿勢制御器
のゲインパラメータを唯一増大させることで，著しく遅れた応答を容易にかつ劇的
に改善できることを明らかにした．大幅な視覚系情報伝達遅れがある系におけるタ
スクの実現は，柔軟指の「柔らかさ」に起因するものであり，柔軟指は制御系設計
を容易にする効果がある．100 ms という大幅な制御遅れを許容できると，カメラに
起因する処理遅れ（Tp）を除いた 75 ms 間に他の様々なセンシング処理を実行でき，
触知覚等の求心性神経路を模した別制御ループを画像取得ループとシリアルに接続
できるメリットがある．今後は，上記したような視触覚融合ロボットシステムの小
型化の具体的検討を行いたい．また，本研究で一貫して用いている柔軟指の力学特
性が視覚情報遅れによる制御系にどのような影響を与えるのかをシミュレーション
と実験両面から検証する予定である．さらには，本稿での 1自由度対ハンドでは物
体を操る範囲が狭いことから，より実用的なアプリケーションを想定した 2指 5自
由度ハンドを開発し，提案制御則の検証を行う予定である．
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Robotic Manipulation with Large Time Delay
on Visual Feedback Systems

Takahiro Inoue and Shinichi Hirai

Abstract— A difference between the human and robots from
the viewpoint of motor control is a sampling time in everyday
movements. That is, the sampling time for controlling conven-
tional robot systems is required to become approximately 1
ms. On the other hand, the motor control based on human
nervous system permits considerably large time-delay due to
the transmission latency on afferent/efferent pathways of the
central nervous system. To date, it has been difficult for the
robot to acquire dexterous tasks and precise movements as
long as the robot system has an unexpected large delay in
terms of sensory informations. Based on the above observation,
this paper provides a new control strategy to accomplish precise
orientation control of a target object grasped by a robotic hand
consisting of two degrees-of-freedom (DOFs). The controller,
named as serial two-phased (STP) controller, proposed in this
study can realize secure grasping and manipulation in the
case that a large visual feedback delay induced by the low
specification of a camera is hiding in the control loop. Finally,
through several simulations, we indicate that the closed loop
dynamics designed by integrating the STP controller and a
soft-fingertip structure is robust even in at most 100 ms-delay
relating to the updating of camera images.

I. INTRODUCTION

Generally, most robots show high performance and enor-
mously high-speed motion than everyday movements of the
human. For instance, present automation technology is able
to accomplish 1 ms-periodic loop control because of high
performance of the computer. On the other hand, if intrinsic
neurophysiological latency that is expressed as a sum of
central motor conduction time (CMCT) and neuromuscular
transmission delay is applied to a controller designed for
the robot, it is clear that certain fatal disadvantages occur
in the robot control system. Fig. 1 shows a summary of the
neurophysiological latency that stems from central nervous
system (CNS) [1]. Based on these investigations, this paper
proposes a novel and simple control law and demonstrates
that stable and dexterous two soft-fingered manipulation can
be achieved even under at most 100 ms-delay relating to the
updating of camera images that are utilized for the visual
feedback of the robot.
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T.Inoue is with Faculty of Department of Systems Engineering
for Sports, Computer Science and Systems Engineering, Okayama
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Fig. 1. The delay in latency from the stimulation to the onset of the CMAP
is summarized with the exception of the optic [1]. This neurophysiological
latency of human motor control is due to the sum of the nerve propagation
delay, the neuromuscular transmission delay, and the muscle fiber propaga-
tion delay [2].

II. EQUATIONS OF MOTION OF A TWO-FINGERED HAND
WITH SOFT FINGERS

Recalling a simple two degrees-of-freedom (2-DOFs)
robotic hand structure (Fig. 2) from our previous studies [3],
[4], Lagrangian of the hand can be rewritten as (Fig. 2)

L = K −P+
2

∑
i=1

λniCni, (1)

where K and P be the kinetic energy of the total system
and be the potential energy including not only gravitational
potential but also elastic energy induced by deformation of
the soft fingertip, as shown in Fig. 2. Therefore, K and P
can be finally described as [3]

P = P1(dn1,dt1,θo,θ1)+ P2(dn2,dt2,θo,θ2)+ Mo gyo

+
2

∑
i=1

Mi gLcosθi, (2)

K =
1
2

Mo(ẋ2
o + ẏ2

o)+
1
2

Ioθ̇ 2
o +

1
2

2

∑
i=1

Iiθ̇ 2
i

+
1
2

m
2

∑
i=1

ḋ2
ni +

1
2

m
2

∑
i=1

ḋ2
ti. (3)
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Fig. 2. Soft-fingered manipulation by a pair of 1-DOF rotational joints.

