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HRERERERERNRN

1.1 OO0
1.1.1 00oooobod

There are many deformable objects in our daily life, such as human organs and
tissues, pottery, clay, and various food products. Modeling and simulation of such de-
formable objects has been studied for over 20 years and many applications have been
involved, including computer aided surgery, food automation, and robot manipula-
tion. In our definition, deformable objects were roughly divided into three categories
(Fig. 1.1): elastic object, in which the deformation is completely reversible; plastic
object, in which the deformation is completely maintained; and rheological object,
in which the deformation is partially reversible.

Early work on the modeling of deformable objects can date back to [1] and [2].
They have shown the advantages of physically-based models over kinematic mod-
els for computer animation and have proposed several physically-based models for
simulating inelastic deformation. Generally, a physically-based model consists of a
finite numbers of elastic and viscous elements connected in a certain configuration.
Some famous physically-based models, such as the Maxwell model!, the Kelvin-Voigt
model?, the Lethersich model®, and the Burgers model* (Fig. 1.2), were often used
to describe the behaviors of deformable materials. In conventional material tests,
e.g., force relaxation and creep recovery tests, one-dimensional (1D) models were
used to describe the behaviors of materials. However, along with the developments
of computer, we are able to reconstruct an object with two-dimensional (2D) and

Tt was introduced by J. C. Maxwell in 1867.

2Tt was firstly introduced by L. Kelvin in 1875 and later by W. Voigt in 1889.
3It was firstly introduced by W. Lethersich in 1942.

4Tt was firstly introduced by J. M. Burgers in 1935.



O 1.1: Categories of deformable objects. (a) Original shape before pushing. (b) De-
formed shape during manipulation. (c), (d), and (e) Deformed shape after releasing.
(c) Elastic object. (d) Plastic object. (e) Rheological object.

E
E c
(a) (b)
E E,
(c) (d)

O 1.2: Widely used physically-based models: (a) the Maxwell model, (b) the Kelvin-
Voigt model, (c) the Lethersich model, and (d) the Burgers model.

three-dimensional (3D) geometry to achieve more realistic simulation behaviors of
deformable objects.

The most popular methods for 2D and 3D modeling of deformable objects are the
mass-spring-damper (MSD) method [3] and the finite element method (FEM) [4].
The MSD method has been used to simulate cloth animation [5], facial expressions
6], and the deformation of a myoma (pathology) [7], respectively. The MSD method
has the advantage of conceptual simplicity and relatively low computation costs.
However, the formulation of MSD method was not based on continuum mechanics
and the simulation accuracy is quite limited. Therefore, a finite element (FE) model
has been used as a reference to calibrate MSD model based on genetic algorithm
optimization [8] and analytical expression [7], respectively.

The FE method has proven to be a powerful tool for simulating complex behaviors



of deformable objects. In FE formulation, an object is described by a set of elements
(e.g., triangles in 2D case and tetrahedrons in 3D case). The dynamic behaviors of
the object are then determined by analyzing the behaviors of individual elements.
In recent years, many commercial FE softwares are available and more and more
researchers have been using FE method in their applications. The FE method has
been widely used in computer-aided surgery to simulate the deformation behaviors
of biological organs and tissues, such as porcine liver [9], human skin [10], liver [11],
and uterus [12]. It currently also was employed to model some surgical operations,
such as needle insertion [13] and soft tissue cutting [14]. FE method is based on
continuum mechanics and does not suffer from geometry problems. But, it is quite
time-consuming. In order to speed up FE simulation, matrix condensation tech-
nology [15] and fast FEM [16] have been proposed. Current parallel calculation
architecture, such as graphics processing unit (GPU), also has been investigated
by [17]. In addition, to achieve real-time simulation of soft tissue, other modeling
methods were also presented, such as the radial elements method [18] and the point
collocation-based method of finite spheres [19]. The FEM also has been used in food
industry to model food products. For example, FE analysis has been used to model
and simulate the indentation of bread crumbs [20]; FE simulation has been used to
evaluate the dependence of temperature and water content on process time during
meat cooking [21]; and FE method also has been employed to calculate food quality
and safety losses during processing, storage and distribution [22].

To date, the modeling of soft organs and tissues mostly supposed that the organs
and tissues are completely recoverable and the deformation behaviors after unload-
ing operations are not considered in most applications. Some organs and tissues,
however, may fail to totally recover from the deformation after loading-unloading
operations. [23]| found that porcine brain tissue did not recover completely after a
loading-unloading cycle. In vivo experimental results showed that residual deforma-
tion may also present in human liver [11]. In addition, residual deformation may also
exist when biological organs and tissues suffer from some diseases or undergoing a
significant external forces. Such residual deformations could be handled by rheologi-
cal models. On the other hand, modeling and property estimation of food materials
were studied so far mainly on the chemical and ingredient composition point of view
for improving the cooking ability, product quality, and nutrition. As an “engineering
material”, however, it was not well developed. [24] stated that the most critical bar-
rier against the application of robotics and automation in food industry is a lack of
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0 1.3: Optimization process for parameter estimation.

understanding of the food product properties as an “engineering” material for han-
dling operations. We have therefore turn our attention on the modeling, simulation,
and parameter estimation of rheological objects, especially considering the residual
deformations which has not been studied intensively.

1.1.2 JO0O0o0oboogooooon

Before simulating any real objects, some physical parameters of the model have to
be available in advance. In conventional material science, material properties were
usually estimated by direct calculation or curve fitting based on the measurements of
experimental tests, such as compressive, tensile, force relaxation, and creep recovery
tests [25]. However, these calculations and tests were mostly under an assumption of
1D deformation (pure uniaxial or pure shear deformation). Deformable objects, on
the other hand, have more complex deformation behaviors and sometimes include
several different material properties. Therefore, they have to be simulated as a
2D/3D continuum and complex deformation behaviors have to be considered during
parameter estimation. It is a quite challenging work to estimate physical parameters
for accurately reproducing the behaviors of deformable objects.

So far, the most popular method used in estimating physical parameters of de-
formable objects is simulation-based optimization, i.e., the simulation is iterated
with updated physical parameters until the difference between the simulation and
experiment becomes minimal, as shown in Fig. 1.3. Using this method, many work
has been done. For example, [12]| characterized human uteri in vivo through an as-
piration experiment; [13] investigated the force behaviors during the insertion of a
needle into a porcine liver; [26] developed a robotic indenter for minimally invasive



measurements and characterized the material properties of pig liver; [9] character-
ized a porcine liver by indentation experiments with various indentation depths and
two different tip shapes; [27] performed a compression test inside a magnetic reso-
nance imaging (MRI) system and estimated the material properties of a layered soft
tissue; [28] investigated the physical parameters of pig heart based on cyclical in-
flation experiments and MRI tagged images with simultaneous pressure recordings;
and [29] calibrated a food dough which was simulated by a hierarchical MSD model.
In order to accomplish the optimization problem of the estimation method, many
optimization algorithms have been used, such as Levenberg-Marquardt method [12],
sequential quadratic programming (SQP) [28], genetic algorithm (GA) [29] and ex-
tended Kalman filter [30]. The optimization-based estimation method is quite robust
and works well with different models. However, this method is time-consuming since
it is based on iterative simulations.

Direct calculation and curve fitting methods have also been used to estimate phys-
ical parameters of deformable objects. [31] have performed a series of compressive
and shear tests on pig kidney and estimated its physical parameters by using curve
fitting. [32] formulated a “Norimaki-sushi” by a 2-layered Maxwell model and di-
rectly calculated its physical parameters by using least squares method based on the
measurements of force and displacements. In order to well capture the force response
during the grasping of the “Norimaki-sushi”, [33] used a Fung’s viscoelastic model
to describe the force behaviors of the sushi and employed curve fitting method to
determine the physical parameters. Direct calculation or curve fitting method for
estimating parameters are efficient since no simulation was involved. However, this
method needs the analytical expressions of force or displacement, which are not al-
ways available. Therefore, such method is not always applicable. In this dissertation,
both simulation-based and calculation-based methods will be discussed and mixed
together to achieve better reproductions of both force and deformation simultane-
ously.

1.1.3 O00ooobuobbobboobooood

Rheological object has both elastic and plastic properties. Generally, it is more
difficult to model a rheological object than model an elastic object due to the pres-
ence of residual deformation. Early work on the modeling of rheological objects
was started by [2], who have employed a Burgers model to describe rheological be-



haviors. However, it is only a conceptual description and no simulation results and
information of parameter determination were given. A plenty of work on modeling
and parameter estimation of rheological objects has been done by [34], who have
employed a Lethersich model and MSD method to construct a food dough, a typical
rheological object [35]. They investigated three different mesh configurations: the
lattice [36], the truss [37], and the hierarchical [29] structures, with decreased MSD
elements connected between nodal points to reduce the computation cost. Two op-
timization methods, modified randomized algorithm [34] and genetic algorithm [29],
were used to estimate the physical parameters. As we mentioned above, the MSD
model has an advantage of low computation cost but the simulation accuracy is
quite limited and the physical parameters are dependent on mesh configuration and
resolution. A two-layered Maxwell model [32] and a Fung’s viscoelastic model [33]
have been used respectively to reproduce the force response of a sushi when grasped
by a robot hand. Good approximations of force behaviors were obtained. However,
both models are still 1D models. In addition, the ISU exoskeleton technique has
been used in modeling clay to simulate an interaction between virtual clay and a
human finger [38].

Interestingly, most above-mentioned work of rheological objects modeling has fo-
cused on either reproduction of deformation alone [34], [37], [35], [36], [29] or repro-
duction of force alone [32], [33]. Reproduction of both force and deformed shapes
of a food dough has been studied by [39] with a MSD model. Experimental results
suggested that shape calibration (parameter estimation by minimizing the difference
of deformed shape) could only yield good shape reproduction and force calibration
only resulted in good force reproduction. It is impossible to reproduce both force
and deformed shape simultaneously by using one set of parameters. However, they
did not mention the reason of this impossibility and how to solve it. This will be
the main concern of this dissertation.

On the other hand, rheological properties of food materials were frequently studied
in food engineering. Many instruments have been developed to measure rheological
properties, such as rheometer, farinograph, and dynamic oscillator, as reviewed by
[40]. [41] have used a farinograph and a rheometer to assess the rheological properties
of various types of rice dough to determine their suitability for making rice bread. [42]
have investigated the use of extrusion cooking on pastes by estimating the dynamic
rheological properties of extruded flaxseed-maize pastes through dynamic oscillation
and creep-recovery tests. However, properties tests and behavior models on food



materials are usually carried out in 1D condition and mainly focusing on chemical
and ingredient composition. Our work has been motivated from an engineering point
of view for grasping and manipulating of rheological objects. Therefore, the object
or material investigated in this dissertation basically has a 2D or 3D shape and the
deformed shapes are always of concern.

1.1.4 0O0OUO

As discussed above, the modeling of rheological objects has not been well devel-
oped and mostly is based on MSD modeling method or with a 1D assumption. An
effective approach for estimating physical parameters of rheological objects has also
not been well established. To our knowledge, the residual (permanent) deformation
after loading-unloading operation has not been taken into consideration during the
modeling and parameter estimation of rheological objects so far. The residual de-
formation might be important in some situations where the desired shape is needed
without any damage. The aim of this dissertation is the determination of appro-
priate models for simulating rheological objects and of their physical parameters in
order to reproduce both rheological force and deformation behaviors simultaneously.
In other words, we hope that our present work is able to help us to understand
rheological behaviors and to choose an appropriate model and parameters for ac-
curately capturing those behaviors, such as force response, deformed shapes, and
final recovered shapes. Possible application fields of our present work may include

surgical simulation, food engineering, and robot manipulation.

1.2 00000

Physically-based models are often employed to describe deformable materials and
objects, e.g., an elastic element (Fig. 1.4a) and a viscous element (Fig. 1.4b) rep-
resent ideal elastic and viscous material, respectively. Note that the deformation
generated in an elastic element is completely recoverable while the deformation gen-
erated in a viscous element will be totally maintained after loading-unloading op-
erations. An elastic and a viscous elements connected in series is called a Maxwell
element (Fig. 1.4c), which denotes a simplest rheological material. An elastic and a
viscous elements connected in parallel is called a Kelvin (or Kelvin-Voigt) element



(Fig. 1.4d), which denotes a visco-elastic material. We shall call the above four ele-
ments as basic elements (Fig. 1.4). By connecting several basic elements in different
configurations, many physically-based models can be obtained for simulating rheo-
logical behaviors. We categorized such models into two groups: serial and parallel
models, as shown in Fig. 1.5.

1.2.1 0000000

A serial rheological model consists of numbers of Kelvin elements and a viscous or
a Maxwell element connected in series. Note that the deformation generated in an
elastic or a Kelvin element is completely recoverable. Therefore, a serial rheological
model must include a viscous element connected in series, which causes the residual
(permanent) deformation. According to the presence of elastic element, serial models
can be further divided into two types, as shown in Fig. 1.6. Let us take the serial
model of type 1 (Fig. 1.6(a)) as an example to show the derivation procedure of the
constitutive law.

Note that the constitutive law of four basic elements can be formulated as:

Elastic element : ¢ = Fk,

Viscous element : o = cé,
(1.1)

Maxwell element : &+ —o = F¢,
c

Kelvin element : o = Fe + cé,

Let ¢; and €,,1 be the strain at the i-th Kelvin element and the (n + 1)-th viscous
element, respectively, in type 1 serial model. Let E; and ¢; be the Young’s modulus

E c
o—/\/\/\—o o—|:—o
(a) (b)

E
E c
O_/\/\/\_': o O—‘ c i_o
(c) (d)

[0 1.4: The basic elements for describing deformable materials: (a) the elastic; (b)
the viscous; (c) the Maxwell; and (d) the Kelvin elements.
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0 1.5: Two groups of rheological physically-based models: (a) serial models, and
(b) parallel models.

and viscous modulus of the i-th elastic and viscous elements, respectively. Due to
the serial connections among these basic elements, the total stress at the serial model
is equal to the stress at each basic element and the total strain at the serial model
is equal to the summation of the strain at each basic element. That is,

o= FEie; +cié, 1<i<n,

0 = CnJrlénJrla
- (1.2)

€ = E €;.
i=1

E, E, E,
Cn+1
cee — o
— — —
| — | — | —
Cq Cy Cn

O 1.6: Generalized serial models: (a) type 1, and (b) type 2.



Taking Laplace transform of the above equations, we have
o(s) = Eiei(s) + ¢isei(s), 1<i<n,

0(8) = cni15€n11(5),
n+1

e(s) = Y els).

i=1
Eliminating ¢;(s) from the above equations, we then have

(=[50 + G

S Cnt1

)|o(s),

where r; = E;/c;. Let us define a polynomial as below:

n

H(s +1) = Aps™ + Ap_18" T+ Aps + A

i=1

The coefficients of the above polynomial have the forms of:

A, =1,
n
An—l - E Ty
=1
n n
An—? = 5 E riry,
i=1 j=1

Multiplying Eq. 1.4 by Eq. 1.5, we have

n n n

TG+ roets) =TT+ [(3 o)+ (2

sc
i=1 i=1 i=1 n+1

)|o(s)

_ [ZH (s ;Tj) L ﬁ %L]U(S)'

@
=1 j=1 J=1 n+1

(1.3)

(1.4)

(1.5)

(1.6)



We then find the following equation:

H(s +rj)=(s+mr)- - (s+ric)(s+rip1) - (s+715)

<
—

(1.8)

<
~

="'+ Bi1s" P+ + Biy_as+ By,

where

Substituting Egs. 1.5 and 1.8 into Eq. 1.7, we have the following Laplace transform
equation:
(Aps™t + A, 1™ + -+ Ags)e(s)

(1.10)
= (Byls" + ByLis" ™+ + Bi's + By')a(s),
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where

"1 A
le — ~ 4 n ’
" ZZ:; C; Cn+1
& B;q Anq
Bl = =+ :
! ZZ:; C; Cn+1
(1.11)
- Bin-1 Ay
le — )
! ZZI Ci * Cn-i-l’
s Ao
Bol = .
Cn+1

Applying the inverse Laplace transform to Eq. 1.10 yields the constitutive law of
serial model of type 1 as follows:

n+1 ; n :
0% Do
Ajj— =Y Bsl—, 1.12

Note that the highest-order derivative of strain € is one order larger than the highest-
order of stress o. In addition, there is no constant term in the coefficients of strain
polynomial (the subscript i starts from 1 in the left side of Eq. 1.12).

Following the same derivation procedure, we can obtain the constitutive law of
serial model of type 2 as follows:

n+1 ; n+1 i
e o000
2 Avigr = 2 B Gy 013
=1 7=0
where
1
Bs2 — ’
n+1 En+1
"1 A, A,
B2=Y — 4 oyl
= Ci Cn+1 B
"\ B A, 4 A, 1.14
B2, = Dol o2 (1.14)
- G Cn+1 B
o _ Ao
BO2:—.
Cn+1
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O 1.7: Generalized parallel models: (a) type 1; and (b) type 2.

Equation 1.13 indicates that the highest-order derivative of strain € is equal to the
highest-order of stress 0. Note that the left side of Eq. 1.13 has the same form with
the left side of Eq. 1.12.

1.2.2 0OO0OO0OO0OOO

Two kinds of parallel rheological models were shown in Fig. 1.7. Due to the
parallel connections among basic elements, the total strain at the parallel model is
equal to the strain at each basic element and the total stress at the parallel model
is equal to the summation of the stress at each basic element. For parallel model of

[0 1.1: The constitutive laws of generalized serial and parallel models

Models Type The constitutive law
1 Z? 0 le 801? ZHH Aiy 8t1
Serial 5 Zn+1 BjQ %tha B Zn+1 A latz
1 o AigE =300 B 55
Parallel 9 Z A, %zt o _ Z Bg,g gif

13



type 1, we therefore have

O'i—i-—ZO'i:EiG, 1§z§n

)

?

On4+1 = Cp+16€,

0 = E g;.
i=1

(1.15)

Following the same derivation with serial models, we can end up with the constitutive

law of parallel model of type 1 (Fig. 1.7a) as follows:
n ; n+1 :
‘o e

where

pl
Bn+1 = Cn+t1,

Bgl = Z Ez + Anflanrla

=1

B = Z Bi1E;i + Ap_ocnia,

=1

Bfl = Z Bin1E; + AoCna.

=1

Correspondingly, the constitutive law of parallel model of type 2 (Fig

- do - Ve
‘ Lot Z; I 0ti’

1=0 =

formulated as:

where
n
B =>"E
n 9
i=1

B, = i B 1 E;,

i=1

BY = i Bin1F;.

i=1

14

(1.16)

(1.17)

. 1.7b) can be

(1.18)

(1.19)



We summarize the constitutive laws of generalized serial and parallel models in
Table 1.1, where Eqgs. 1.12 and 1.13 are rearranged for convenient comparisons. We
found that the constitutive law of serial model of type 1 has the identical form with
the parallel model of type 1 except some coefficients having different formulations.
Correspondingly, the constitutive laws of serial model of type 2 also has the same
form with the parallel model of type 2 by replacing the summation limit n + 1 by n.
Note that same constitutive laws yield same deformation behaviors. Therefore, for
simulating a certain behavior, we can use either a serial model or a parallel model.
Actually, for any type of physically-based model, which consists of any numbers of
basic elements connected in any configuration, we are always able to find one pair of
serial and parallel models which are corresponding to each other and yield the same
behaviors. This allows us to investigate only one kind of model instead of both for
simulating a certain behaviors of deformable objects. In this dissertation, we mainly
investigate the parallel models. In addition, according to Eq. 1.2, if the total stress
at the serial model is available, we can easily obtain the strain at each basic element
by solving a series of ordinary differential equations and therefore have the total
strain by summing up the individual strain at each element. On the other hand,
equation 1.15 indicates that the convenient calculation of rheological stress can be
achieved by using the parallel models. This tells us how to choose a model between
serial and parallel models. If you are interested in the calculation of deformation,
you should use a serial model. On the contrary, you should go with parallel models if
you have more concern with force behaviors. In this dissertation, we choose parallel
models because the experimental measurements including continuous force responses
and static images of deformed shapes. We suppose that the continuous deformation
measurements are not available.

1.2.3 0O0O0O0OOOOO
guoooooboobd

Typical rheological behaviors (force and deformed shapes) of commercial available
clay and Japanese sweets material are shown in Figs. 1.8 and 1.9. Clays were
bought from supermarket and were supposed to be played by children above 3 years
old. The sweets materials were provided by OIMATU, a sweets company in Kyoto.
Detailed experimental setup and results will be presented in Section 1.6. Our target
is to find an appropriate model to simulate the rheological behaviors of these objects.
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Normally, physical parameters of an object should keep the same even though its size
may change or it may be deformed in different ways. This feature allows us to use
a regular shaped object with simple tests to estimate the properties of the object.
Such tests include the uniaxial compressive and tensile tests as used in material
engineering. In our study, we conducted a compressive test with a pushing-holding-
releasing procedure. We fashioned a 2D rheological object with a flat-squared shape.
We firstly pushed the entire top surface of the object with a constant velocity to reach
a desired displacement during time 0 to t,, which was called pushing phase (Figs.
1.8(a) and 1.9(a)). During this phase, force was increasing with the deformation
increasing. Before releasing, the deformed shape was maintained from time ¢, to
tp + tn. This time period was called holding phase and the deformed shape during
this phase was called held-shape (Figs. 1.8(b) and 1.9(b)). In the holding phase,
rheological force was decreasing (called force relaxation) in a nonlinear manner.
After unloading, however, rheological force went to zero and the deformed shape
were partially recovered. Figures 1.8 and 1.9 also indicate that rheological behaviors
of different materials are quite different. Comparing with clay, the force relaxation
behavior of sweets material is slower and the residual deformation is larger. Let us
now investigate the ability of physically-based models for reproducing the above-
mentioned rheological behaviors.
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| Final shape
6k —— Held shape
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O 1.8: Experimental measurements of commercial available clay: (a) force response,
and (b) deformed shapes.
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O 1.9: Experimental measurements of Japanese sweets material: (a) force response,
and (b) deformed shapes.

gbobobooogbobbod

We take the parallel model of type 1 as an example to show the derivations of
analytical expressions of rheological stresses. During the pushing phase, the strain
rate is constant, i.e., ¢ = p. By solving Eq. 1.15, we have the analytical stress
expression in the pushing phase as below:

n
E,

o(t) = Z cip(1— efc_iit) +cnpp, (0<t<t,). (1.20)
i=1
In the holding phase, solving Eq. (1.15) with é = 0 and initial condition of o;(t,),
we can formulate the analytical stress expression in this phase as:

n

E; _Ei_
o(t) = Zcz-p(l - 6_c_itp)e W tp)v (tp <t <t,+tn). (1.21)
i=1

gbobbobouooogobooogd

After unloading, we intuitively consider to solve the constitutive law Eq. 1.16 with
o = 0 to formulate the strain recovering profile over time. Unfortunately, when the
order of time derivative of strain € exceeds two, it becomes impossible to solve Eq.
1.16 because we have no information about the initial condition of strain derivatives.

7

€7(t) be the strain at each elastic and viscous element, respectively. Note that the

Therefore, we turn our attention to focus on each viscous element. Let €#%(t) and
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stress at a Maxwell element is equal to the stress at the elastic element and the
viscous element as well. Thus, total stress after unloading can be formulated as:

n+1 n
o(t) = Zai(t) = Zciéf“(t) + Cupr€(t) = 0. (1.22)

Integrating the above equation from time ¢, + ¢;, to time infinite, we have

n

t

i=1 ptin tp+in

and thus

n

Z ci[€7% (00) — €5 (t, + tn)] + cur1[e(00) —e(t, + 1) = 0. (1.24)

=1

It is important to note that the residual strain at every viscous element in a parallel
model should be the same and equal to the total residual strain when time goes

to infinite, i.e., € (0c0)=€4"(00)=-"-=€""*(00)=€(c0), because all elastic elements

completely recovered from the deformation. Thus, equation 1.24 yields

n

i€ (b, + t np1€(ty +1
E(OO):ZCEZ (p+ h) C+1€(p+ h>. (125)

1 1
i=1 Z?:l Cj Z?:l Cj

In addition, each viscous element has its own constitutive law as o;=c;¢*. Integrat-

ing it through time 0 to time ¢, + t;, and rearranging it, we have

] 1 tp+ip

€ (t, +tn) = —/ o;(t)dt. (1.26)
1 J0

Substituting Eq. 1.26 into Eq. 1.25 and considering o(t) = S 7! 0,(t), we finally

end up with the expression of total residual strain as:

1 tptin
Zi:11 ¢i Jo
This equation indicates that the final residual strain in a parallel model is dominated
by the summation of viscous moduli and the integration of force through the pushing
and holding phase.
For the parallel model of type 2, we can obtain the same formulation of stress
expression in the holding phase and the same formulation of final residual strain

18
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00 1.10: Typical simulation results of rheological behaviors by using: (a) 5-element
model, and (b) 2-layered Maxwell model.

with the summation limit n + 1 replaced by n in Eq. 1.27. The only difference of
the parallel model of type 2 is the stress expression in the pushing phase, which is

o)=Y ep(l—e a'), (0<t<t,). (1.28)

Typical simulation results of rheological stress and strain were shown in Fig. 1.10
by using a five-element model (the last row of Fig. 1.5(b)) and a two-layered Maxwell
model (the middle row of Fig. 1.5(b)). According to Egs. 1.20, 1.21, and 1.28, we
find that the stress curve can be determined by viscous moduli ¢; and time coef-
ficients E;/c; of exponential functions. The coefficients F;/c¢; dominate the stress
relaxation behavior during the holding phase, as formulated in Eq. 1.21 and shown
in Fig. 1.10. In order to obtain similar force relaxation curves with real materials as
shown in Figs. 1.8 and 1.9, at least two exponential terms are needed [[43]], one with
large value of E;/¢; and another one with small E;/c;. The large F;/c; describes the
rapid relaxation in force and the small one denotes the slow decreasing. For example,
figure 1.11 shows the curve fitting results of force relaxation behaviors of commer-
cial clay material by using a force expression with one and two exponential terms,
respectively. We can see that two exponential terms are enough to achieve a good
reproduction of force relaxation behavior. The values of E;/c; used in Fig 1.11(b)
were F/c; = 0.2514 and Es/co = 0.00213. After determining E;/c¢; and substituting
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0 1.11: Curve fitting of force relaxation behaviors by using expressions with: (a)
one exponential term, and (b) two exponential terms.

into Eq. 1.20, we find that the viscous moduli ¢; will dominate peak stress at time ¢,,.
Note that there is a sudden drop in stress (Fig. 1.10(a)) at the end of pushing phase
for five-element model (parallel type 1). This sudden drop is denoted by o = ¢, 41p.
Figure 1.10(b) showed that the two-layered Maxwell model(parallel type 2) results
in attenuated vibrations in both stress and strain curves after unloading. Based on
the above discussions, we can say that the physically-based models with at least two
exponential terms in force expressions have the ability to accurately reproduce rheo-
logical force behaviors. Our work [[43]] has shown good reproductions of rheological
forces for commercial clay. However, we failed to reproduce the final recovered shape

at the same time. Let us now discuss the reason of this failure.

n+1
i=1 C;.

According to Eq. 1.27, the residual strain is dominated by the summation
On the other hand, parameters ¢; also strongly affect stress amplitude as formulated
in Egs. 1.20, 1.21, and 1.28. This causes a contradiction between the reproductions
of stress and residual strain. For example, if we determine the parameters ¢; from
stress, the summation of ¢; will therefore yields a certain residual strain. We are
unable to change this residual strain to another desired one. On the contrary, if
we firstly calculate the summation of ¢; based on Eq. 1.27, we have an upper limit
(27l ;) for each modulus ¢; and we have to keep each ¢; under this limit during
the reproduction of stress. For some materials, we may be able to achieve a good
reproduction of stress with ¢; under this limit, as will be presented in Section 1.6. For
most materials, however, this limit always will be broken in order to well capture the
stress. The above discussions suggest that the physically-based models have some

difficulties to reproduce both rheological force and deformation, especially residual
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deformation, simultaneously. The reason of this difficulty is the linearity of the
physically-based models, especially, the linear viscous elements, which dominated
both residual strain and stress behaviors.

To solve this problem, the first idea come to our mind is to change the physically-
based models. We can add more elements to the physical model or change the
configurations of the basic elements. However, this will not work well. Actually, we
are able to find a corresponding parallel model for any physical model no matter how
many elements are involved and how these elements are connected. We have already
discussed that a contradiction phenomenon always exist for arbitrary parallel model.
Therefore, we are unable to solve this problem by adding more elements or changing
the elements connections in physically-based models. The second idea for solving
this problem is to introduce some nonlinear physical models. From textbooks or
literatures, we can find some nonlinear physical models, such as the followings:

Wertheim (1847) e = ao® + bo,
Morgan (1960) e=ao",
Kenedi et al. (1964) oc=ke!, and o= Ble™ —1],
Ridge and Wright (1964) e=C+ko® and e=z+ylogo.

(1.29)

Unfortunately, most of these nonlinear models cannot be extended to 2D/3D FE
models. Even some of them may be able to be extended to 2D/3D models, the
FE simulation will be very time consuming and it may be impossible to estimate
all the parameters. We have tried to introduce some nonlinear models into our FE
simulation, but we did not obtain any good result for reproducing both rheological
force and residual deformation simultaneously so far. We have therefore turn to
another idea which will be introduced in the next section.

1.24 0O0O0OOOO

According to the above discussions, we found that the summation ) | ¢; domi-
nates both rheological forces and residual deformation simultaneously. Therefore, it
is difficult to use one set of ¢; to capture both force and residual deformation simul-
taneously. In addition, we found that one set of ¢; is enough to capture both force
and deformation behaviors during operations, such as pushing and holding phase.
However, this set of parameter ¢; cannot guarantee good reproduction of residual
deformation. It is also clear that the force response goes to zero immediately after
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0 1.12: (a) the dual-moduli viscous element and (b) parallel 5-element model with
two dual-moduli viscous elements.

releasing. During deformation recovery, we do not concern about force any more.
Therefore, we are able to use another set of ¢; to capture residual deformation. We
can switch these two sets of parameters during simulation when the deformation
starts to recover. We have therefore introduced a dual-moduli viscous element, as
shown in Fig. 1.12a into our physically-based model in order to reproduce both rhe-
ological force and deformation, especially residual deformation simultaneously. The

governing equation for the dual-moduli viscous element can be formulated as
o(t) = (ka + c)é(t), (1.30)

where scalars a and ¢ were parameters to be determined. Switch function x takes
the following values:

{ 1 Criterion is satisfied,
K =

1.31
—1  Otherwise. ( )

This dual-moduli viscous element has an ability to switch the parameters from one to
the other during simulation. The physical meaning of this element can be explained
as the property changing of a material during operation and recovery. For example,
some elastic materials experience a hysteresis phenomenon during loading and un-
loading operations. The material properties are slightly changed during hysteresis.
In addition, some metal materials also demonstrate strain hardening behavior when
they are strained beyond the yield point. In this case, the properties of the materials
are also changed during the operation. For rheological materials, both hysteresis and
strain hardening may also happen and may be in more stronger way. This causes the
material properties changing significantly during loading and the materials therefore

22



behave in another way after unloading. In other words, the physical parameters of
rheological objects may be continuously changing during operations and reach an-
other set of values when operations are finished. Unfortunately, continuous change of
parameters during operation brings troubles in implement of parameter estimation.
In our work, therefore, we suppose that the parameters are kept constants during
operation and change to another set when the operation is finished.

The criterion used in Eq. 1.31 has different options depending on different ap-
plications. If the operation time is available before simulation, the simulation time
can be a perfect criterion to trigger the parameter switching. In some applications
such as surgical training and virtual reality, the simulation time may be not avail-
able in advance. Fortunately in such cases, an interaction often happens between
the object and external instruments. This interaction can provide a good criterion
for the parameter switching since the deformation recovery normally happens after
the interaction was finished. This will be further investigated in Section 1.4. By
introducing two dual-moduli viscous elements into a parallel five-element model, we
can formulate an effective model (Fig. 1.12b) for capturing both rheological forces
and deformation behaviors.

1.2.5 0O0OUO

In this section, the physically-based models for simulating rheological behaviors
were summarized. We categorized such models into two groups: serial and parallel
models. The constitutive laws for both generalized serial and parallel models were
derived. We surprisingly found that the serial and parallel models are correspond-
ing to each other and can be replaced by each other. This allowed us to focus on
one group only and save us much time to go over various kinds of physically-based
models. We also found that the serial models yield easy calculation of strain while
the parallel models result in convenient calculation of stress. This suggested us how
to choose the models between both groups depending on our applications. Analyt-
ical expressions of rheological stress and residual strain were derived and compared
with rheological behaviors of real material. We found that at least two exponential
terms in stress expressions are required to accurately reproduce the rheological stress
behaviors. We also found the value of summation ), ¢; dominates the residual
strain and strongly affect the force amplitude as well. There is a contradiction be-
tween the reproductions of rheological forces and residual deformation. The linear
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physically-based models have troubles to capture both rheological forces and de-
formation behaviors simultaneously. We have therefore introduced a dual-moduli
viscous element into our physically-based model to cope with this problem. This
model has an ability to switch parameters from one to the other during simulation
and each set of parameters was responsible for capturing rheological forces and resid-
ual deformation respectively. The physical meaning of this element can be explained
as hysteresis and strain hardening behaviors of rheological objects. In the following
sections, the FE dynamic models, parameter estimation methods, and experimental
results will be addressed.

1.3 00 2D/3D0O00O0O0OO0O

FEM is the most successful method for numerical computation of object defor-
mation. In FE modeling, an object is described by a set of elements (e.g., triangles
in 2D case or tetrahedra in 3D case). Dynamic behaviors of the object are then
determined by analyzing the behaviors of individual element. In this section, we for-
mulate the 2D /3D dynamic model of deformable objects based on the linear Cauchy
and nonlinear Green strain tensors, respectively. We firstly derive the FE model of
elastic material and then extended to rheological material.

1.3.1 O0O0O0obooobobobobooon
guoooooon

Linear elastic material (e.g., a linear spring) in 1D deformation satisfies the fol-
lowing equation:
0 = FEe, (1.32)

where o and € are stress and strain. Constant E denotes Young’s modulus. According
to the Hooke’s law, the above 1D relationship can be extended to 2D deformation
for an isotropic material as

o= (ALy + pI,)e, (1.33)

where 0 = [0y, 0yy, 0uy)" and € = [€44, €4y, €2y]" are 2D stress and linear Cauchy
strain tensors. Scalars A and p denote Lamé’s constants, which can be calculated by
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Young’s modulus F and Poisson’s ratio « as follows:

vE E
A= , h=————. 1.34)
T+)1-2) 21+ ) (
Constant matrices Iy and I, have the forms of
1 10 2 00
Ih=(110], I,=10 2 0]. (1.35)
0 00 0 01

Let S be a region of a 2D elastic object. Assuming that the object is composed of
linear elastic material, strain energy of the object is formulated as follows:

1
U= / o€ (AL + 4L, eh ds.
S

Partitioning region S into a set of triangles, strain energy is described as

U= > Ui

AP;P, Py,

where ]
Uijk = / —e" (AL + pl,) eh dS. (1.36)

APP,P, 2
In the region of AP;P;Py, displacement vector up = [u,v]" at arbitrary point P

inside AP;P;P;, can be approximated by a linear combination of nodal displacements
w; = [u, 0", vy = [ug,05]", and ug = [ug, vy]" as follows:
= uiNi j + Ui Nj ki + we N, (1.37)
v =U; N+ ViNjri+ vV,

where N;jr, Njri, and Ny, ; are the interpolating shape functions. Each of them

has a value of 1 at each nodal point P;, P;, or Py, respectively and zeros at all other
nodal points. Taking partial derivatives of v and v relative to x and y respectively,

we have

iR T PR P

0 ON; ON: 1. ONy ;i ;

a—Z = Uj agj’k + uy; a;’k’ + ug 8]; =

8@ 8Ni,j7k aNij’i 8Nk7i7j (138)
or " on T ox + Uk oxr '’

@ _ U‘aNi’jJﬁ n v'aNng’i I UkaNMj '

Ay Ay 7oy Ay
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Let [&;, m]T, 33 nj]T, and (&, nk]T be initial coordinates of nodal points P;, P;, and
Py, respectively. Partial derivatives of shape functions in Eq. 1.38 can be calculated

as:
Noo= WNigw =k Nk & — &
v Ox 2N Y dy 2N
ONjki _ Mk — i ON;j ki &k — &
N, = —22 = Y N = 27 = - 1.
! ox VAN Oy 2N (1.39)
Ny _ =1y Ny __&—¢
N " — )] — ? J N — 2y — ? J
F Ox 2A T T T Ty 2N
where A denotes the signed area of triangle AP;P;P;, and was given by
1 nj — Nk
AP;P;P; = 3 & & &l | ne—m
i — 1j
Note that the Cauchy strain tensor € = [e,,, €y, exy]T was formulated as
ou
€xaz = 5
ox
ov
€yy = a—y, (140)
5 ou n v
€y = — + —.
Y oy  Ox

Substituting Eqgs. 1.38 and 1.39 into Eq. 1.40 and then substituting the consequential
Cauchy strain tensor into Eq. 1.36, we have

u.

1 3
Ui,jykzi[u? UJT UE] Kijr| u; |, (1.41)

Uy

where stiffness matrix K, can be decomposed into two as follows:

K, jp = AP 4 pJiik, (1.42)

I
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Matrices J5* and J "7% have the following forms:

Ajrkgr Ajkiki Ajkig
5030, ;1 R,0 383,7 ’

Aviir Apiri Apiis
Aijijre Aijiki A
2Bk + Cirgr 2Bjkki + Chirri 2Bk + Ciriy

Jihik _ h
A 4NP;P;Py

1,551,

h

Jiik— | 9B, ;. Criir 2Brini+ Crirs 2Briii+ Crsii |,
5 4APinPk koizgik T Ok ok kika T Gkik, ki T Clkisig
| 2Bijik +Cigiie 2Bijini + Cigins 2Bijiiy + Cigiiy

(1.43)

where

A A (= n) (=) = (= 15) (& — &m)
L =G =) =) (G =) & —&m) |

s | =) (= ) 0
Bm;l,m 0 (& _ fj)(él _ fm) ] , (1.44)

Cioy 2 [ (- )& —E&n)  —(&—&)m—1m)
e =) (& = &m) =) — ) |

Note that matrices J Z)\] *and J LJ’“ depend on geometric quantities, say, coordinates of
nodal points alone. As a result, the global stiffness matrix K also can be decomposed
into two terms as follows:

K =M\ +pud,, (1.45)

where Jy and J,, are referred to as connection matrices. Both matrices also depend
on geometric quantities alone and can be calculated by incorporating matrices J f\j ok
and J iﬂk of each triangles based on the contribution of each triangle to the whole
triangle mesh. Let N be the number of nodal points in an FE triangle mesh. The
dimensions of both connection matrices are 2N x 2/N.