TABLE I
DEFINITIONS OF PARAMETERS.

parameter definition
2WB base width of the hand
a fingertip radius
L length of each finger
df thickness of the finger
Wo width of object
Mo mass of object
Mi mass of i-th finger
m mass of fingertip
θi joint angle of i-th finger
θo orientation angle of object
θpi (θi +(−1)iθo)
dni maximum displacement of i-th fingertip
dti tangential displacement of i-th fingertip

xo,yo position of object
Io inertia of object
Ii inertia of the finger

where parameters of the system are defined in Table I. In
addition, the last term of the right-hand side of Eq. (1)
corresponds to energy due to constraint forces, λni, which
appear on the contact between object and soft fingertips.
Differentiating geometric constraints, Cni, with respect to
system variables, the direction of λni that is dynamically
changed during the manipulation motion can be clarified.
As a result, the equations of motion of whole system are
described as

d
dt

∂L

∂ q̇
− ∂L

∂q
=

2

∑
i=1

λti
∂Ċti

∂ q̇
+fext +u, (4)

where external force vector and control input vector are
newly added. Note that the input, u, corresponds to input
torque applied to the joint angle of the finger. The first term
on the right-hand side of Eq. (4) denotes constraint forces
tangential to the grasped object.

III. CONTROL STRATEGY

First, we introduce a very simple controller for achieving
precise object manipulation, which is named serial two-

KD s

θo
d

θ
d
i

θo

+ θi
+

+

τb
+sKI/ KP

Robot
hand

ui

Fig. 3. It shows a block diagram of serial two-phased (STP) controller
capable of achieving robust convergence of object orientation, which is
grasped by two soft fingertips. Characteristic of this controller is that desired
trajectory of the joint angle in second stage (Eq. (6)) is serially coupled and
remains constant when the object orientation goes to convergence.

KD s

θo
d

θ
d
i

θo

+ θi
+

+

τb
+sKI/ KP

Robot
hand

ui

stop update of θo

Fig. 4. It shows a block diagram of STP controller, in which the updat-
ing delay of information that results from image processing computation
contains.

phased (STP) controller in this paper [5], and recall

θ d
i = −(−1)iKI

∫ t

0
(θo −θ d

o )dτ, (5)

ui = −KP(θi −θ d
i )−KDθ̇i + τb, (6)

where KP, KD, and KI denote proportional, differential, and
integral gain respectively. This controller can perform precise
position and orientation control of grasped object even when
the robotic hand has minimal degrees-of-freedom shown in
Fig. 2 [3]. The block diagram of the STP controller can be
simplified as Fig. 3. In addition, the biased torque, τb, has
a positive constant value and acts to prevent that the motor
torque ui produced in Eq. (6) remains negative.

Through this research, we have consistently carried out
object-orientation control in two-fingered robotic hand. Es-
pecially, in simulation studies, the real-time trajectory of the
grasped object, θo in Eq. (5), has been computed on the basis
of assuming minimal periodic time defined in the numerical
computation. That is, the orientation trajectory to be used in
the feedback loop could be updated according to the periodic
time of Runge-Kutta method, i.e., 0.1 ms. Hence, this paper
introduces true time-delay induced by the image processing
in the visual feedback robotic system.

IV. SIMULATIONS

In this paper, we verify a case that the updating delay of
information obtained by image processing exists on visual
feedback control system, as shown in Fig. 4. Usually, con-
ventional machine vision systems have inevitable time-delay
such as 33 ms as video frame rate. In this simulation, we
show successful results of object orientation control under
the case that the time-delay increases up to 99 ms.