After having the global stiffness matrix K, strain energy of the object was formu-

lated by

1
U= §uﬁKuN, (1.46)

where uy represents the nodal displacement vector. Taking the derivative of the
above strain energy relative to vector uy, we have the formulation of a set of elastic
forces generated on all nodal points as

Filt = Kuy = (A + puJ,)uy. (1.47)

27



Comparing Eqgs. 1.32, 1.33, and 1.47, we found that the 2D stress-strain relation
Eq. 1.33 can be obtained from 1D relation Eq. 1.32 by replacing Young’s modulus
E by a matrix with two Lamé’s constants A and p. Furthermore, the 2D FE force-
displacement relationship Eq. 1.47 can be obtained from 2D stress-strain relation
Eq. 1.33 by replacing o by FSi, e by uy, I, by J,, and I, by J,, respectively. In the
next section, we extend the 2D elastic formulation to a 2D rheological formulation.

goobooogooo

A Maxwell model, as shown in Fig. 1.4(c), is a simplest physical model for simu-
lating rheological behaviors. The Maxwell model consists of an elastic and a viscous
elements connected in serial. The 1D stress-strain relationship of the Maxwell model
can be formulated as

E
6 =——0+ Ee, (1.48)
C

Solving the above ordinary differential equation yields:
t
o(t) = / R(t —t')é(t')dt', (1.49)
0

where R(t —t') = Ee~ <) is referred as a relaxation function, which determines
the nature of rheological deformation. Replacing two elastic constants A and p in
Eq. 1.33 by two relaxation functions yields a relaxation matrix in 2D isotropic
deformation of the Maxwell model:

R(t — 1) = ra(t — )L, + 1, (t — )T, (1.50)

where
ra(t —t) = Ae et ru(t—1t) = pe= e =1, (1.51)

Replacing R(t—t') in Eq. 1.49 by Eq. 1.50, we have the 2D stress-strain relationship
of the Maxwell model as

o(t) = /Ot [ra(t — )y + (6 — t)L,) e(t)dt’. (1.52)

From the above equation, replacing o(t) by F25s*(t), € by uy, I, by Jy, I, by J,,
we have the 2D force-displacement relationship of the Maxwell model as

t
F%ax(t):\/o [Aefg(tft’).])\+,u/67%(t7t’)JM uN(t/>dt/ (153)
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Differentiating the above equation, we finally have
Max E Mazx .

Comparing Eq. 1.48 and Eq. 1.54, we find that the 1D constitutive law of Maxwell
model can be easily extended to 2D case by simple replacements as performed above.
Then, let us investigate the formulation of a parallel five-element model, as shown
in the last row of Fig. 1.5(b). The parallel five-element model consists of two
Maxwell models and one viscous element connected in parallel. Let o1, 0o, and o3
be the stress at the first, the second Maxwell models, and the third viscous element,
respectively. Let o and € be the stress and strain at the five-element model. Due to
the parallel configuration, the 1D stress-strain relationship can be formulated as:

. 1 .
o1+ —o1 = E1€,

C1
Es
09 + e g2 2€, (155)
03 = C3é,

o =01+ 092+ 03.

Following the same replacing procedures presented above, we can easily extend the
1D stress-strain relation Eq. 1.55 to 2D force-displacement relation as:

. E .

By + = O i
1

v E2 . ela ela .

Fy + C—FQ = (NI 4+ p5d )y, (1.56)
)

Fy = (A" Iy + p5°J,,)an,
F})° =F, +Fy + Fs,

where F;, Fy, F3, and F5%° are force vectors corresponding to stress vectors oy,
09, 03, and o, respectively. Parameters \¢¢, p¢le, A\5le and pg'e are Lamé constants
corresponding to E; and E; and can be calculated by Eq. 1.34. Parameters \5* and
ps described the model’s viscosity and are defined as

V1S 637 vis __ 03

R (D )

Supposing that a 2D object is fixed on the ground and the top surface of the object

(1.57)

is pushed downward with a displacement function of d(¢). These two constraints can
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be formulated as follows by using constraint stabilization method (CSM) [[44]].

ATiiy + AT (2wl + w?uy) =0, |58

B (iiy —d) + BT [2w(iy — d) + w?(uy — d)] = 0, (1.58)

where matrices A and B denote which nodal points should be constrained on the

bottom and top surface, respectively. Scalar w is a predetermined angular frequency
and is set to 2000 for both constraints.

Let M be an inertia matrix and ¢; and ¢5 be the Lagrange multipliers which

denote a set of constraint forces corresponding to both geometric constraints. Using

the Lagrange dynamic method, dynamic equations of the nodal points are given by

—Fileo 1 Aty + Bly — Miiy = 0. (1.59)

Combining Eqgs. 1.56, 1.58, 1.59, and considering vy = 1y, we have a set of differ-
ential equations for simulating the 2D FE dynamic behaviors of a rheological object
under a pushing or pulling operations. In the next section, the 2D FE model will be
extended to 3D model by changing the triangle mesh to tetrahedral mesh and adding
the z-axis components in all the matrices and vectors. Figure 1.13 demonstrates 2D
simulation results of rheological behaviors. The center part of the top surface of a
2D rheological object was pushed downward from 0s to 20 s with a constant velocity.
The deformation was then maintained for 20 seconds. From 40s, the deformation
started to recover. Figure 1.13f shows the force responses on the bottom surface of
the object.

goobooogooo

In our 3D FE formulation, an object is constructed by a set of tetrahedra. Let
P; be a nodal point of a tetrahedron and [&;, 7, Ci]T be coordinates of point P;. Let
OP,P;P;P; be a tetrahedron consisting of nodal points P;, P;, Py, and P;. Note that
linear isotropic elastic material satisfies

o = De, (1.60)
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(b)10's

(c)20 s

(d)50s

00 1.13: Simulation behaviors of a 2D rheological object: initial shape (a), deformed
shape (b) at time 10s, (c) at 20s, (d) at 50s, (e) at 60s, and (f) force response on

the bottom surface.

where

_)\+2u

A

S O O >

(e)60s

A
A+ 2p
A

0
0
0

o O ©O o o

Force

[
5|
4
3
2
1

0

F

0

OxE O O o O

10

20 0
Time [s]

40 5

(f) force response

o O O O O

0

Stress vector o and linear strain vector € in 3D case are defined as

T
0 = [0ce, Onyy 0¢c, Tne, Oce, O]

Performing similar derivation as presented in 2D elastic deformation, we can obtain

T
€ = [ece, €my €¢Cr 26n¢, 2€¢e, 2€6n] -

a stiffness matrix K, ; ., for a tetrahedron OP;P;P.P; as follows:
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where

Ajriikl  —Ajkikii  Ajkilii  —AjkLigk
gikt _ 1 —Agrijkl  Aklikti  — Akl Akliigk
A NN 9
360 | Avijijkts  —Avigikii  Avijiig  —Avigigk
| —Aijkikl Aijkkii —Aijkig Aijkigk
2Bjkiikt  —2Bikikti 2Bikiii; —2Biknigk
J’ij:kyl — 1 _2B]€,l,l,],]€,l 2B]€,l,l,]€,l,l _2Bk7l727l7l7] 2Bkvl77’517]7k (1 62)
1% :
360 | 2Brijijks —2Brijikii 2Brijiig —2Buigiigk
| 2Bijkiks 2Bijkkii —2Bijkiig 2Bijkigk
Cikpirkt —Cjiknkti  Cjirtrig  —Cikbigk
n L | —Cruigkt  Cruikri  —Cruitig  Criiigk
360 | Crijijkr  —Cuigikti  Crijiig  —Curijiijk
—Cijkiikt  Cijmrti  —Cijrktig  Cijkigk
The signed volume of tetrahedron ¢ = OP;P;P.P; is given by
OP;P;P1P, = OOP,P,P, + OP,OP,P, + OP,P,0P; + OP,P,P,0 L3
where the signed volume of tetrahedron QOP;P;P;, is defined as follows:
11 S & &
OOP;P,;P; = 23| M M Tk (1.64)
G G Ck

The matrices A;jk;immn, Bijkimn, and C;jpimn in Eq. 1.62 are defined as:

ai,j,kal,m,n ai,j,kbl,m,n @i,j,kcl,m,n
A
Aijkitmn = | bijrtiman  bijkbimn  bijrCimn |
i Ci,j,kQlmn Ci,j,kbl,m,n Ci,5,kClm,n
Qi,j,k0Lm,n 0 0
Bi,j,k;l,m,n = 0 bi,j,kbl,m,n 0 )
L 0 0 Ci 5, kClomn
A
Cijkitmn =
bi,j,kbl,m,n + Ci 5, kClym,n bi,j,kal,m,n Ci 5 kAl mn
@i,j,kbl,m,n Ci,j,kcl,m,n + ai,j,k@l,m,n Ci,j,kbl,m,n
Q; 5 kClom,n bi,j,kcl,m,n Q; 5 kAl m,n + bi,j,kbl,m,n
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where

R i Mk Mk T
ik G G " G Ck - G G|
G G G Cr Gk G
bijr = , 1.66
oE & & * & &k - & & (1.66)
Coin = & & . & &k . & &
i 7y nj Mk M i

After having stiffness matrix on each tetrahedron as given in Eq. 1.61, we can
calculate the global stiffness matrix as follows by incorporating the contribution of

each tetrahedron:
K = \33P + 3P, (1.67)

The dimensions of connection matrices J3° and JiD are 3N x 3N. Therefore, a set

of elastic forces F§% can be formulated as:
Fi5 = K*PulP = (A3 4 pdiP) uif, (1.68)

where vectors F§4 and u3P consist of 2-, -, and z-axis components of all nodal points
and the dimensions of both vectors are 3N x 1. Comparing the above equation and
Eq. 1.47, the difference between 2D and 3D FE formulation is the calculation of
connection matrices and the configuration of force and displacement vectors. In 3D
deformation, the object is constructed with a set of tetrahedra and all the matrices
and vectors include the z-axis components in their formulations.

Similarly, we can extend 2D rheological FE formulation to 3D case. Replacing the

2D matrices and vectors in Egs. 1.56, 1.58, 1.59 and considering v3P = u3P, we have
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3D FE formulation of rheological deformation as follows:

3D __ 3D
uN = VN,
3D 3D rheo ext
M3DV = A3D€1 + B3D€ FS + FSD?

—AL VP = AT (2wVN + wQU?VD)

B [ (4 ) o )]

. E .
Fi{)D _ __1F3D (/\elaJ3D + MilanD) u?VD’ (1.69)
C1
. E
FgD _ __2F3D (/\elaJ3D + M;laJiD) u?VD’
Co

FgD — ()\gZSJ:;)\D + M;zs']iD) V?VDa
Fi° =Fi” + F3” + F3P.

Note that the above linear equations are solvable since the coefficient matrix is
regular, implying that we can compute 3P, ¥v3P, F3P and F3”. Thus, we can
obtain the integrals of these variables using the Runge-Kutta method and finally
compute 3D rheological deformation and force behaviors. For example, Fig. 1.14
demonstrates simulated behaviors of a 3D cube. The entire top surface of the cube
was compressed downward with a constant velocity from time Os to 20s. Before
releasing, the deformed object was maintained for 20 seconds. Then, the deformation
was partially recovered until time 50s. The rheological force behavior is also given
in Fig. 1.14d. In addition, our FE model is not limited to regular-shaped objects. It
can be used to simulate objects with arbitrary shape as long as tetrahedra mesh is
available. For example, the deformation of a 3D index finger pushed by an external
cube was performed as shown in Fig. 1.15. Both 2D and 3D views are given for
the convenience of comparison. The contact modeling used in this example will be
discussed in Section 1.4.

The FE models presented so far are based on linear Cauchy strain tensor. Lin-
ear FE formulation has an advantage of constant connection matrices Jy and J,,
which can be prepared before performing simulation. This results in more efficient
simulation comparing with nonlinear FE formulation. However, linear FE models
cannot cover large deformation and cannot simulate deformation with rotation mo-
tion, which may frequently happen in many applications, such as surgical simulation
and food products manipulation. We will therefore introduce the nonlinear Green
strain tensor into our FE model in the next section to deal with this problem.
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00 1.14: Simulation behaviors of a 3D rheological object: initial shape (a), deformed
shape (b) at time 20s, (c) at 50s, and (d) force response on the bottom surface.

1.3.2 0000 Obbooooooobod

obooobooo

The Green strain tensor is a nonlinear strain measure which can handle large
deformation and rotation. For 2D elastic material, the components of Green strain

tensor €7 are formulated as:

g ou 1
¢ = —4 =
e 0r 2
g ov n 1
¢ = — 4 —
W gy 2
ou
9¢0 — (¢
€y ( oy +

ov

Ox

(
(8

ou

)+ (3]

2+ o
ox ox

2 2
gu\" (v)) (1.70)
y dy

ou @ ov v
Ox Jy
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Snapshot at time Os in 2D view  Snapshot at time 0.3s in 2D view

(a) (b)

Snapshot at time Os in 3D view  Snapshot at time 0.3s in 3D view

(c) (d)

00 1.15: Simulation behaviors of a 3D finger pushed by an external cube: (a) initial
shape in 2D view, (b) deformed shape at 0.3s in 2D view, (c) initial shape in 3D
view, and (d) deformed shape at 0.3s in 3D view.

where u(z,y) and v(z,y) denote the displacement of arbitrary point P(x,y) along
x-axis and y-axis respectively. Note that neglecting the quadratic part from the right
side of the above equation yields the linear Cauchy strain tensor. Again assuming
a 2D object composed of elastic material and constructed by a set of triangles, the

36



strain energy of arbitrary triangle AP;P;P;, can be formulated as

1
Usjr = / ~ ()" (NI + pl,) R dS. (1.71)
AP,P,P,
Substituting Eq. 1.35 into the above equation and considering €/ = [egw € QEgy] T,
we have
where
Uik = Ly (e, +¢7 )2 hds
i3k T 9 (em + 6yy) )
P (1.73)

Ut = / L 2(e2,)” +2(e5,)" + (2¢2,)°| nas.
w7 APP,P, 2

In the region of AP;P;Py, displacement vector up = [u,v]" at arbitrary point P

inside AP;P;P;, can be approximated by a linear combination of nodal displacements
w; = [u, 0", vy = [ug,05]", and ug = [ug, vy]" as follows:
= uiNi j + Ui Nj ki + we N, (1.74)
v =U;N; i+ ViNjri+ Ve,

where N;jr, Njri, and Ny, ; are the interpolating shape functions. Each of them
has a value of 1 at each nodal point P;, P;, or Py, respectively and zeros at all other
nodal points. Taking partial derivatives of v and v relative to x and y respectively,

we have

0 ON; ; ON; 1 ONL i 4
U g Lk g Tk O kg

% = Uy O Uj O k O )

0 ON, ; ONj ki ONk,i,j

_u =, ok + u; L + U ik 7]7

dy dy 0y Oy (1.75)
ov aNi,j,k " aNj,kﬂ' T aNkﬂ'J .
— = /UZ U, 9

ox Ox 7 ox o

Ov  ONijr ONjk,i ONkij

o = By + vy ay + v ay .

Let [&, ni]T, IS3 nj]T, and [&, nk]T be initial coordinates of nodal points P;, P;, and
Py, respectively. Partial derivatives of shape functions in Eq. 1.75 can be calculated
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as:

ONijr My — Mk
Nig=—"722=-4 N;
ox o2N Y

ON; ki Nk — i
N, = L L N
J ox 2N ad

Nyp = Zoktd 05y

b ox 2N Ry

where A denotes the area of triangle AP;P;Py.

Eq. 1.70, we have

_ ONijk & — &
oy 2N
_ONjki & — &
- Tk BSOS (1.76)
_ONkiy &=
oy 2/

Substituting Eqs. 1.75 and 1.76 into

€, =a'q,
e, =0"q, (1.77)
2¢5, = ('q,
where
[ N’L:t ] [ O | [ N’iy | [ U; |

0 Niy Nia V;

Nja 0 Njy U

0 Ny Njz vj

N, 0 Niy Uy,

0 Ny N, Vg,
1 (Niz)” 1 (Niy)? NizNiy (u;)°
1 (Nia)? 1 (Nyy)” Niz Ny (v:)?
we |2 (ij)z 5 3 (Njy)z = NjaNjy q= (uj)z
5 (Vi)™ | 5 (Njy) NjzNjy ’ (v5)
1 (Niz)? 1 (Niy)? Nz Ny (ux)?
1 (Nia)? 1 (Niy)® Nz Ny (v)?
Nz Nia NjyNiy N;jzNiy + Nz Njy U Uy
Nz Ny Ny Ny Nz Niy + Niz Ny VU
NiaNig NiyNiy NioNiy + NigNyy UpUs;
NizNig NiyNiy NizNiy + NigNpy UR;
NizNjqy NiyNjy, NizNjy + Nju Ny Ul

[ NiaNjz NiyNijy | NizNjy + Njo Niy | [ vivj |
(1.78)

Substituting Eq. 1.77 into Eq. 1.73 and taking the partial derivative of Eq. 1.72

relative to displacement vector w; ;= [wi, vy, Uj, v, U, U
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formulation with Green strain tensor as:

4,4,k 0,7,k 1,7,k
Folo = F5ly Eily
where
Taq +5T
Rt
q +5
Fis = AhA (a"q+ 37q :
( ) qu +6Tdvj
szZ 6Tduk
a5 g
2(a%q) (a™52) +2(8%a) (5752 ) +
2 (a%q) (aT92) +2 (5%a) (5722 ) +
o) (1132 20 (172)
FLfgk b (aq) (a ddu]- (6%a) (8 i)uj
2(aq) (osz—;j) +2(6%q) (ﬁTa—; +
2(aTq) <QT% +2(5Tq) ﬁTg—;l +
2(a%q) (a722) +2 (5%q) (5722 ) +

(1.79)

(1.80)

Substituting vectors «, 3, ¢, and q of Eq. 1.78 into the above equation and perform-

ing a series of transformations, we can end up with a formulation of elastic forces

with green strain as follows, which has a similar form with Eq. 1.47:

Fz,jk <)\Jz,]k

ela(g) — Alg) w(g)
where
3,5,k __ jcons varl Uar2
Joak — geme 4 3yt 4y
1,5,k __ cons varl var2
Jidk — geons 4 guort 4 g
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with constant matrices J3™* and Ji?"* given by:

NiyNiy NZ%! NiyNje  NiyNjy NiyNiy  NiyNiy
Jions — hA NJ:ENZ:E ijNiy NJ%E ijévjy N]xka ijNky :
NjyNiz  NjyNiy  NjyNjz N, NjyNpe Njy Ny
kaNzx kaNzy Nk:tNJ:t Nk:thy ngac kaNky
| NiyNiw NigNiy NigNje NigNjy NigNew  NZ, |
2N;, + N, NiyNiz 2Nz Njz + Niy Ny
2 2
Jeoms — B A 2NJ1NM + NJ'Z/NZ'y NJ'Z/NZ'I 2N]I + Njy (183)
K N;zNiy 2N;yNiy + N;jzNiy N;zNjy
2Nk:tNm + NkyNiy NkyNzx 2Nk:tN]x + NkyNjy
i Nkachy 2NkyNiy + Nkach:v Nkachy
Ninjx 2Nz:ka:ac + Nink:y NzyNk:ac |
2Ninjy + NmN]x Nszky 2Ninky + Nszk:t
NjyNj, 2Ny Nig + Njy Ny NjyNis
2Nj2y + N]-Qx Nz Ny 2NjyNiy + NjzNiy
NiyNia 2NZ, + N, Nioy Nia
2Ny N, + NewNja NiaNey N2, + N7,
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Time-varying matrices J3** and J:*! have the following symmetrical forms:

B Nz%t + Nz%/ 0 2Nixij + Ninjy
0 N2 + N2, 0
Nz Nig + Njy N; 0 N? + N?
Jvarl — hA oqu—i-ﬁTq JxsVix Jy+ Yy Jjx JY
A ( ) 0 Nijiy + N]wa 0
NgzNig +NkyNiy 0 NkINJ$ +NkyNjy
i 0 NiyNiy + NgaNig 0
0 NixNka: + Nink:y 0 ]
Ninjy + Ni:ijx 0 Ninky + Niz Nk
0 NjeNgz + NjyNgy 0
szy_i_Nij 0 N]yNky+Nja:ka
0 N, + N, 0
NiyNjy + NioNjs 0 NZ, +NE,
i Ngx 0 Nixij 0 Ny Ny 0 1
N, N; 0 N? 0 NNy, 0
Juarl _ op A OéT Jrttix Jjz Jr= TR
NizN; 0 NiezNj 0 NZ, 0
0 N N; 0 Nk:thx 0 Nl?:t -
[ Ni2y 02 NiyNjy 0 NiyNiy 0 ]
0 NZ, 0 NyNjy 0 Nyl
Ny, N; 0 N7 0 N, Ny 0
+2hA (BT Jy=ty Jy JytVky
(ﬁ q) 0 Nijiy 0 Nj2y 0 Nijky
NieyNiy 0 NiyNjy 0 NE, 0
0 NNy 0 NiyNjy 0 NG,
i 2N;z Ny 0 NigNjy + NjzNiy
0 2N;. Ny 0
N;2Niy + NigN; 0 2N, N;
hA T Jxrsry sty Jx=1Jy
+ (7 q) 0 ijNiy =+ NixNjy 0
kaNiy+NixNky 0 NkINjy—i_ijNky
L 0 Nk:vNiy + NixNky 0
0 NixNky + Nk:vNiy 0 |
NixNjy + Njaf;Niy 0 Nz‘acNky + Nk:tNiy
0 N;2Niy + NNy 0
0 2kaN]€y 0
N]mNjy + ijNky 0 2Nk:acNk:y J
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Time-varying matrices J{“? and J Z‘“”Q have the following unsymmetrical forms:

3
£
[
ES
=
<

$) 1) ;
2Ny ()T j e + Nio(HS) T 2Ny (HF) Ty g + Nig () T
2N () T gk + Ny () Twi i 2N (H§) Ty s + Ny (HS) Ty j
2Ny (H5) "y ok + N (H) Twi g 2N (F) Twg g+ Ny (H) T 1
2Nkw(Hg)Tui,j,k: + Nky(Hg)Tuz 7.k 2Nk:ac(Hg)Tuz 7.k + Nky(Hi)Tui,j,k
2Ny (H) Ty e + N (H) w1 2Ny (H)) T g + Nio(HS) Ty 1
2Nix(Hg)Tuz ikt le(Hg)Tuka QNM(Hg‘)Tuw kTt Niy(Hg)Tui,j,k |
2Ny (HD)Tuy ;g + Niw(HS) w5 2Niy (HD) Twy i + Niw (HS) Ty 1
2N (HS) Ty e+ Njy () Twy e 2N (HE) Ty e + Njy () Ty 1
2Ny (H3) Ty ok + N (HS) Twi g 2N () Tuy g + Ny (HG) T 1
2N ()T 5 1 + Ny (F8) "0y e 2Nk () T e + Ny (FIG) Ty j 1
2Npy (H) T j o + Niw (H) T wijx 2Npy (HD) Twy 51 + Nio (HS) i 1
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where

I fo 0
0 fo
N;zN; 0
o wwdV¥jx o
HY = 0 » Hy = NizNjg
L 0 Niz Niz
0 Ny Ni
Nz Nig 0
a 0 a kasz
H4 - ijQ ) H5 - 0
0 NE,
_szka 0
I ny 0
0 N2,
NiyN; 0
HS = gy | ae =
! 0 2 Ninjy
NiyNiy 0
. 0 NiyNyy
I 0 NiyNiy
Ny Ny 0
B8 _ 0 B8 _ NiyNjy
I I R
0 N2,
_Nijky 0
[ 2Nm’Nzy
0
NizNjy + NjzN;
H% — Jy 0 J v, Hg _
NixNky + kaNiy
I 0
I 0
Niz Njy + Njo Niy
¢ _ 0 ¢ _
Ha= 2Nj. Njy » M5 =
0
L NjaNky + Nigw Njy

From the above derivations we found that the connection matrices J f\gg]‘)c and J /ijg)

Nijky

Ny Ny
NkyNjy ’
N,fy
0
2N;z Niy
0
NizNjy + NjuzNiy
0
Ni:cNky + Nk:cNiy

Ni:cNky + Nk:cNiy
0
ijNky + kaNjy
0
2Ny Niy
0

, Hj

, H§ =

NigNjy + NjzNiy
0

QNNNjy
0
ijNky + kaNjy
0

0
Ni:cNky + Nk:cNiy
0
NjeNiy + NiaNjy
02Ny Niy

(1.86)
k

are no longer constant and depend on the time-varying displacement vector u; ;.

We were not able to prepare those two matrices before simulation and we have to

calculate them at every time step.
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Following the same replacement procedure presented in the previous section, we
can extend the above elastic model to a rheological model. Performing a series of
replacements to Eq. 1.56, we have

E
Fg + 1F9 (/\ela']g\ + Mllan)uN’
Fg E2 Fg /\elaJQ elan
2 T o (AF“IS + pa“J) ), (1.87)

B = (534 + 430y,

Fise) =F{ + F} + Ff,
where superscript g denotes the variables with a formulation of Green strain tensor.
Total connection matrices J4 and J¢, were calculated by incorporating the matrices
szk and J” of each triangles based on the contribution of each triangle to the
whole trlangle mesh. Vector Fg’[‘f(‘;) is the rheological forces generated on each nodal
point.

For performing an operation on a virtual object, boundary constraints need to be
formulated. For example, we suppose a 2D object was fixed on the ground and the
top edge or some nodal points were pushed down or pulled up with a displacement
function of d(t). Two boundary constraints on both top and bottom edges can be
formulated as given in Eq. 1.58:

Let M be the inertia matrix of the object and ¢; and /5 be the Lagrange multipliers
which denote a set of constraint forces corresponding to both boundary constraints.
Using the Lagrange dynamic method, a set of dynamic equations of all nodal points
is formulated as

—Fi50) + Aly + Bly — Miiy = 0. (1.88)

Combining Eqs. 1.87, 1.58, 1.88, and considering vy = iy, we can end up with a set
of differential equations which describe the 2D dynamic behaviors of a rheological
object formulated with nonlinear Green strain tensor. By numerically solving these
equations, we can calculate the deformation and forces at each nodal points of the
object.

gboboboooobobbooogn

In order to show the difference between the linear Cauchy strain and nonlinear
Green strain, several FE simulations were performed with formulations of both strain
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O 1.16: FE simulations of rheological behaviors under an input of different displace-
ments, where the FE models were formulated with (b) Cauchy and (c¢) Green strain
tensors.

tensors. The first simulation is under an input of constant velocities. Within the first
2 seconds, 3 nodal points on the top surface of the objects were pushed downward to
a desired displacement of 0.01m, 0.02m, 0.03m, and 0.04 m respectively, as shown
in Fig. 1.16a. The deformed shapes were then held unchange for 2 seconds before
releasing. The final recovered shapes and force responses from FE models with both
strain tensors were shown in Fig. 1.16b and 1.16c. The second simulation was
performed with different force inputs acting on the top right corner of the object,
as shown in Fig. 1.17a. The force input can be easily incorporated with the above-
mentioned FE model by adding an external force vector F** into Eq. 1.88. In this
simulation, the top right corners of the objects were pulled upward with constant
forces for 2 seconds. The deformed objects were then released with 2 seconds for
recovery. The deformed and recovered shapes for both strain tensors were shown in
Fig. 1.17b and 1.17c respectively.

From Figs. 1.16b and 1.17b we find that linear model with Cauchy strain tensor
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0 1.17: FE simulations of rheological behaviors under an input of different forces,
where the FE models were formulated with (b) Cauchy and (c) Green strain tensors.

always yields linear behaviors, i.e., the output is always proportional to the input
and no matter the input is force or displacement. However, such behaviors will not
happen in real rheological objects when the deformation is getting large. This is
the limitation of the linear model. The nonlinear modeling is therefore necessary to
cover such large deformation. Figures 1.16c and 1.17c show that output behaviors
simulated with Green strain tensor do not have the proportional relationship with
the inputs of both forces and displacements. When the inputs take small values
(e.g., Dis=0.01m in Fig. 1.16 and F=0.01 N in Fig. 1.17), the outputs behaviors
simulated by Cauchy and Green strain tensors have small differences. However, the
differences increased with the increase of input values as shown in Fig. 1.16 and 1.17.
Apparently, the simulation results with nonlinear Green strain tensor demonstrate
more natural behaviors when the deformation becomes large.

In order to further compare the ability of both models for handling deformation
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with rotation motion, pushing and rolling simulations with both models were per-
formed. An object with circular shape is pushed downward by an external instrument
for 5 seconds with a constant velocity of 0.01m/s and then the instrument starts
to move left for another 5 seconds with the same velocity. The instrument is then
moved upward and let the deformation to recover. The total simulation time is 15
seconds. The material properties of the object are represented by a parallel five-
element physical model with parameters: E; = 200 Pa, Ey = 500 Pa, ¢; = 8000 Pa-s,
co = 5000 Pa-s, and c3 = 100 Pa-s. Several simulation snapshots using both models
are given in Figs. 1.18 and 1.19, respectively. From Fig. 1.18, we find that linear
Cauchy strain tensor results in some strange behaviors when simulating deformation
with rotation motion. The triangular mesh of the object is expanded during rolling
motion which should not happen in a real world object. After recovery, the object
become much bigger (Fig. 1.18d) comparing with the initial shape (Fig. 1.18a). On
the other hand, the object simulated with nonlinear Green strain does not show such
strange behaviors, as shown in Fig. 1.19. We therefore conclude that the nonlin-
ear Green strain tensor provide more natural deformation behaviors comparing with
linear Cauchy strain tensor for dealing with large deformation and rotation. The
modeling of contact between a rheological object and an external instrument shown
in Figs. 1.18 and 1.19 will be introduced in the next section.

1.3.3 U000uoobbooooooobobod

As presented in Section 1.2, a five-element physically-based model with two dual-
moduli viscous elements can yield simultaneous reproductions of both rheological
forces and deformation behaviors. Now, let us extend the 1D physically-based model
to a 2D FE dynamic model.

Recall that a stress-strain relationship in a Maxwell model is described by Eq.
1.48. Thus, replacing viscous coefficient ¢ by dual-moduli viscous coefficient ko + c,
we have the stress-strain relationship in a Maxwell model with a dual-moduli viscous
element as:

o=—

o+ Feé. (1.89)
Ko+ ¢

Then, by performing the same replacements for deriving 2D FE model (Eq. 1.56), we
have a 2D FE formulation with a physically-based model including two dual-moduli
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0 1.18: Simulation snapshots of a rheological object pushed and rolled by an external
instrument, where the model of the object was formulated by linear Cauchy strain

tensor.

viscous elements shown in Fig. 1.12b as:

v El ela ela .
F, + o+ o1 +01F1 = (/\11 Jx -th J,u)ay,
F + LF _ (AelaJ + elaJ )
2t et oy 2 2 AT Mg Jp)uN, (1.90)

Fy = (\"Jy + py*J,) 0y,
Fye0 = F) + Fy + F3,

This formulation also can be easily extended to 3D cases and models with the Green

strain tensor as well by performing similar replacements as we did here.

1.3.4 0O0O0O

In this section, the formulations of FE dynamic models for simulating rheological
behaviors were presented. We started from a 2D formulation of elastic model based
on generalized Hooke’s law and linear Cauchy strain tensor. The FE formulation of
elastic deformation was then extended to 2D rheological model and further extended
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O 1.19: Simulation snapshots of a rheological object pushed and rolled by an external
instrument, where the model of the object was formulated by nonlinear Green strain
tensor.

to handle 3D rheological deformation. Simulation results were given. In FE model
with linear Cauchy strain tensor, the connection matrices are constant and can be
prepared in advance which can yield more efficient calculations comparing with non-
linear models. However, FE model with linear Cauchy strain tensor is not suitable
for simulating large deformation and rotation. We have therefore introduced nonlin-
ear Green strain tensor to model large deformation and rotation. The derivation of
FE model with Green strain tensor was presented. It also starts from the formulation
of elastic deformation and further extended to rheological deformation by perform-
ing a series of replacements. Simulation results using FE models with Cauchy and
Green strain tensors were then given to compare the differences between both mod-
els. We found that the FE model with nonlinear Green strain tensor yields more
natural behaviors when dealing with large deformation and rotation. However, since
the connection matrices are no longer constant, we are not able to prepare these
matrices in advance and have to calculate them in every time step. This makes the
FE simulation with nonlinear Green strain tensor very time-consuming. At last,
we also presented FE model with a five-element physical model which includes two
dual-moduli viscous elements.
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1.4 0O0U0O0O0O0OOOOOOOOOO

The FE dynamic models presented in the last chapter are basically used to simu-
late uniform and isotropic objects. However most objects in the real world are not
uniform and may include several different layers with different material properties.
In addition, a contact interaction between an object and an external instrument may
often happen during handling or manipulation. We therefore investigate the mod-
eling of non-uniform layered objects and contact interaction between a rheological
object and external instruments in this chapter.

1.4.1 0O00O0O0ObOOOOooooobon

When we started to model non-uniform objects, the first idea came to our mind is
to set different parameters to each triangle. However, this idea does not work well. If
we look at the dynamic equations presented in the last chapter, for instance, Eq. 1.56,
we find that all the parameters are associated with nodal points rather than triangles.
In other words, the physical parameters in our FE models are point-wise instead of
triangle-wise, which makes the difficulty of choosing appropriate parameters for the
boundary nodal points between two layers when dealing with layered objects. We
have therefore proposed the following idea for modeling non-uniform layered objects.

Considering a two-layered object with different material properties in each layer,
we artificially separate this non-uniform layered object into two uniform objects
with their own properties during simulation, as shown in Fig. 1.20. Note that the
boundary nodal points on both layers (i.e., the hollow nodes on the top layer and
the solid nodes on the bottom layer) always have the same displacements (as they
are in fact the same points), i.e.:

u”t = u'”. (1.91)

The modeling of this layered object can therefore be divided into the modeling of two
uniform objects with a displacement constraint on the boundary nodal points. As
shown in Fig. 1.20, we imposed the displacements of the top boundary points onto
the bottom boundary points during simulation by applying a displacement constraint
of Eq. 1.91. Using the CSM, this constraint can be formulated as:

(ﬁbott o ﬁtop) + 2w(ﬁbott o l'ltop) + w?(ubott . utop) =0. (192)
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0 1.20: Modeling strategy for non-uniformed layered object.

Accordingly, the constraint forces generated on the bottom boundary points are
reacted back to the top boundary points, i.e., F¥? = —F%! By integrating Eq.
1.92 into the dynamic equations of the object on the bottom layer and substituting
F? as an external force into the dynamic equations of the object on the top layer,
we can derive an FE model for simulating rheological behaviors of a non-uniform
layered object. A typical deformation behavior of a two-layered object is shown
in Fig. 1.21, where the top layer is three times softer (all parameters are three
times smaller) than the bottom layer. Another example, as shown in Fig. 1.22, is
a semi-spherical object made of two types of materials (denoted by solid and dash
line, respectively) grasped by a robot hand. We can see that our modeling method
demonstrated natural behaviors of non-uniform layered objects. In addition, this 2D
FE model can be easily extended to a 3D case by changing the triangular meshes to
tetrahedral meshes and adding z-axis components to all the vectors and matrices.

1.4.2 0O0O0O0OO0OOOO

The contact modeling is always required when dealing with interactions between
a deformable object and an external instrument and is important for many applica-
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O 1.21: Deformed shape of a two-layered object with soft material in the top layer.

tions, such as food manufacturing simulation and surgical operation. Depending on
the contact area between the object and the external instrument, we roughly divide
contact models into two categories, as shown in Fig. 1.23. The modeling of these
two kinds of contacts, however, is quite different. In wide area contact (Fig. 1.23a),
contact modeling only requires a detection of contact moment and a constraint con-
dition between the instrument and the object can then be imposed. On the other
hand, in small area contact (Fig. 1.23b), the object needs a remeshing or at least
a local remeshing to ensure that the contact nodes on the instrument are coincided
with some nodes on the object. Otherwise, the instrument and the object may pen-
etrate each other in some regions. In the following subsections, we will investigate
the contact modeling of both categories.

gooo

In the modeling of wide area contact, we should keep the object mesh unchange
and only focus on the detection of contact moment, losing contact moment, and

imposing constraints on the contact nodes.

Contact Moment Detection As shown in Fig. 1.23a, the object and the instru-
ment are constructed by triangular meshes. Since the instrument is assumed to be
rigid, we can use a simplest mesh (only two triangles) for its modeling. During sim-
ulation, the instrument is moving downward with a constant velocity to compress

52



SRR
AN A g NI

(c) Final-shape

0 1.22: Deformation behaviors of a semi-spherical object made of two types of
materials grasped by a robot hand.

the object with a specific displacement. We virtually connect one node P on the
object with three nodes of a triangle (AABC) on the instrument to construct three
triangles: APAB, APBC, and APCA. Let AP;P;P; be an arbitrary triangle with
three vertices: P;, P;, and Pj. Coordinates of these vertices are [z;,v], [z, y;], and
[k, yx], respectively. We define a signed area of a triangle as:

1 Yi — Yk
Yi — Yj

This signed area is positive if the triangular loop (the order of the three vertices
of a triangle) is counter clockwise while is negative if the loop is clockwise. Now,
let us check the signed areas of the triangles APAB, APBC, and APCA shown in
Fig. 1.23a, we find that the area of APAB is negative. However, once the nodal
point P is located on any edge or inside of the triangle AABC, each signed area of
above three triangles will became zero or positive. This can serve as a criterion to
detect the contact moment and start the contact constraint. In every time step, we
check all the nodal points on the object to see if any of them is in contact with the
instrument or not. The algorithm can be roughly described as follows:
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0 1.23: Two kinds of contact models: (a) wide area contact, and (b) narrow area

contact.

In each time step
for loop: each nodal point on the object (node P for instance)
for loop: each triangle on the instrument (ANABC for instance)
if APAB >0 and APBC >0 and APCA >0
Start contact;

end if, for.

goobooogooo

Once the instrument was in contact with the object, the contact points on both
instrument and object would have the same displacement and velocity. Let v,
v ui™and u% be the velocity and displacement vectors of the contact points on
the instrument and object respectively after contact moment. Using CSM, a set of

constraint equations are formulated as:

CT (v — ) 4 CT 2w (v — vim) 4 w2 (u — u™*)] = 0, (1.94)

c c

where constant matrix C denotes which nodal points on the object are in contact.
and u™* of arbitrary point on edge AB (Fig. 1.23a) can be

C

Note that vectors v’
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obtained from velocities and displacements of vertices A and B by using interpola-
tion. Combining Eq. 1.94 with the FE model presented in Chapter 3, we are able
to simulate the contact interaction between a rheological object and an external
instrument.

Losing Contact and Switching Parameters Once the instrument started to
move back after pushing and holding operations, we at first thought that it is neces-
sary to determine the losing contact moment and then release the constraint accord-
ingly. However, we found out that we do not have to do that and our contact model
has an ability to automatically lose the contact as long as the instrument started
to leave the object. Let us recall the idea of our contact model and dig a little bit
deeper. During each time step in simulation, if any nodal point on the object is lo-
cated inside the instrument, it will be pushed down to coincide with the instrument
boundary after this time step due to the CSM constraint. Note that this pushing
down action will happen in next time step but not in the current time step. In other
word, the CSM constraints for the points in contact are always performed one time
step later than the time step where the contact happens. Now, let us consider the
losing contact situation. When the instrument started to move back, the object will
also start to recover. If the recovery rate of the object is faster than the rate of
instrument moving back, the contact is still in effect. However, the recovery rate of
the object is always decreasing with time. In a certain time step, once the recovery
rate of the object is slower than the moving back rate of the instrument, the nodal
points in contact will be located outside the instrument boundary. This separation
will happen because the CSM constraints are always one time step later than the
detection of contact as we just discussed above. Once the separation happens, the
contact constraint therefore will be automatically released. This made our contact
model much simple and natural.