In our previous studies, we had demonstrated that the serial
two-phased (STP) controller (Fig. 3) works well so as to
make the grasped object converge to a desired trajectory, and
obtained a successful result shown in Fig. 5. This simulation
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Fig. 5. This simulation result shows a successful convergence of the object-
orientation trajectory, where the periodic time of image updating is 0.1 ms
because of the numerical computation with Runge-Kutta method.
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Fig. 6. This result shows an improved trajectory of the object orientation,
in which the periodic time of image updating is assumed to be 33 ms. In
this result, we set the integral gain to be KI = 0.01 in the case of failure
(a), and to be KI = 1 in the successful result (b). In addition, it implies
that the joint angle does not converge to each desired trajectory produced
in Eq. (5). That is, the desired angle, θ d

i , corresponds to virtual desired
trajectory. Note that mechanical parameters and values for the controller is
expressed in Table II.

result indicates robust and fast convergence in terms of the
object orientation. However, the periodic time of the control
loop complies with the condition of numerical computation,
which corresponds to the step size of Runge-Kutta method,
i.e., 0.1 ms. Obviously, there does not exist such an extremely
fast periodic control combined with image processing.

On the other hand, we show another successful result
shown in Fig. 6, in which the periodic time of image updating
is assumed to be 33 ms. In fact, this improved trajectory was
obtained by only changing the integral gain from 0.01 to 1.
Thus, we can verify a very simple gain-tuning method such
as the STP controller for object manipulation. In addition,
we show another result obtained when the updating delay
be 99 ms, in which the dynamic response of the object
orientation was drastically improved by only modifying the
integral gain from KI = 0.01 to KI = 1. This successful result
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Fig. 7. This result shows an improved trajectory of the object orientation,
in which the periodic time of image updating is assumed to be 99 ms. In
this result, we set the integral gain to be KI = 0.01 in the case of failure
(a), and to be KI = 1 in the successful result (b).

TABLE II
MECHANICAL AND SIMULATION PARAMETERS.

parameter value
WB 98 mm
a 20 mm
L 76.2 mm
df 4 mm
Wo 50 mm
Mo 86 g
Mi 88 g

parameter value
Io 12 kg·mm2

Ii 171 kg·mm2

KP 50
KD 1
τb 3 Nm

m,m 10 g

comes from the fact that passive deformation of the soft
fingers contributes to stable rotation of the object grasped
by them. Further explanations of the successful grasping are
detailed in Sec.VI.

V. EXPERIMENTS

As well as the simulation, we give same task to the soft-
fingered robotic hand that is designed as opposed structure
by two fingers, as shown in Fig. 8-(a) and Fig. 2. In this
experiment, we utilize a CCD camera capable of capturing a
gray-scale image with keeping 200 fps (frame per second).
Continuously, the image grabbed is processed to converse
to a binary image and the object orientation can finally
be computed as Fig. 8-(b). As a result, this algorithm can
obtain object position and orientation at the interval of 5 ms.
Therefore, we intentionally slow the update of the object
information used for feedback control, that is, the update
timing becomes once per twenty times to simulate 100-ms
updating delay.

Fig. 9 shows an experimental result, in which the desired
trajectory of the object orientation, the delayed response, and
the improved response are depicted. It is obvious that the
orientation trajectory of the grasped object is dramatically
improved by only changing the integral gain. However, the
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Fig. 9. It shows an experimental result of the orientation trajectory of the grasped object, where the updating delay is equivalent to 100 ms. Gain
parameters were decided as KP = 60, KD = 0.001. As well as the simulation result, the orientation trajectory has been dramatically improved by only
changing KI from 0.0008 to 0.008.
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Fig. 10. Sinusoidal wave input for the desired object orientation, θ d
o , is given to the robotic system. In simulations (a)–(c), the performance of tracking

control is gradually improved as the integral gain increases. Also in experiments (d)–(f), the same trend occurs, however the response in the initial state
clearly indicates oscillatory appearance.