According to the above discussion, the moment of in contact and losing contact
can be determined without explicitly using of simulation time. This can also serve as
a good criterion for dual-moduli viscous element to switch parameters, as discussed
in Section 1.2.4. We therefore use a flag to memorize the contact points and to serve
as the criterion. The algorithm for contact modeling now becomes:

In each time step

for loop: each nodal point on the object (node P for instance)
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Initialize: flag(p)=0;
for loop: each triangle on the instrument (AABC for instance)

if APAB >0 and APBC >0 and APCA >0
flag(p)=1;
Start contact;
end if, for

We will switch the parameters when all contacting points lose their contacts. The
switch function k now becomes:

1 flag(p) = i
. { ag(p) =0 Vp € object, (1.95)

1 otherwise.

Now, we are able to perform the contact simulation with the parameter switching
strategy to reproduce both rheological force and deformation behaviors. The next
subsection will demonstrate some simulation results to show the ability of our contact
model.

Contact Simulation Using the proposed FE contact model, we are able to sim-
ulate deformation behaviors of the rheological objects undergoing a compressing,
holding, and releasing procedures. The first example is a semi-circular shaped ob-
ject deformed by a flat squared instrument. Total simulation time is 16 seconds. The
instrument moves down 25 mm in first 4 seconds with a constant velocity. Then, the
instrument stops pushing and maintains the deformed object for another 4 seconds.
The instrument then moves back to the original position within 4 seconds. After
the instrument moves back to the original position, the object still has 4 seconds
to recover. Some snapshots of simulation results are shown in Fig. 1.24, where the
FE model with dual-moduli viscous elements is employed. All the parameters used
here are estimated from real Japanese sweets materials and how to estimate these
parameters will be discussed in the next chapter. To compare the different perfor-
mance, simulation snapshots of FE model without dual-moduli viscous elements are
also given in Fig. 1.25. We can easily see the differences between Figs. 1.24 and
1.25. At simulation time 8.2, the instrument and object has lost contact in Fig.
1.24d but still in contact in Fig. 1.25a. The final recovered shapes of both cases are
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[0 1.24: Simulation snapshots of a semi-circular object pushed down by a flat squared
instrument with parameter switching strategy.

also quite different. The deformation recovery takes longer time if we do not use the
dual-moduli viscous elements.

The second example is a circular object operated by two external instruments
with one from the top and another one from the bottom, as shown in Fig. 1.26.
The bottom instrument is static and the top instrument is moving down to push the
object. Figure 1.26b showed that the object have already deformed and contacted
with the bottom instrument due to gravity before the top instrument touches the
object. The final recovered shape is also not symmetrical relative to the horizontal
axis due to the gravity. Figure 1.26 shows the simulation results of FE model with
dual-moduli viscous elements. Some snapshots of simulation results without dual-
moduli viscous elements are also given in Fig. 1.27 to show the differences. In
addition, simulation results of contact model also can be found in Figs. 1.17 and
1.18 in the last chapter.
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[0 1.25: Simulation snapshots of a semi-circular object pushed down by a flat squared
instrument without parameter switching strategy.

gooo

Different with wide area contact, the modeling of narrow area contact requires
either a global remeshing or a local remeshing because the contact area of the instru-
ment is smaller than the area of the object as shown in Fig. 1.23b. Moreover,same
with wide area contact, narrow area contact also needs a detection of contact mo-
ment, which will serve as a trigger to start the performance of remeshing.

Object Remeshing In order to generate triangular mesh automatically, we have
employed a MATLAB toolbox of 2D meshing routines named MESH2D, which allows
automatic generation of unstructured triangular meshes for general 2D geometry. For
using MESH2D, one all need to do is to provide some boundary points which can
best describe the object shape (piecewise linear geometry input). By setting some
parameters, we also can control the mesh resolution or specify some special nodal
points and some special connections between some nodal points. In our application,
we only use the basic function and input several boundary points into MESH2D. In
every time step during integration, we perform the following processes:

1. Perform the contact detection to see if the instrument and the object are in contact
or not. If it is not in contact, jump to step 2. If it is in contact, jump to step 3
and perform the steps followed.

2. Using the initial triangular meshes for both object and the instrument to calculate
all the variables and finish the calculation for this time step.

3. Remember the current coordinates of the contact points on the instrument. These
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[0 1.26: Simulation snapshots of a circular object operated by two instruments with
parameter switching strategy.

points and the initial boundary points will serve as a set of new boundary points
to generate the new mesh.

such as the inertial matrix and connection matrices.
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Perform the remeshing using MESH2D and recalculate all the required matrices,

Use the new mesh and new matrices to calculate all the variables needed to be

integrated and finish the calculation of the current time step.

Note that since the remeshing and calculations of connection matrices, which are

usually quite large, must be performed inside the time integration, this contact

simulation with remeshing is quite time-consuming.
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0 1.27: Simulation snapshots of a circular object operated by two instruments
without parameter switching strategy.

Contact Simulation with Remeshing A simulation was conducted to show the
performance of narrow area contact model with remeshing. A 2D squared object
was deformed by a instrument whose contact area is a quarter of the contact area
of the object. The instrument and the object have an initial distance of 0.2 m.
The instrument was moved down 0.4m from the initial position in 2 seconds with
a constant velocity. Before releasing, the deformed object was maintained for 2
seconds. Then, the instrument was moved back to its initial position in 2 seconds
with a constant velocity. After this, the deformed object still had another 2 seconds
to recover. The total simulation time is therefore 8 seconds. Several simulation
snapshots are given in Fig. 1.28. We can see that the instrument starts to contact
with the object at the moment of 1s and the two contact points in the instrument
are not coincide with any nodal point on the object. In the next time step, the object
is remeshed and now two new points on the object are generated and are coincided
with the corresponding nodes on the instrument. The constraints are then imposed
on these contact points to perform the contact simulation.

1.4.3 0O0OUO

In this chapter, the modeling of non-uniform layered objects and contact inter-
action between rheological object and external instrument were formulated. We
artificially separated a non-uniform layered object into several uniform ones and
performed the uniform simulation independently. The non-uniform behaviors were
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O 1.28: Simulation results of narrow area contact with remeshing.

then obtained by imposing a constraint on the nodal points of the boundary between
both layers. This idea works very well for different shaped objects. For modeling
of contact interaction, we roughly divided the contact models into two categories
depending on the contact areas of the object and the instrument. For wide area
contact, the only thing we need to do is to detect the contact moment and then
impose constraints on the contacting points. However for narrow area contact, we
have to perform object remeshing or at least local remeshing during the simulation.
To conduct the remeshing, we need an automatic mesh generation during simulation.
This can be done by using a MATLAB toolbox named MESH2D. In each time step,
the detection of contact moment is also performed. Once the contact starts, the
remeshing is performed and then the constraints are also imposed on the contact
nodal points. Simulation results were performed to demonstrate the performance of
both contact models.
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1.5 0O0UO0o0doogod

In order to accurately simulate the behaviors of real objects, the properties (physi-
cal parameters) have to be determined in advance. However, the estimation of those
parameters is a challenging work, especially for rheological objects which always
yield residual deformation after a loading-unloading operation. These estimated pa-
rameters have to be able to regenerate the rheological force, deformed shape (e.g.,
the held-shape) during the operation and the final deformed shape (the final-shape)
after recovery as well. This section introduce the methods used in our work to esti-
mate physical parameters for simultaneous reproductions of both rheological forces
and deformation, especially the residual deformation behaviors. At first, let us in-
vestigate the contributions of mesh resolution and each parameter to the rheological
behaviors based on 2D FE simulation.

1.5.1 O00dooboboooooon

Let us take the FE model presented in Section 1.3 as an example to perform the
simulation analysis. This 2D FE model includes 6 unknown physical parameters, i.e.,
Young’s moduli Ey, Es, viscous moduli ¢y, ¢o, c3, and Poisson’s ratio v. We suppose
that a 2D flat-squared object with a size of 0.08 mx0.08 m was fixed on the ground
and the entire top surface was pushed down with a constant velocity of 0.002m/s
during time 0 to 10 seconds. This time period is referred to as pushing phase. The
deformation was then held for 10 seconds before releasing. Similarly, this time period
is referred to as holding phase. The deformed shape in this phase is called held-shape
accordingly. After releasing the constraint, the deformed object still has 20 seconds
to recover from the deformation. The deformed shape in the end of simulation is
referred as final-shape accordingly. Therefore, the total simulation time is set to 40
seconds. Such pushing and holding procedures are used throughout our simulation
analysis and similar ones are also employed in our experimental validations. One
may ask why we use this simple simulation or experimental setups. We believe that
firstly the material properties (physical parameters) will not differ even though the
object may have different sizes or shapes or may be subjected to different operations.
Secondly, if we could estimate all the parameters by using a simple setup, there would
be no problem to estimate them using more complicated setups. Now, let us see how
the mesh resolution and physical parameters will affect the simulation behaviors.
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goobooogooo

As we all known, mesh resolution in FE simulation significantly affects the simula-
tion cost and the simulation accuracy as well. In a certain application, we therefore
have to compromise between time cost and simulation accuracy. Since the objects
with flat-squared shape are used in most of our simulations and experimental tests,
it is necessary to investigate the influence of mesh resolution on our applications.
Simulation results with different mesh resolutions are given in Fig. 1.29, where mesh
resolution 2 x 2 means the width and height sides are both divided into two segments.
From Fig. 1.29, we can see that the mesh resolution of 4 x4 is fine enough to simulate
the behaviors for this simple setup. Finer mesh resolutions do not yield significant
difference in both force and deformation behaviors. We have therefore employed 4 x 4

mesh resolution throughout our simulations and parameter estimation processes.

goboooodg

Figures 1.30 and 1.31 show simulation behaviors using different Young’s moduli E;
and F», respectively. We can see that both elastic moduli have similar influences on
the rheological behaviors. Larger values of those moduli yield larger force amplitudes
in the pushing phase and faster decay in the holding phase. This can be explained
by Eqs. 1.20 and 1.21, where the value of E;/c; determines the increasing and
decreasing speed of force amplitude during pushing and holding phases respectively.
Note that the held-shapes with different Young’s moduli are exactly the same. On the
other hand, the final-shapes are dependent on these moduli. Larger values resulted
in larger residual (permanent) deformation. Considering the five-element physical
model (the last row of Fig. 1.5b), during pushing phase, all elastic elements (denoted
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0O 1.29: Simulation results with different mesh resolutions.
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by F; and E5) and viscous elements (denoted by ¢, ¢q, and ¢3) are compressed with
some deformation. During holding phase, the total deformation of the object is kept
unchange. However, the deformation generated in the elastic elements will change to
the deformation of viscous elements, which also yields the force relaxation (reduction)
behavior in holding phase. Larger elastic moduli (E; or Ej) therefore produce bigger
deformation changing rate and finally yield larger residual deformation in a certain
time period.

goooog

Figures 1.32 and 1.33 show different simulation behaviors using different viscous
moduli ¢; and ¢y, respectively. We can see that parameters c; and ¢y also have similar
influences on the rheological behaviors. Larger values of ¢; and ¢, yield larger force
amplitudes in pushing phase and slower decay in holding phase. Explanations also
can be obtained by looking at Eqgs. 1.20 and 1.21. Similarly, both parameters ¢; and
co do not affect deformed shapes during holding phase. However, larger values of ¢,
and ¢y yield smaller residual (permanent) deformation. During the holding phase,
larger viscous moduli ¢; and ¢, actually will slow down the deformation changing rate.
Therefore, less deformation will be changed to viscous element and more deformation
will be recovered after releasing, which results in less residual deformation.

Figure 1.34 shows different simulation results with different values of viscous mod-
ulus ¢3. If we compare Egs. 1.20 and 1.21 at time ¢, (10s in this case), we find that
Cnt1 (€3 in this case) is responsible for the sudden drop in force at time ¢,. The force
behaviors in the holding phase are the same with different parameter c3, as shown in
Fig. 1.34a. Once again, the held-shape is not dependent on parameter c3. However,
cs has a little effect on the final-shapes but not in a significant way, as shown in
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O 1.30: Simulation results with different Young’s modulus Ej.
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O 1.31: Simulation results with different Young’s modulus Es.

Fig. 1.34c. Since parameter c3 does not affect simulated behaviors in a significant
way, one may ask why we have to include this viscous element in our FE model.
Actually, without using parameter c3, we are still able to reproduce rheological force
and deformation. However without using c3, vibration always happens in both force
and displacement curve after releasing, as shown in Fig. 1.10b. A small value of pa-

rameter c3 can remove this vibration and without changing the simulated behaviors
significantly.

gooboogd

Figure 1.35 shows different simulated behaviors using different values of Poisson’s
ratios 7. We can see that parameter v affects all the rheological behaviors: force,
held-shape, and final-shape. Larger parameter v results in larger force responses and
larger transverse deformation behaviors but does not affect the normal deformation
in both held-shape and final-shape. This coincides with the definition of Poisson’s
ratio, ¢.e., a ratio between the transverse strain and axial strain. We summarize the
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0 1.32: Simulation results with different viscous modulus ¢;.
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O 1.33: Simulation results with different viscous modulus c;.

influences of all physical parameters (five-element physical model for instance) on
rheological behaviors in Table 1.2. Interestingly, we find that only Poisson’s ratio
~ affect the held-shape and all the other parameters do not affect this shape at all.
This feature allows us to estimate Poisson’s ratio v separately.
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0 1.34: Simulation results with different viscous modulus cs.

0 1.2: Influences of physical parameters on rheological behaviors
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Parameter ) .
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O 1.35: Simulation results with different Poisson’s ratio 7.

1.5.2 JO00O0Oooooooooon

Parameter estimation of deformable objects has been studied intensively, as pre-
sented in Introduction. One popular and robust method is based on optimization,
which aims at minimizing the difference between simulation or calculation results
and experimental measurements. When the simulation or calculation is performed
by using FE model, this optimization process is usually called inverse FE opti-
mization (Fig. 1.3), i.e., the FE simulation or calculation is iterated with updated
physical parameters until the differences between the simulation and experiment be-
comes minimal. In our work, this method was also used to determine the physical
parameters of rheological objects. However, due to the presence of residual defor-
mation, accurately reproductions of both rheological forces and residual deformation
are quite challenging and parameter estimation for capturing both force and resid-
ual deformation is also quite difficult. In order to deal with this problem, we firstly
proposed a parameter estimation method with the following three steps:

1. Minimize the held-shape to estimate Poisson’s ratio v;
2. Calculate the summation ., ¢; to approximate the final-shape;

3. Minimize the force differences to estimate the remaining parameters with a con-
straint of summation ), ¢; from the second step.

The details about each step will be presented in the following subsections.

gboooboogd

As we discussed in the last section, only Poisson’s ratio v affects the held-shape
and other parameters do not affect this shape at all. We can therefore estimate
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~ separately by minimizing the difference of held-shapes between simulation and

experiments. The objective function used for this optimization is given by:

m
E() =) Ix™ () — x|, (1.96)
i=1
where x5 () and x;"? are the displacement vectors from simulation and experiment,

respectively. Scalar m = 2N with N be the total number of nodal points calculated
in this optimization problem. The optimization is terminated when the tolerance on
the function value F(7) is less than 1 x 107! or the tolerance on parameter 7 is less
than 1 x 107%. Optimization results will be presented in the next section and we can
find a global minimum for this optimization problem actually.

goobooggn

As we discussed in Section 1.2, we can calculate the residual strain by using the
integration of stress history and the summation of viscous moduli, as given in Eq.
1.27. By extending this 1D equation to 2D case, we have

1 tpt+tp
M. uy (00) = T/ F(f)dt. (1.97)
! Ziillci 0
h
o M., = Iy 4+ 7,J, = B It
e IR T I R T ) R

Note that the residual displacements uy(o0) and force history F(t) can be obtained
from experimental measurements. Matrix M, can be prepared in advance and it only
depends on the initial geometrical coordinates and Poisson’s ratio . Therefore, Eq.
1.97 allows us to calculate the summation of viscous moduli ?;1 ¢; and this sum-
mation can be used as a constraint during the estimation of other parameters. Since
the residual displacements uy(o0) was included in this calculation, the calculated
value of Z?:ll ¢; would guarantee a good reproduction of final-shape. Validation
results will be presented in the next section.

goboboooogboo

After the first two steps as presented in the above, we have estimated one param-
eter v and one constraint of Z?jll ¢;. Considering the FE model with the parallel
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five-element model as an example which totally includes 6 physical parameters, we
still have 4 independent parameters to be determined. This can be accomplished by
minimizing the difference in rheological forces between simulation results and exper-
imental measurements. The objective function of this optimization problem can be
formulated as:

E©) =) [f™(©)-£|? (1.98)
1=1

where vector © consists of the parameters to be determined. Vector f{*" is the force
measurements from experiments at the i-th sampling time and vector ££"(@) is the
force response during simulation with parameter ®. The threshold used to terminate
the optimization is the tolerance on E(@) or the tolerance on © less than 1 x 1079.
In both optimizations presented in the first and third steps, the optimization toolbox
of MATLAB and “Nonlinear Least Squares” method were employed to minimize the
objective functions.

From Eq. 1.98, we can see that this optimization process involves iterative FE
simulations, which is usually time consuming. Based on our experiences, this opti-
mization process takes hours or days depending on the initial setting of the param-
eters. However, this simulation-based optimization is quite robust. As long as the
simulation can be done, this optimization process can be performed as well and it
does not require any special treatments of the physical models. We have tested this
method with different physical models and it works well.

goboboboogggobooood

As presented in Section 1.2, the analytical expressions of stress in pushing and
holding phases can be formulated as given in Eqs. 1.20 and 1.21. Extending these
two equations from 1D to 2D case, we have

n

By Push
F(t) =) ci(l—e a")Myvi™", (0<t<t,), (1.99)
=1
n E; E; .,
F(t) = c(l—e a®)e a WMV (1, <t <t,+1), (1.100)
=1
Push

where vector v**" consists of velocities of all nodal points during pushing phase. We
assume that this is a constant vector which corresponding to the constant velocity
p used in Eqgs. 1.20 and 1.21. During the pushing phase, if we push the top surface
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of the object with a constant velocity and if this pushing velocity is not significantly
big, this assumption can be satisfied. After we estimated the Poisson’s ratio 7y, vector
vEuh can be easily obtained by performing the simulation in the pushing phase with
all the other parameters taking arbitrary values since these parameters do not affect
the deformation behaviors during pushing phase. Based on Eqs. 1.99 and 1.100, we
are able to calculate the force responses during both pushing and holding phases and
these calculated forces can be then used in Eq. 1.98 (instead of the simulated forces)
to perform the force optimization. Since now there is no iterative FE simulations
involved in this optimization process, we can obtain a optimal solution within only
several seconds depending on the initial setting of parameters. However, this method
only can be used in parallel physical models in which force expressions can be an-
alytically derived. For other physical models, such as serial models, this method
cannot be used and we have to perform simulation-based optimization instead, as
proposed in the last subsection.

In some applications, if we only focus on reproducing force behaviors, the second
step proposed in Section 1.5 can be ignored and all parameters except Poisson’s ratio
v should be included in the force optimization (the third step). This will yield the
best performance of force reproduction. But at the same time, we have to sacrifice
some accuracy of the reproduction of final-shape. Detailed validation and discussions
will be presented in the next section accompanying with various experimental results
and comparisons.

gbbboooobbboooobbbbuooooboboo

In the above discussions, we supposed that only one set of parameters was used
in the FE model. However, due to the linearity of the physically based models
(e.g., the parallel five-element model), it is difficult to reproduce both rheological
forces and residual deformation simultaneously for most rheological objects. We
have therefore introduced a dual-moduli viscous element into our FE formulation,
as presented in Section 1.3. This dual-moduli viscous element has an ability to
switch two parameters from one to the other during simulation. It can successfully
capture both rheological deformation and force behaviors simultaneously. We have
also proposed that the simulation time and losing contact moment can serve as a
criterion to start the parameter switching.

Note that we usually switch the parameters at the moment when the operation is
finished and the external instrument start to leave the object. During the operations
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(e.g., pushing and holding), the deformation only depends on the Poisson’s ratio +.
This suggests that we can use the estimated parameters by force optimization to
reproduce both rheological force and deformation during operations. However, this
set of parameters cannot guarantee accurate reproduction of residual deformation
at the same time. We have therefore employed the dual-moduli viscous element
to switch parameters when contact was lost. Since parameters ¢; dominate the
residual deformation as shown in Eq. 1.97, we only need to switch parameters

¢; for capturing residual deformation. For example, we suppose the viscous moduli
load

i

which will be used during operation (loading).

unload
)

as unknown parameters to optimize the

estimated by force optimization as ¢

We named another set of viscous moduli as ¢ , which will be used after operation

(unloading). Our idea is to use those c¢™oed
difference of final-shapes between experiments and simulation. Note that during this

load

i

optimization the parameter cl°® will be switched to ™% automatically when the
deformation starts to recover. The objective function of this optimization problem

can be formulated as:

E(Cynload) _ Z "Xgim(cynload> o X;EIPHQ' (1101)

) 1 1
=1

unload
()

After having ¢ , we can easily determine the parameters used in the dual-moduli

viscous elements by using the following equations:

¢+ a; = clod,
(1.102)

i — = Cunload
1 i — Y
Estimation results of FE model with dual-moduli viscous elements for objects made

of Japanese sweets materials will be presented in the next section.

1.5.3 0O0OO

In this section, the parameter estimation methods were presented for capturing
both rheological forces and deformation behaviors simultaneously. At first, FE sim-
ulations were performed with different mesh resolutions and physical parameters to
investigate the influence of these factors on the simulation behaviors. We found that
a 4 x 4 triangular mesh is fine enough for the simple setup used in our parameter
estimation procedures. We also found that only Poisson’s ratio v affect the held-
shape and all the other parameters do not affect this shape at all. This allows us to
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estimated Poisson’s ratio v separately by minimizing the difference of held-shapes
between simulation results and experimental measurements. We have therefore pro-
posed a three-steps estimation method. Except estimating «y (the first step), we also
calculate the summation of viscous coefficients > | ¢; (the second step) by using
the measured data of force and final-shape. This summation was then served as a
constraint during estimating the other parameters (the third step) by minimizing
the force differences. Depending on the force results obtained from FE simulation
or straightforward calculation, the third step can be perform in two different ways.
The simulation-based force optimization is robust and can be used in any model,
but it is time-consuming since iterative FE simulations are involved. On the other
hand, the calculation-based force optimization method is very efficient but only can
be used in parallel physical models. In some applications, these two methods can
be mixed to achieve the best estimation results. At last, the parameter estimation
method for FE model with dual-moduli viscous elements was also presented based
on the above-mentioned methods.

1.6 0O0OOOO

In the previous chapters, we have presented the FE models and parameter es-
timation methods for simulating rheological objects, especially focusing on the si-
multaneous reproductions of both rheological forces and deformation behaviors. In
this chapter, we will demonstrate a series of experimental results and comparisons
with simulation results for validating proposed FE models and parameter estimation
methods.

1.6.1 0O0OO4O4O4

As we mentioned before, a pushing-holding-releasing operation has been employed
through out our discussions. Such kind of operation is frequently encountered in real
applications and provides enough information to estimate the physical parameters in-
cluded in the FE model. We have therefore performed a series of experiments on two
different materials using this pushing-holding-releasing procedure. In order to per-
form such procedure, a testing device is necessary. At the same time, the force mea-
surements should be recorded for the follow-up parameter estimation. Experimental
setup used in our experiments is shown in Fig. 1.36. A motorized stage (KX1250C-L,
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0 1.36: Experimental setup used for compressive tests.

SURUGA SEIKI Co.) was used to perform the pushing-holding-releasing operation.
Force responses on the bottom surface of the object were measured by a tactile sensor
(I.SCAN100L, NITTA Co.). In addition, several static images including the initial,
deformed, and recovered shapes, were recorded by a camera (Canon Eos Kiss X2).
These measurements were used to estimate the rheological properties of the object.

1.6.2 0O0OOO

Two kinds of rheological materials were tested in our experiments, which are com-
mercial available clay and Japanese sweets materials. These two materials show
typical rheological behaviors under a loading-unloading operation.

HEN

The commercial clay is available in supermarket and is supposed to be played by
kids (the one we used is supposed to be play by children over 3 years old, as shown
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O 1.37: Commercial available clay product (a) and flat-squared objects used in
experiments made of different colors: (b) red, (c¢) blue, and (d) yellow.

(a) v=0.Imm/s (b) v=0.2mm/s (c) v=0.5mm/s

O 1.38: Flat-squared objects made of white colored clay were compressed from the

center part of top surfaces with different pushing velocities.

in Fig. 1.37a). The clay is made of flour, salt, and water mixed with a special ratio.
Several different colors are available and were used to distinguish different pushing
velocities in our experiments. Several flat-squared objects made by different colored

74



0 1.3: Detailed information of compression experiments with commercial clay

_ Object Object size Push  Push Pushing time
Ob‘;eCt weight W H T velo. disp. ty th
U (@) (om) (om) (mm) (mm/s) (mm) () ()
red-06 37.75 520 525 120 6 12.07 303.78
red-08 43.36  60.5  60.0 10.5 0.5 8 16.10 304.78
red-10 45.01 58.0 61.0 10.5 10 20.12 311.82
blue-06  43.98  60.5 59.0 10.0 6 30.17 311.83
blue-08 45.04 61.0 59.5 10.0 0.2 8 40.24 321.88
blue-10  43.80 60.5 59.5  10.0 10 49.29 342.00
yellow-06  46.19  59.0 59.0 11.0 6 58.34 502.94
yellow-08  44.72  59.5 59.0  10.0 0.1 8 79.46  500.94
yellow-10  45.14  57.5  56.5 11.5 10 98.58 609.57
white-05 46.43  58.0 57.0 12.0 0.5 16.09 369.16
white-02  46.23  60.0 60.5  10.5 0.2 8 40.24 400.34
white-01  44.08 99.5 58.0 10.0 0.1 79.46 601.52

clays were prepared for compressive testing, as shown in Fig. 1.37b, 1.37c, and
1.37d. Some markers were drawn on the object surfaces for convenient capturing of
internal deformation. During testing, the entire top surfaces of these objects were
compressed downward with constant velocities. Different colors denote different ve-
locities, e.g., red color corresponding to the velocity of 0.5 mm/s, blue is 0.2mm/s,
and yellow is 0.1 mm/s. For each color, three objects were prepared and compressed
with different displacements of 6 mm, 8 mm, and 10 mm, respectively. Measurements
of these 9 objects were then used to estimate the physical parameters. In order to
evaluate the estimated parameters, three white colored objects were prepared and
compressed from the center part of top surfaces with different pushing velocities
but same displacement, as shown in Fig. 1.38. Detailed information about these
experiments with commercial clay was given in Table 1.3. Experimental trials with
different pushing velocities (0.1, 0.2, and 0.5 mm/s) and different pushing displace-
ments (6, 8, 10mm) were performed to investigate how the pushing velocity and
displacement affect the parameter estimation results.
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(a) maferial 1 (b) material 2 (c) material 3

0 1.39: Flat-squared objects made by different Japanese sweets materials.

- = I
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(a-1) material 1+2 (a-2) material 2+3 (a-3) material 1+3

(a) layered objects compressed from the top surface

(b-1) material 1+2 (b-2) material 2+3
(b) layered objects compressed from the center of top surface

[0 1.40: Non-uniform layered objects compressed over the entire or at the center of

the top surfaces.

goooog

Three kinds of Japanese sweets materials were provided by OIMATU, a sweets
company in Kyoto. Each was made of flour, water, and bean powder mixed at spe-
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[0 1.4: Detailed information of compression experiments with Japanese sweets ma-

terials
Object Object size Push  Push  Push Time

Material weight W H T type  velo. disp. ¢, th

(¢) (mm) (mm) (mm) (mm/s) (mm) (s)  (s)
Mat. 1 5243 58.0 59.5 12.0 28.87 182.06
Mat. 2 32.97 50.0 50.0 11.0 top 0.2 6  29.68 181.26
Mat. 3 34.99 50.0 50.0 11.0 29.97 181.46
Mat. 1+2 66.99 60.0 80.0 11.0 49.29 181.76
Mat. 2+3 69.12 60.0 80.0 11.0 top 0.2 10 49.49 181.47
Mat. 1+3 68.52 60.0 80.0 11.0 49.49 181.97
Mat. 1+2 66.99 60.0 80.0 11.0 center 0.2 10 49.69 181.86
Mat. 2+3 69.12 60.0 80.0 11.0 8  39.13 182.07

cific ratios. Three flat-squared objects, each composed of one material, were prepared
for the compression tests, as shown in Fig. 1.39. The entire top surfaces of these ob-
jects were compressed at a constant velocity of 0.2 mm/s and with a displacement of
6 mm. Several markers were drawn on the surfaces and force responses and deformed
images were recorded. These measurements were used to estimate the rheological
parameters of these sweets materials. In addition, to validate the FE model and the
estimated parameters, several non-uniform layered objects(each made of three layers
with two alternating materials) were compressed over their entire or at the center of
their top surfaces, as shown in 1.40a and 1.40b, respectively. Detailed experimental
information using Japanese sweets materials is given in Table 1.4. Note that the
pushing time t, was quite different between uniform object (about 30s) and lay-
ered objects (about 40 or 50s) because they were compressed with the same velocity
(0.2mm/s) but different displacements (6, 8, and 10 mm). The holding time ¢;,, how-
ever, was quite similar (around 3 minutes, as shown in the last column of Table 1.4)
among these experimental trials. During the experiments, we manually controlled
the time ¢, and concluded that 3 minutes was sufficient to obtain adequate infor-
mation on force relaxation behaviors. In addition, the compressing displacements
were chosen to be 6, 8, and 10 mm (see the eighth column of Table 1.4) based on
the small-deformation assumption of generalized Hooke’s law. We used the same
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compressing displacement (10mm) for the three trials (middle three rows of Table
1.4) with layered objects compressed over their entire top surfaces to investigate the
performance of our model with different material combinations. Additionally, two
further trials (the last two rows of Table 1.4) with layered objects compressed at the
centers of their top surfaces were performed to validate our FE model and estimated
parameters with different operations and different compressive displacements (8 and

10 mm).

1.6.3 U0O0OOOOOOOO

Generally, the material property of an object will not differ even though the ob-
ject is subjected to different operations or it has different shape or size. This feature
allows us to use regular shaped objects with simple pushing operations to estimate
their physical parameters. Then, the estimated parameters should be able to sim-
ulate arbitrary shaped objects with any operations. In our experiments, we used
flat-squared objects pushed on the entire top surfaces with constant velocities to
estimate the parameters. As an example of our step-by-step estimation method, we
show the case of the object made by red colored clay pushed with a displacement of
8 mm, denoted by red-08 in Table 1.3. A parallel five-element model was employed
to model the rheological behaviors of this object. According to the discussions pre-
sented in the previous section, parameter c3 in the parallel five-element model was
mainly responsible for eliminating the vibration from the simulation. Based on our
experience, a small value of c3 comparing with ¢; and ¢, is enough to remove the
vibration and without significant effect on simulation results of force and deforma-
tion. Usually, parameter ¢, and ¢, of real materials have a magnitude about 10°
or 10°Pa-s. We have therefore set a value of 100 Pa-s to parameter c3 in advance.
Now, we have 5 unknown parameters to be estimated, i.e., Poisson’s ratio v, Young’s
moduli F, Es, and viscous moduli ¢q, and cs.

gooboogd

In the first step, we estimated the Poisson’s ratio v by minimizing the differences of
held-shapes. Since other parameters do not affect held-shape, we therefore assigned
some arbitrary values to the other parameters. Three trials were performed and
the arbitrary values for other parameters are listed Table 1.5. The optimization for
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0 1.5: Arbitrary values of E;, Es, ¢1, ¢o, and c3 for estimating ~y
Case no. FE; (Pa) E; (Pa) ¢ (Pass) ¢y (Pass) c¢3 (Pass)
trial 1 5x 102 1x10% 2x 103 3 x 103 1 x 102
trial 2 5x 102 1x10* 2x 10 3 x 10* 1 x 102
trial 3 5x 10 1x10° 2x10° 3 x 10° 1 x 102

[0 1.6: Estimation results for Poisson’s ratio vy

Case Initial Final E(y) Iteration Cost
number value o  value *  (x107%m?)  count  (hr)
0.15 0.29023634 3.7546 4 0.26

trial 1 0.25 0.29023308 3.7546 3 0.20
0.35 0.29023665 3.7546 4 0.25

0.15 0.29024458 3.7546 4 0.37

trial 2 0.25 0.29022518 3.7546 3 0.32
0.35 0.29021075 3.7546 4 0.42

0.15 0.29023707 3.7546 4 1.55

trial 3 0.25 0.29023282 3.7546 3 1.25
0.35 0.29023569 3.7546 4 1.63

minimizing the differences of held-shapes were then performed, as discussed in the
previsou section. Table 1.6 shows the estimated Poisson’s ratios v at different cases
and different initial values. We find that parameter v quickly (only 3 or 4 iterations)
converge to a global minimum of about v = 0.2902. This value will be used in the
following calculation of 2?21 ¢; and force optimization.

goobooggn

Using Eq. 1.97, we can easily calculate the value of summation Z§=1 ¢; based
on experimental data on force and residual deformation. In this case, we found
that 327 ¢; = 9.6961 x 10°Pa-s. Note that the value of 37 ¢; can guarantee a
good reproduction of final deformed shape since the residual deformation has been

considered during the calculation.
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[0 1.7: Estimation results of F;, Fs, and ¢; using simulation-based optimization

Trial Initial Final F(®) Iteration Cost

number Parameter value zop  value z* (N?) count  (hr.)
Ey (Pa)  4x 10" 24722 x 10!

trial 1 Ey, (Pa) 6 x 10" 5.0771 x 10* 90.519 36 4.47
¢; (Pass)  8x10° 8.1142 x 10°
Ey (Pa)  8x10* 5.5790 x 10*

trial 2 FEy (Pa) 6 x 10* 3.8065 x 10" 27.383 43 5.77
c1 (Pas)  4x10° 4.5349 x 10°
Ey (Pa)  3x10* 3.7607 x 10*

trial 3 Fy (Pa) 8 x 10% 7.6996 x 10" 24.536 33 4.79

¢ (Pass)  9x10°  9.1985 x 10°

gboooboogd

After estimating Poisson’s ratio v and the value of Z?:1 ¢;, the other parameters
can be then estimated by minimizing the difference of rheological forces with a
constraint of summation 23:1 ¢;. However, depending on the way obtaining virtual
force data, the estimation of other parameters can be divided into two categories:

simulation- and calculation-based methods, as discussed in the previous sections.

Estimation Results of Simulation-Based Optimization In simulation-based
optimization, the FE simulations were iterated with updated parameters until the
differences between simulation results and experiment measurements becomes mini-
mal. Three optimization trials were performed with different initial conditions. The
estimation results associated with computation costs were given in Table 1.7. We can
see that the optimal solutions are quite sensitive with the initial setting of param-
eter values. The optimization curves (solution evolution) of these three trials were
shown in Fig. 1.41. We are not able to obtain a global solutions in this optimization
problem. We only can pick one local minimum by comparing the values of objective
function F(®). In this case, we pick the third trial as a solution. We also can see
that the simulation-based optimization took several hours to reach a local minimum
even with a very close setting of initial values (the third trial). Usually, it is quite
hard to find the close settings of initial values and we may have to perform a plenty
of trials to finally reach an acceptable solution. This method is time-consuming but
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0 1.41: Optimization curves of three trials given in Table 1.7.

quite robust and widely applicable. It can be used in any model to estimate the

parameters as long as the simulation can be done.

Estimation Results of Calculation-Based Optimization In calculation-based
optimization, the force results were calculated using Eqgs. 1.99 and 1.100 instead of
running FE simulations. The calculated force results were then used in optimization
to minimize the force differences. Totally, five optimization trials were performed for
this case. The fist three trials used the same initial conditions with simulation-based
optimization (Table 1.7) for the convenience of comparison. The last two trials were
with other arbitrary initial values. The estimation results associated with computa-
tion costs are given in Table 1.8. We can see that all trials converged to the same
solution and it seems like we can find the global minimum by using this method. The
optimization curves of the first three trials were shown in Fig. 1.42. Comparing Figs.
1.41 and 1.42, we found that the values of objective function from both simulation-
and calculation-based optimization were start from the same value (because the ini-
tial parameter setting are the same) but converged to the different minimal values in
the end of optimization. Figure 1.41 shows that the curves in simulation-based op-
timization have more ladder-shaped regions which make the optimization easy to be
trapped into a local minimum. On the other hand, the curves from calculation-based
optimization are appears more smooth. Smaller tolerance used to terminate the op-
timization can yield better solutions, especially for simulation-based optimization
method. However, it will take much more computation time. From the estimation
results given in Tables 1.7 and 1.8, we can see that both optimization methods con-
verge to the very similar solutions, as shown in trial 3 of Table 1.7 and all trials of
Table 1.8. Note that the first and second layer Maxwell element are exchangeable in
a parallel five-element model. Therefore, the values of E; and E», ¢; and ¢y are also
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[0 1.8: Estimation results of E;, Es, and ¢; using calculation-based optimization

Trial Initial Final F(®) Iteration Cost

number Parameter value g value z* (N?) count (s)
Ey (Pa)  4x10* 3.7730 x 10*

trial 1 E; (Pa) 6 x 10 8.0916 x 10* 24.514 15 0.17
c1 (Pas) 8 x10% 9.2022 x 10°
Ey (Pa)  8x10* 8.0914 x 10*

trial 2 E; (Pa) 6 x 10 3.7730 x 10* 24.514 20 0.20
c1 (Pass) 4 x 105 4.9375 x 10°
Ey (Pa)  3x10* 3.7730 x 10*

trial 3 E; (Pa) 8 x 10*  8.0917 x 10* 24.514 14 0.19
c1 (Pas)  9x10° 9.2023 x 10°
Ey (Pa)  2x10® 8.0952 x 10*

trial 4  E, (Pa) 3 x10* 3.7731 x 10* 24.514 23 0.23
c; (Pas)  4x10° 4.9381 x 10°
E; (Pa)  6x10° 8.0917 x 10*

trial 5 E, (Pa) 4 x10° 3.7730 x 10* 24.514 16 0.18
c; (Pas)  2x10° 4.9375 x 10°

exchangeable, which makes the solutions of trials 1, 3, and trials 2, 4, 5 of Table 1.8
actually very similar. In addition, the computation costs in the calculation-based
optimization were extremely short (less than 1 second in all trials listed in Table
1.8) since there is no FE simulations involved during optimization. However, the
disadvantage is that this method only can be used in parallel models which provide
the analytical expressions of forces.

gbobobooogbobbod

The value of 23:1 ¢; calculated separately before force optimization will guarantee
a good reproduction of final deformed shape. In the last subsection, this value was
used as a constraint during the force optimization. Since this constraint makes the
optimization problem losing one independent variable, the result of force optimiza-
tion will be suffered. We have to compromise the accuracy between the reproductions
of final-shapes and force behaviors. Note that the held-shape is affected only by Pois-
son’s ratio . Therefore, we do not have to do the same compromise for held-shapes.
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0 1.42: Optimization curves of three trials given in Table 1.8.