TABLE III
SPECIFICATIONS IN THE VERIFICATION TEST

Camera model Point Gray Research, Dragonfly Express
Interface IEEE 1394b (FireWire)

Imaging sensor Progressive scan CCD
Resolution VGA Gray-scale image

Frame Rates 200 fps (Format 7 mode)
PC spec. Pentium 4 1.9 GHz

FSB & Cache 400 MHz, 256 KB
Memory 512 MB DDR 400 MHz × 1

OS Vine Linux 3.2 (kernel 2.4.31) Non-RT

improved trajectory tends to become step-like response be-
cause of the large time delay. In addition, it is clearly clarified
that the discrepancy of joint angles remains throughout the

manipulation. In other words, this consistent error does not
have to be eliminated as long as the object orientation
converges to the desired trajectory, that is, θ d

i corresponds
to apparent desired trajectory in the STP controller.

Next, we show another simulation and experimental results
shown in Fig. 10, where the sinusoidal desired input for
the object orientation, θ d

o , is given in Eq. (5), and the
updating delay is equivalent to 25 ms consistently. It is
clearly indicated that the performance of tracking control
is gradually improved as the integral gain increases in the
both cases of simulation and experiment. In the experimental
result, the step-like response starts to increase gradually. This
result comes from the fact that nonlinearity due to Coulomb
friction of the finger joint appears obviously when the joint
torque increases according to the change of the integral gain.
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CCD camera

Two-fingered hand
Cubic target

(a) total view (b) binary image
Fig. 8. It shows a two fingered robotic hand system with a CCD camera
and binary image of the object orientation.

In addition, the response in the initial state of experimental
results clearly indicates oscillatory appearance. This reason
is that the response becomes to be particularly-susceptible to
static friction when the angular velocity of the joint reduces.

VI. DISCUSSIONS

The performance of robust trajectory tracking shown in all
simulations and experiments results from passive flexibility
of soft fingers and opposing structure of both fingers on two
dimensional plane shown in Fig. 2. Soft fingers have such
a superior mechanical characteristic that the grasped object
comes to rest on a mechanically stable orientation during
the manipulation. That is, the potential energy function has
a minimal value with respect to the object orientation, θo,
as expressed in Eq. (3) [4]. This mechanical feature has
never been clarified, thereby, a relatively complicated control
law had been proposed to date even though the soft finger
was utilized in the robotic manipulation [6]. These control
laws require a torque to prevent unexpected rotation of the
grasped object. In contrast, the unstable rotation of the object
never occurs in the soft-fingered manipulation because of the
presence of the minimum of elastic potential energy.

In addition, the STP controller proposed contains no
Jacobian matrix. Recently, we had obtained a similar result
in a 5-DOFs robotic hand that consists of an index finger and
a thumb, as shown in Fig. 11. In this case, in order to achieve
the object orientation control, it is favorable that two links
located at the side of the base of both fingers generate counter
coupled movement. This corresponds to a kind of mechanical
constraint, therefore, Jacobian matrix used in the case of
individual joint control is not necessary. This contribution
and its detail will be presented in the next paper.

VII. CONCLUDING REMARKS

This paper has proposed a simple object orientation con-
troller that consists of two-phased controllers being serially
connected each other, which is named STP controller ex-
pressed in Eqs. (5) and (6). The first stage acts as robust
integral controller from which virtual desired trajectories
of joint angles is generated. The actual joint angle is not
necessary to converge to the virtually-generated joint angle
as long as the object converges to a desired orientation of
the first phase. This is why the desired joint angle is named
virtual trajectory.

θ11

θ12

θ13

θ21

θ22

θ14
θ23

θobj

+ -

O

l112

l122

l132
l142

l232

l222

l212

p11
p21

p22

p23p14
p13

p12

index finger thumb

WB2 base

Fig. 11. It shows a five degrees-of-freedom robotic hand that consists of
an index finger and a thumb. This system has also a pair of soft fingertips
on the fore-end of each finger.

In addition, this paper has clarified that the STP controller
with soft fingers works well in the case that large time delay
exists within visual feedback robotic systems. It has also
been shown that the method of gain tuning for improving
delayed responses is very simple and useful in a lot of
practical usage.

In future works, we are going to present theoretical
verification associated with the stability of the STP controller
by describing a Lyapunov function.
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