0 1.9: Estimation results of Ey, Es, ¢; and ¢y using simulation-based optimization
Trial Initial Final F(®) Iteration Cost
number Parameter value z value z* (N?) count  (hr.)
Ey (Pa)  4x 10" 3.1736 x 10*
trial 1 Ey, (Pa)  7x 10" 7.1867 x 107 4.0351 24 24.9
c; (Pass) 9 x10% 1.3298 x 107
ey (Pass)  6x10°  6.9787 x 10°
E; (Pa)  3x 10" 3.1735 x 10*
trial 2 Ey (Pa)  8x10% 7.1884 x 10* 4.0351 39 39.8
c; (Pas) 9 x10° 1.3298 x 107
ey (Pass)  7x10° 6.9787 x 10°
Ey (Pa) 2x10* 7.1851 x 10*
trial 3 Ey, (Pa)  3x 10" 3.1732 x 107 4.0351 26 26.7
c1 (Pass) 4 x10° 6.9809 x 10°
ey (Pass) 5 x10°  1.3300 x 107

In some situations, such as deformable objects handled by robotic hand, we may
care about the force response and the held-shape much more than the final-shape.
In such situations, we can just ignore the calculation of 2?21 ¢; during the param-
eter estimation procedure. Instead, we use all four parameters: FE;, Es, ¢, and ¢
as unknown variables to perform the force optimization. This should give us better
results of force reproduction. In the following subsections, the estimation results of
these four parameters using both simulation- and calculation-based methods will be
presented. Note that v = 0.2902 and c¢3 = 100Pa-s are still used in the following

discussions.
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0 1.10: Estimation results of F;, Es, ¢; and ¢, using calculation-based optimization
Trial Initial Final F(®) Iteration Cost
number Parameter value o value z* (N2) count (s)
Ey (Pa)  4x10* 3.1752 x 10*
trial 1 Ey, (Pa)  7x 10" 7.2145 x 10" 4.0766 25 0.3108
c; (Pass) 9 x10° 1.3291 x 107
ey (Pass) 6 x10° 6.9733 x 10°
E; (Pa)  3x10* 3.1753 x 10*
trial 2 Ey (Pa) 8 x 10 7.2147 x 10" 4.0766 24 0.3205
c; (Pas)  9x10% 1.3291 x 107
ey (Pass)  7x10° 6.9731 x 10°
Ey (Pa) 2x10® 7.2131 x 10*
trial 3 Fy (Pa) 3 x 10 3.1750 x 10* 4.0766 26 0.3554
c1 (Pas)  4x10° 6.9745 x 10°
ey (Pass) 5 x 105 1.3292 x 107

Estimation Results with Simulation-Based Optimization Three optimiza-
tion trials with different initial conditions were performed and the estimation results
were given in Table 1.9. The optimization curves are shown in Fig. 1.43. In this
case, we are able to find a global minimum and the solution is much better than
the ones shown in Tables 1.7 and 1.8 (by comparing the values of objective function

F(O)).

Estimation Results with Calculation-Based Optimization Estimation re-

sults using calculation-based optimization method were given in Table 1.10 and op-
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0 1.11: Estimation results with the constraint of Zle ¢; for all objects made by

clay materials

Trial
name

Er
(Pa)

Es
(Pa)

C1

(Pa-s)

> ci
(Pa-s)

E(©)
(N?)

red-06
red-08
red-10

0.2672
0.2902
0.2367

3.1706 x 10%
3.7730 x 10%
2.7237 x 10%

6.4702 x 10%
8.0916 x 10%
7.5406 x 10%

7.4606 x 106
9.2022 x 10°
5.4256 x 106

7.9035 x 10°
9.6961 x 10°
5.9092 x 106

6.3658
24.514
31.5945

blue-06
blue-08
blue-10

0.2537
0.2292
0.2602

2.0182 x 10%
2.6344 x 10%
3.0593 x 10%

4.4243 x 10%
6.4348 x 10%
7.5570 x 10*

4.4555 x 10°
6.9430 x 10°
5.7866 x 106

4.9014 x 10°
7.6884 x 106
6.5596 x 10°

3.1863
5.5283
50.4884

yellow-06
yellow-08
yellow-10

0.2593
0.2479
0.2494

2.0820 x 10%
2.9216 x 10%
2.1480 x 10%

3.9699 x 10%
4.6662 x 10%
4.1776 x 10%

7.9776 x 10°
1.1663 x 107
8.0970 x 10°

8.5615 x 10°
1.2385 x 107
8.9095 x 10°

2.4562
28.5041
32.8334

average

0.2549

2.7256 x 10%

5.9258 x 104

7.4457 x 106

8.0571 x 10°

timization curves are shown in Fig. 1.44. Comparing with simulation-based method,
very similar results were obtained using calculation-based optimization but the com-
putation costs are significantly reduced. Figures 1.43 and 1.44 also show very similar
curves of solution evolution.

HEN

By following the same estimation procedures presented above, we can estimate
the physical parameters for all experimental objects made of clay materials. Note
that c3 = 100Pa-s and the calculation-based optimization method were used in all
trials. Estimation results for clay objects with and without the constraint of 23:1 i
are given in Tables 1.11 and 1.12, respectively. Note that the estimated parameters
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0 1.12: Estimation results without the constraint of Zle ¢; for all objects made by

clay materials
Trial E1 E2 (4] C9 E(@)
name K (Pa) (Pa) (Pa-s) (Pa-s) (N?)
red-06  0.2672 2.8650 x 10* 6.0364 x 10* 8.8323 x 10° 5.4820 x 10° 3.1418
red-08  0.2902 3.1753 x 10* 7.2147 x 10* 1.3291 x 107 6.9731 x 10° 4.0766
red-10  0.2367 2.1954 x 10* 6.7528 x 10* 8.4719 x 10° 6.8294 x 10° 4.2865
blue-06 0.2537 1.6582 x 10* 4.2801 x 10* 6.0304 x 10° 6.1032 x 10° 0.3573
blue-08  0.2292 2.2164 x 10* 6.0319 x 10* 8.7880 x 10° 9.6051 x 10° 1.2468
blue-10 0.2602 2.2424 x 10* 7.1494 x 10* 9.3098 x 10 1.2391 x 105 1.8716
yellow-06 0.2593 1.7273 x 10* 3.6229 x 10* 1.0636 x 107 8.4945 x 10° 0.2495
yellow-08 0.2479 2.1804 x 10* 4.2930 x 10* 1.9429 x 107 1.3657 x 10° 0.6176
yellow-10 0.2494 1.5206 x 10* 4.1475 x 10* 1.4602 x 107 1.4882 x 10 0.5583

listed in Table 1.11 yield good reproductions of final-shapes while parameters in Table
1.12 result in good approximation of force responses. We can see that both sets of
parameters of some clay objects are quite close and the optimal values of objective
function (given in the last column of both tables) are also not very different. This
means that it is possible for those objects (e.g., red-06, blue-06) to use one set of
parameters to accurately reproduce both deformation and force behaviors. However
for most objects, the differences of parameters and objective function values are
significant, especially the values of 2?21 ¢; which dominate both final-shape and
force amplitude as discussed in Section 1.2. For these objects, one set of parameters
is not enough to reproduce both rheological deformation and force simultaneously.

gbooobog

The same parameter estimation procedures were also performed for objects made
by three kinds of Japanese sweets materials. Experimental information was given in
Table 1.4. Estimation results for these three objects with and without the constraint
of Z?Zl ¢; are given in Tables 1.13 and 1.14, respectively. Comparing with results
of clay materials, two sets of parameters of sweets objects are very different with
each other. The values of Z?:1 ¢; from Table 1.14 (not given directly but can be
easily calculated) are around 10 times larger than those given in Table 1.13. The
optimal values of objective function are even hundreds times different. This means
it is impossible for objects made by sweets materials to accurately reproduce both
rheological deformation and forces simultaneously. This problem comes from the
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0 1.13: Estimation results with the constraint of Zle ¢; for three objects made by

Japanese sweets materials
Trial E; E, c SO e E(©)
name 7 (Pa) (Pa) (Pa-s) (Pa-s) (N?)
material 1 0.3746 8.1002 x 10° 9.7210 x 10° 1.0804 x 10 2.3761 x 10° 326.01
material 2 0.3353 1.0662 x 10* 3.7979 x 10° 1.2423 x 105 1.6849 x 10° 186.48
material 3 0.3267 5.8791 x 103 7.3308 x 10® 8.6015 x 10° 1.9319 x 10° 76.41

[0 1.14: Estimation results without the constraint of Z?Zl ¢; for three objects made

by Japanese sweets materials
Trial E1 EQ C1 (6] E(@)
name K (Pa) (Pa) (Pa-s) (Pa-s) (N2)
material 1 0.3746 1.3468 x 10 2.4695 x 10* 2.9631 x 10”7 7.2381 x 10* 0.9152
material 2 0.3353 1.0553 x 10* 3.7276 x 10* 1.3213 x 107 1.1593 x 10° 0.8385
material 3 0.3267 9.1565 x 10 5.0802 x 10* 8.1809 x 106 1.3427 x 10° 0.7208

physical model (e.g., parallel five-element model) itself and it cannot be resolved by
adding more basic elements to the physical model or changing the configuration of
the model. Further validation of this phenomenon with simulation results comparing
with experimental ones will be presented in the later of this chapter.

gobbooogobbooooobbn

For some materials, such as clay materials discussed above, one set of parameters
seems enough to capture both rheological forces and deformation behaviors. However
for most rheological objects, such as Japanese sweets products, it is impossible to use
only one set of parameters to cover both force and deformation simultaneously. We
have therefore introduced FE model with dual-moduli viscous elements (Section 1.3)
to solve this problem. Here, we suppose that the FE model was formulated using
parallel five-element model with two dual-moduli viscous elements (Fig. 1.12b) and
we preassigned a value of 100 Pa-s to parameter c¢3. By following the estimation
procedure presented in the previous section, we can determine those parameters for
FE model with dual-moduli viscous elements and listed them in Table 1.15. Note
that the Poisson’s ratios are not listed in this table and they take the same values
as given in Table 1.14.
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O 1.15: Estimation results of FE model with dual-moduli viscous elements for sim-

ulating the objects made of Japanese sweets materials
Trial E1 EQ C1 Co (651 a9
name (Pa) (Pa) (Pa-s) (Pa-s) (Pa-s) (Pa-s)
mat.1 1.3468 x 10% 2.4695 x 10* 1.4820 x 107 5.3855 x 10% 1.4811 x 107 1.8527 x 10*
mat.2 1.0553 x 10* 3.7276 x 10* 6.6096 x 105 7.8271 x 10* 6.6034 x 10° 3.7659 x 10*
mat.3 9.1565 x 10% 5.0802 x 10* 4.0958 x 106 8.2198 x 10* 4.0851 x 106 5.2072 x 10*

1.6.4 0O0OOUO

In the above sections, the experimental information was introduced and the physi-
cal parameters for clay and Japanese sweets materials were estimated using different
methods. In this section, the simulation results using the estimated parameters will
be compared with experimental measurements to show the performance of our FE
model and parameter estimation methods. Note that the physical parameters were
estimated by using measured data of the uniform objects (for both clay and sweets
materials) with compressing operations from the entire top surfaces. The measure-
ments of uniform objects compressed from the center-top surfaces (white colored
clay objects) and non-uniform sweets objects compressed from top and center-top
surfaces were used to evaluate the estimated parameters.

HEN

At first, the estimated parameters listed in Tables 1.11 and 1.12 were used to
simulate the corresponding clay objects to show performance of our optimization-
based estimation methods and also to demonstrate the difference between these two
methods with or without the constraint of Zle ¢;. Simulation results compared with
experimental measurements for three trials (denote by red-08, blue-06, and yellow-08
in Tables 1.11 and 1.12) were shown in Figs. 1.45, 1.46, and 1.47, respectively. From
these figures we can see that estimated parameters with the constraint of Z?Zl i
yield better results of final-shapes. On the other hand, estimated parameters with-
out this constraint result in better results in force approximation. This is coincide
with our theoretical analysis, 7.e., the summation 2?21 ¢; dominates the residual
deformation. We can also see that the estimated parameters with the constraint
always under-approximated the force amplitudes, especially in the end of the hold-
ing phases. On the other hand, the estimated parameters without the constraint
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O 1.45: Validation results for object red-08 (a) with and (b) without the constraint
of 0 e

always over-approximated the final-shapes, especially for object yellow-08 shown in
Fig. 1.47. Tt can be explained that accurate approximation of final-shape requires
relative smaller values of 2?21 ¢; while accurate approximation of force behaviors
requires relative larger values. If we look at Tables 1.11 and 1.12, we find that the
values of 2?21 ¢; in Table 1.12 are always larger than those in Table 1.11. The object
yellow-08 has the largest difference (about 1.8 times) between two sets of parameters
among these three objects. This is why the differences in both force and deformation
behaviors shown in Fig. 1.47 are larger than those in Figs. 1.45 and 1.46. How-
ever, we can obtain good reproductions of both rheological forces and deformation
behaviors for objects red-08 and blue-06 within a relative short time (within 200
seconds) using the estimated parameters with the constraint of 2?21 ¢i. Actually
in most applications, the holding time may not be very long. In such cases, the
parameters listed in Table 1.11 are good enough to reproduce both rheological forces
and deformation behaviors simultaneously.

The simulation results shown in Figs. 1.45, 1.46, and 1.47 were performed using

their own estimated parameters. In other words, these validation results only showed
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0 1.46: Validation results for object blue-06 (a) with and (b) without the constraint
of Z?:l C;.

how well the force and shape optimizations were performed. These validation results
are thus quite insufficient. We therefore conducted three other experiments with ob-
jects made by white colored clay materials. In order to investigate how the estimated
parameters can handle different operations, we compressed these three objects from
the center area of the top surfaces instead of the entire top surfaces and also with
different compressing velocities of 0.5m/s, 0.2m/s, and 0.1 m/s, respectively. De-
tailed experimental information of these three trials can be found in Table 1.3. Note
that different colored clay materials actually denote different materials and they may
have different properties. However, since they were sold in the same pack and man-
ufactured at the same time, the difference in properties among them was supposed
to be negligible. Therefore, the average values of estimated parameters listed in
the last row of Table 1.11 were used to reproduce the rheological behaviors of these
three objects. The simulation results compared with experimental measurements
were shown in Fig. 1.48. Because the deformation behaviors are more complicated
(especially in the contact corners) than compressing from the entire top surfaces,
we have used a 16 x 16 triangular mesh instead of a 4 x 4 mesh to simulate the
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00 1.47: Validation results for object yellow-08 (a) with and (b) without the con-
straint of Y20 ¢;.

behaviors of these white colored objects. In order to clearly show the deformation
comparisons between simulation and experiments, only 8 x 8 lattice mesh was shown
in Fig. 1.48. We find that both held-shapes and final-shapes are pretty well matched
between simulation results and experimental measurements and we can achieve good
reproductions of force behaviors in a short term (within about 200 seconds). We can
therefore say that we can obtain acceptable reproduction results of both rheological

force and deformation for clay objects by using our FE model and the estimated
parameters listed in Table 1.11.

goooog

The estimated parameters listed in Tables 1.13 and 1.14 were used to simulate
these three objects to see what happen for sweets materials with two estimation
methods with or without the constraint of Zle ¢;. Simulation results compared
with experimental measurements for these three trials are shown in Figs. 1.49, 1.50,

and 1.51, respectively. We can see that estimated parameters with the constraint of
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[0 1.48: Validation results for white colored objects with a compressing velocity of
(a) 0.5m/s, (b) 0.2m/s, and (c) 0.1 m/s.

Zi’:l ¢; yield good results of final-shapes but bad results of forces. On the contrary,
estimated parameters without this constraint result in good results in force but bad
in final-shapes. This again proved our theoretical discussions of Z?Zl ¢; dominating
both force amplitude and residual deformation. The values of 3> ¢; in Tables
1.13 and 1.14 are very different with each other. The ratios between these two set of
values S0, ¢; are 12.5, 7.91, and 4.3 (values in Table 1.14 divided by values in Table
1.13) for sweets materials 1, 2, and 3, respectively. We can see that material 1 has
the largest ratio and also the largest difference of the objective function values (listed
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O 1.49: Validation results for sweets material 1 (a) with and (b) without the con-
straint of 327 ¢;.

in the right most column in Tables 1.13 and 1.14). We are not able to accurately
reproduce both forces and deformation behaviors simultaneously for sweets objects
by using only one set of parameters. Using one set of parameters, we can reproduce
either rheological forces or deformation behaviors alone. It is impossible to cover both
in the same time. If we use only one set of parameters, we always have to compromise
between the reproductions of force and deformation behaviors. We believe the reason
of this phenomenon arises from the nonlinearity of material properties. Our FE
model is based on linear Hooke’s law, which provided a proportional relationship
between stress and strain (force and displacement in 2D case). Most real materials
include nonlinear, rate-, and time-dependent properties. Therefore, it is hard to use
a linear model to approximate such nonlinear behaviors. We can introduce nonlinear
modeling, such as the model with Green strain tensor as presented in Section 1.3,
to cope with this problem. Such nonlinear models suffer from high computational
cost because of the complicated constitutive equations and the intensive calculation
for updating the stiffness matrices. Analytical expressions of force are usually not
available for such nonlinear models, which makes the parameter estimation more
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O 1.50: Validation results for sweets material 2 (a) with and (b) without the con-
straint of 27 ¢;.

difficult and sometimes inapplicable. We have therefore introduced dual-moduli
viscous elements into our FE model to deal with this problem and next section will
demonstrate validation results of this model.

OoOOo0FrEODOOODOO

The dual-moduli viscous element has an ability to switch two parameters from
one to the other during simulation. The FE model is still linear model and only
some parameters (¢; and ¢y in the case of parallel 5-element model) change values
before and after the switching moment. This model can yield accurate reproductions
of both rheological forces and deformation behaviors simultaneously with the same
computation cost as a linear model with one set of parameters.

Validation Results for Corresponding Uniform Objects At first, we have

used the estimated parameters listed in Table 1.15 to simulate the corresponding
objects made by three sweets materials. The simulation results compared with ex-
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O 1.51: Validation results for sweets material 3 (a) with and (b) without the con-
straint of 327 ¢;.

perimental measurements are shown in Fig. 1.52, where the solid line denotes the
results from experimental measurements and dashed line (may be hard to distin-
guish) denotes the results from simulation. We can see that this model successfully
captured both rheological forces and deformation behaviors simultaneously.

Validation Results for Non-Uniform Layered Objects Made by Sweets
Materials Again, the simulation results shown in Fig. 1.52 were performed using
their own estimated parameters. These validation results therefore only demonstrate
how well the parameter estimation procedures were conducted. In order to further
evaluate the estimated parameters, several other experimental trials with layered
objects, as shown in Fig. 1.40, were performed. Each object consists of three layers
and two different materials, with the materials of the top and bottom layers being
identical. These types of layered structures are often encountered in food products,
such as sandwich and sushi. Different combinations of two materials were tested,
e.g., in Fig. 1.40a-1, the object was made of Materials 1 and 2 with Material 1
in the middle. The objects were compressed over their entire top surfaces (Fig.
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O 1.52: Validation results of FE model with dual-moduli viscous elements for objects
made by Japanese sweets material 1 (a), 2 (b), and 3 (c).

1.40a) or at the center (Fig. 1.40b) of the top surfaces with a constant velocity
of 0.2mm/s. Detailed experimental information can be found in Table 1.4. The
estimated parameters listed in Table 1.15 were then used to simulate these layered
objects. Comparisons of the simulation results and experimental measurements are
shown in Figs. 1.53 and 1.54. In Fig. 1.54, the object images are from experiments
and the blue and red lines are obtained from simulations. Because the objects

compressed over their entire top surfaces showed simple deformation behaviors, 4 x 8
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0 1.53: Validation results of layered objects compressed over the entire top surfaces.
The layered objects made by materials 142 (a), 2+3 (b), and 143 (c), respectively.

triangular meshes are sufficient for their simulations, as shown in Fig. 1.53. On the
other hand, the objects compressed at the center of top surfaces demonstrate more
complicated deformations around the contact corners. We therefore use triangular
meshes with finer resolution (16 x 32) to reproduce these deformation behaviors. In
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0 1.54: Validation results of layered objects compressed at the center of the en-

tire top surfaces. The layered objects made by materials 142 (a) and 2+3 (b),
respectively.

Fig. 1.54, only 8 x 16 lattice meshes are given for the convenience of comparisons
with the experimental images. The validation results in Figs. 1.53 and 1.54 show the
successful reproductions of both deformation behaviors and force responses for these
layered objects. But the simulations results shown in Fig. 1.54 exhibited larger errors
than those in Fig. 1.53, especially the force behaviors. This suggests that better
validation results might be obtained if the operation conditions used in parameter
estimation and application are identical. Even though the force reproductions in

Fig. 1.54 suffer from some errors, the errors are still in acceptable range for most
applications.
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1.6.5 0O0OU

In this section, experimental setup and compressing tests were demonstrated and
simulation results were compared with experimental measurements to validate our
FE models and parameter estimation methods. Two kinds of rheological materials,
commercial available clay and Japanese sweets materials, were employed in our ex-
periments. Flat-squared objects made by these two materials were compressed using
a linear stage with a pushing-holding-releasing operations. The force data and static
images were recorded for estimating the physical parameters. The estimation meth-
ods presented in the previous chapter were used to estimate the physical parameters
for these objects. Two sets of parameters with or without the constraint of Z?:l ¢
were given to compare the differences. The simulations were then performed using
the estimated parameters and comparisons between simulation results and experi-
mental measurements were done to validate the proposed FE models and parameter
estimation methods. We found that the estimated parameters with the constraint of
Z?Zl ¢; yield better reproduction of final-shapes while parameters without Z?Zl i
result in better force reproductions. For some objects made by clay materials, good
reproductions of both rheological forces and deformation behaviors can be achieved
simultaneously by using only one set of parameters. However for other objects, this
is impossible and the reason caused the failure is the linearity of the physically-based
models. Fortunately, after introducing the dual-moduli viscous elements into our FE
models, we have finally solved this problem and successfully reproduced both rheo-
logical forces and deformation behaviors simultaneously. The estimated parameters
from uniform objects can also be used in simulating non-uniform layered objects
even with different compressing operations.

Note that the measurement requirements for our estimation methods included
three static images of the object: the initial shape, the held-shape, and the final-
shape, and the force responses during the experiments. In addition, we have used
regular shaped objects with some markers drawn on the surfaces throughout our
experiments. However, our estimation method is not limited by the shape of the
object and can be applied to arbitrary object as long as the deformation field of
some feature points is available. Besides, the loading position is also not limited to
the top surface but may be anywhere, even at just one point convenient for force
measurements.
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1.7 OO
1.71 OO

Modeling and simulation of deformable objects has been playing an important
role in many applications, such as surgical simulation, robotic manipulation, food
engineering, and so on. Many modeling methods have been proposed, such as MSD,
FEM, and particle-based methods, etc. They all have their own advantages and
disadvantages. There are even many commercial softwares available for simulating
deformable objects, such as ANSYS and ABAQUS. However, the modeling and
simulation of deformable objects is still a unmature and hot research field. This is
not only because the development of computation technology makes more methods
applicable, but also because the diversity of deformation behaviors demonstrated in
real world objects.

The work presented in this dissertation is focusing on modeling and reproducing
the behaviors of rheological objects, which include both elastic and plastic properties
and always yield residual deformation after loading-unloading operations. The diffi-
cult part of this subject is how to accurately reproduce both rheological forces and
deformation, especially residual deformation behaviors simultaneously. The main
contributions of our current work are as follows:

1. We have summarized the physically-based models which can be used to simulate
rheological behaviors. We categorized such physical models into serial and parallel
models and proposed a criterion to choose an appropriate one for certain applica-
tion. We have derived the generalized constitutive laws for both models and found
a corresponding relation between the two models. We then derived the analytical
expressions of rheological forces and residual deformation for generalized parallel
models. Through a series of analysis, we found that there is contradiction between
accurate reproductions of rheological forces and residual deformation. In order to
cope with this contradiction, we have proposed a dual-moduli viscous element and
integrated it with our physically-based models.

2. We have developed 2D and 3D FE dynamic models for simulating rheological
behaviors based on the physically-based models and linear Cauchy strain tensor.
In order to simulate large deformation and deformation with rotation motion, the
nonlinear Green strain tensor has also been introduced into our FE formulations.

The FE dynamic model with dual-moduli viscous elements was also derived. We
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have then extended our FE model to deal with non-uniform layered objects and
contact interaction between rheological objects and external instruments. We
found that the losing contact moment can serve as a perfect criterion for dual-

moduli viscous element to switch the parameters.

3. We have proposed several methods for estimating the physical parameters of rhe-
ological objects. The basic idea is to minimize the difference between simulation
results and experimental measurements with updated physical parameters. In or-
der to capture both rheological forces and deformation behaviors, we proposed
a three-step method with a separate estimation of Poisson’s ratio v and calcula-
tion of summation )., ¢;. Both simulation- and calculation-based optimization
methods were investigated and compared. The simulation-based method is ro-
bust but time-consuming, while the calculation-based method is very efficient but
limited to only parallel models. we found that the three-step method works well
for some rheological objects but failed to others. We have therefore estimated
the parameters of FE model with dual-moduli viscous elements. We employed
the calculation-based optimization method to minimize the force difference and
simulation-based method to optimize the difference of final-shapes.

4. A series of compressing tests were performed using objects made by commercial
available clay and Japanese sweets materials. Experimental measurements of uni-
form objects with compressing from the top surfaces were used to estimate the
physical parameters. The estimated parameters were then employed to simulate
uniform objects with compressing operation from the top-center surfaces and even
non-uniform layered objects. Through various validations, we proved the contra-
diction between the reproductions of rheological forces and residual deformation.
For several clay objects, this contradiction phenomenon is not obvious and we
could obtain acceptable results for both force and deformation using only one set
of parameters. For other objects, however, this contradiction phenomenon is very
strong and it is impossible to use one set of parameters to cover both rheological
forces and deformation behaviors. This coincides with our theoretical discussions.
The FE model with dual-moduli viscous elements and estimated parameters were
then employed to solve this problem and finally we successfully reproduced both
rheological forces and deformation behaviors simultaneously.

Even though our current work concentrated on reproductions of rheological be-
haviors, most of our discussions and methods can be easily applied to elastic, visco-
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elastic, and plastic models as long as the physically-based models were used. Since
our attention is focusing on the reproduction accuracy of both forces and deforma-
tion, we have to sacrifice the computation costs and real-time performance is not of
concern in the current situation.

1.7.2 0OO00O0OO

According to our current works, we have done a systematic analysis of modeling
for simulating rheological behaviors and we have established efficient methods for
estimating physical parameters of rheological objects. In the future, we plan to
make our efforts on the following directions:

1. 3D validation of our FE model and estimated parameters. 3D FE formulation has
been presented in this dissertation. But we did not perform any simulation vali-
dation for real objects with estimated parameters. The physical parameters were
mainly estimated by using 2D FE model and they are supposed to be applicable
in 3D simulation. Thus, we need experimental validations of this issue. If the
proposed methods are not applicable, new parameter estimation methods with
3D model have to be investigated. This is theoretically feasible but practically
difficult because the computation costs.

2. Therefore, the second future target is to speed up our FE simulation. We plan
to use the new computing architecture called GPGPU (General Purpose Graphic
Processing Unit) to achieve this target.

3. In the current experiments, only two kinds of materials were tested. This is quite
limited. We will perform more experiments with other rheological objects, such
as Japanese tofu and various kinds of sushi. There might be some interesting
behaviors which have not been discovered.

4. We are now working on particle-based model, such as Smoothed Particle hydro-
dynamics (SPH). This could be another option for simulating rheological objects.
Comparing with FE model, SPH model has advantages of low computation costs
and convenient implement for complex operations, such as cutting and reforming.
The SPH model also need parameter estimation when dealing with real materials.
The parameter estimation ideas presented in this dissertation can serve as a good
reference.
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Abstract— While a variety of different features matching
algorithms have been reported in rigid areas, few features
matching algorithm used in non-rigid area have been reported.
This work is concerned about interior deformation fields
measurement of non-rigid, non-uniform human tissue or organs
from 3D magnetic resonance volumetric images. In this paper,
a local geometric preserving approach was proposed to find
homologous features from a given features in MR volume
obtained at the initial state. Three dimension invariant moment
and geometric preserving property of a local 3D region have
been used to design the function which was used to measure the
strength of match of the candidate feature pair. Interior density
deformation fields is then inferred to use a linear approximate
approach in an irregular tetrahedra finite element model. To
test the validity of the proposed approach, it is applied to actual
MR volumetric images obtained from a volunteer’s finger. The
primary result is consistent with the fact.

I. INTRODUCTION

Because magnetic resonance imaging (MRI) affords su-
perb anatomic images with excellent spatial resolution and
contrasts among soft tissues, it is widely used in computer-
assisted medical applications, such as clinical diagnosis,
surgery simulation, operation planning, and evaluation of
physical characteristics of biological tissues. Therefore, as
basic techniques, interior deformation fields or motion mea-
surement of biological tissues from magnetic resonance
(MR) volumetric images are becoming the focused research
branch in medical image processing. Moreover, interior de-
formation fields or motion estimation are also the foundation
of medical virtual reality and medical virtual simulation.

Generally, the approach for estimation of deformation
from MR volumetric images can be classified into three
types: elastic deformation models based methods, tagging
methods and feature matching based methods.

The elastic deformation models based method can be clas-
sified into either parametric or geometric active models [3].
In order to obtain the deformation information of object,
the parametric active contours, also called snakes, tries to
minimise a defined cost function so that it deforms a given
initial contour toward the boundary of the object. it was
first introduced by Kass et al. in 1987 [4], and subsequently
developed and used by Lang et al. [5], Cho et al. [2] and
Matuszewski et al. [1] to estimate deformation motion of
non-rigid objects. In the geometric active model [3], [6], [7],
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[8], the curve and surface of object was first to be detected,
then the deformation propagation of curve and surface are
used to track the motion. However, no matter what elastic
deformation models are, disadvantages exist in deformation
estimation. Such as, the parametric active model cannot
handle changes in the topology of the evolving contours
when implementations of deformation are performed directly,
and specially, often heuristic, topology handling procedures
must be used [8]. In the geometric active model, when
contrast is poor and boundaries are not clear or continuous in
the images, the contours tend to leak through the boundary
[9]. The tagged images must have a regular grid pattern in
the imaging plane, and if the number of tagged points is
low,the accuracy of the measurements will be poor. More
important than the former two aspects, no matter what
elastic deformation models are, they can only handle the
deformation on the boundary of non-rigid object, not the
interior deformation.

The MRI tagging method was proposed by Zerhouni [10],
and has been subsequently developed. Amini et al. [11]
introduced a coupled B-snake grids and constrained thin-
plate splines to analyze 2D tissue deformations; Wang et
al. [13] proposed to use subspace approximation techniques
to compute motion fields and introduced a spline technique
to reconstruct dense displacement fields; Chen et al.[14]
introduced an approach for tracking the tags; and Huang et
al.[12] introduced an environment to fit and track volumetric
tagged MRI data by a 4D deformable B-spline model. In all
these MRI tagging methods, a set of radio-frequency (RF)
pulses are used to make trackable tags in thin slices which
are perpendicular to the imaging plane [11].

Different from the former two types methods, in our
previous work [17], [18], our method presents a feature
matching combine with interpolation approach for measure-
ment interior deformation fields of non-rigid object using MR
images. Its primary idea is to obtain local deformation fields
based on homologous feature pairs inner images, then, the
deformation fields of each pixel or voxel will be interpolated
to use the local deformation fields of adjacent homologous
feature pairs.Obviously, the key problem of the approach is to
find enough homologous feature pairs in the MR volumetric
images obtained at initial situation (initial volume) and MR
volumetric images obtained at deformed situation (deformed
volume), respectively. Therefore, to further improve the pro-
posed feature matching based approach, this paper proposes a
local geometric preserved approach. In the Section 2, we will
describe the approach and give examples and preliminary
experimental results in Section 3. In the final section, we



will present a discussion and conclusions.

II. METHOD

In general, our approach is consists of four steps: Fea-
tures extraction, Affine transformation, Feature matching
and Deformation fields measurement. Here, to find enough
homologous feature pairs, it is necessary to extract enough
features from the initial and deformed volumes. In this study,
high curvature 3D points as features are pre-extracted from
MR volumetric images. In this case, we extend 2D Harris
operator [24] to a 3D operator for extracting features from
MR volumetric images [15].

In addition, because the initial volume and deformed
volume are acquired at different time, conditions and MRI
device without any calibration, they only have local coordi-
nate systems, respectively. Thus, to make them into a global
uniform coordinate system to ensure result correctly, in this
case, we choose a set of corresponding features around bone
which can be regarded as rigid as control points. Then,
affine transformation operation is applied to the initial and
deformed volumes using affine registration approach defined
in [17] and [21].

In the next subsections, we will present feature matching
method and interior deformation fields measurement method
in succession, which are key part of this work.

A. Local Geometric Preserving Feature Matching Algorithm

Finding enough robust homologous feature pairs, also
called feature matching, is the central work of the proposed
approach. On the global view, because of the non-uniform
characteristic of human tissues or organs, when force is
applied on them, the magnitude and orientation of defor-
mation in different location must be different. However, for
a local region,the difference of deformation we take note
is slight. Thus, we can suppose that deformation fields in
a local region are consistent. Based on this hypothesis, a
local geometric preserved feature matching algorithm has
been developed as following. The performance process of
algorithm is iterative.

1) Invariant Moment of Local Region: Three dimension
(3D) moment can characterize the surfaces of objects effec-
tively and each of size, position and orientation [20]. Thus, it
is widely used in the area of computer vision, the recognition
and understanding of 3D objects [19], [20]. In this case, for a
given region in initial volume , 3D moment invariants is used
to recognise its corresponding region in deformed volume.
We suppose that g(z, y, z) represents the intensity function of
a region in 3D MR volumetric image, so that its 3D moment
of order i + j + k can be defined as [20]:

Miji, = ///wiyjzkg(%y, z)dzdydz (1)
writing in discrete form, we yield:
Mg =YY Y 'y g(x,y, 2) 0))

Then, we assume that f(z,y, 2z) is the intensity function of
a 3D region around feature point P in the initial volume, let

438

I; be the i-th order moment. literature [19] and [20] show
that 1st, 2nd and 3rd order moment can be given as follow:

Iy = Moo + Mo2o + Mooz, 3)

Iy = MagoMoao + Moao Mooz + Mooz Magg —
—Mgy — Mig; — My, )

I3 = Mago Mo20 Mooz + 2Mo11 Mio1 M110 —
— MG Mago — M7y Mozo — M3 Mooz. )

In the same way, the 1st, 2nd and 3rd order moment of the
intensity function f’(x,y, z) which is a region around feature
point P’ in deformed volume can be obtained as follows:

I = Mygo + Mogg + Mgy, (6)

Iy = Mo Mogg + Mogo Mooz + Moga Moo —
Mgty — M3, — Miio, %)

I3 = M3 Moo Mooz + 2Mgyy Migy Miyg —
— Mg}, Moo — M3y Misg — Mi30 Mgy ®)

where I}, I, and I] represent the 1st, 2nd and 3rd order
moment of the intensity function f’(z,y, z), respectively.

For non-uniform, non-rigid objects, though the deforma-
tion is different in different location, the deformation in a
small local region can be thought as rigid deformation ap-
proximately. Moreover, literature [19] and [20] have proved
that the 1st, 2nd and 3rd order 3D moment are absolute
moment invariants undering rigid transformation. Therefore,
if P1; in deformed volume is the corresponding feature of
P24 in initial volume, then, the Euclid distance between the
3D invariant moment of the 3D region around them must be
the least. Namely,

]:)I(P11,1321)<D[(P11,P2i|Z':0,2,3,~~',’I7‘)7 (9)

where D (P1;, P2;) represents the Euclid distance between
3D regions which around P1; and P2;, it is defined as:

D;(P1;, P2;) = /> (I = I})%,4,j = 1,2,3, -, n. (10)

2) Strength of Match: Intensity correlation between two
local image regions around match features is the most widely
approach to measure the strength of match (SOM). However,
for a non-rigid object, the deformation greatly changes the
intensity in MR volume. Obviously, intensity correlation is
inadequate in features match of MR volumes from non-rigid
object. In this case, a type of geometric correlation has been
introduced to improve the reliability of match. Such as Fig.1,
let ¢; and c; be moment center of point set from initial
volume (PTS1) and its projection in point set from deformed
volume (PTS2), P1; and P2; be the i-th and j-th point in
PTS1 and PTS2, respectively.



Deformed state

Initial state

Fig. 1.

Local geometric preserve consistency

We suppose that P1y, Pls, and P13 are lay in a local
region, and P2y, P25, P23 are their corresponding features
respectively, we yield:

d(P].l, Cl) d(P].Q, Cl) d(Pld, Cl)

~ ~ = 11
d(PQl,Cg) d(PQQ,Cg) d(P23,CQ) . ( )

where d(P1;,c;) represents distance between P1; and ¢y,
d(P2;, co) represents Euclid distance between P2; and cs,
w represents the Euclid distance ratio. Eq.11 shows the mag-
nitude of deformation in a local region preserves consistency
approximately. Thus, we conclude that if a pair of features
are potential match (PM) each other, then, each pairs in
potential match set (PMS) of a local region around PM
must be formed a strong correlation PMS. Here, correlated
score is used to describe the correlation of PMS. In detail,
let Py, = {d1,=d(P1;,c1) | i=1,2,3,- - -,;n} be the distance
which consists of d(P1;,c1), and Py, = {da;=d(P2;,c2) |
j=1,2,3,- - -,n} be the distance which consists of d(P2;,¢;),
E4, and E,4, be expectation of P4, and Pg,, respectively,
then, the geometric correlation score gCor(Pgy,,Pg4,) be-
tween Py, and Py, is given by:

Zwij(dli - Edl)(de - Edz)
\/(E (dL - E‘d1)2 Z (d2j - Edz()122)

where w;; is the weight, which defines the contribution of a
match pair in local region for geometric correlation score. If
w;j 1s large, it shows that the pair may be strong pair, thus,
its contribution must be large too. Let 7 be the ration of Eg,
and Iy, (see Eq.13), and the w;; is defined as Eq.14.

Eq,
= 13)
Eq,

gCor(P4,,Py,) =

n

1.0

W= 14
P10+ ) (1

Because the value of gCor(Pg4,,Pg,) lies in [-1,1], normal-
ize Eq.12 yields:

(Pg,, P 1
NgCor(Py,,Py,) = gCor( d12» ds) +

So far, we have already defined the invariant moment and
geometric correlation between two local regions. To integrate
these two approaches, a robust SOM can be defined as:

5)
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SOM(Py;,Py;) =
NgCor(P4, ,Pa,)+1oM (P4, ,Pa,)
2.0

(16)

3) Cost Function: To eliminate false match and increase
the reliability of successful match as soon as possible, in
this case, relaxation technique is used in the process of
feature match. The relaxation technique is first proposed by
Rosenfel et al. [22], who uses iterated local context updates
to achieve a global consistent result [23]. As an iterative
process, relaxation technique requires a cost function to
ensure it works well. In this paper, the cost function is
defined as the average of SOM of all candidate matches,
as follows:

N
1
e=5 > SOM(Py;, Py))

ij=1

amn

where NN represents the total numbers of matched pairs in
PMS at time ¢.

The matches can be disambiguated by maximizing the
energy function €, using an iterative procedure. Here, we note
that if the PMS varies dynamically, the SOM (16) also varies.
Therefore, potential matches can be constantly updated in
iteration, and this process will be stopped when the value
of cost function € began to decrease. Here, matches in PMS
consist of a robust potential matches set (RPMS), which is
the final match result.

B. Density Deformation Fields Computation

After obtaining a potential matches set by using methods
mentioned above sections, next, we will describe the method
used for obtaining the interior density deformation fields of
objects. In this study, the methods proposed in our previous
work [25] is used to obtain interior density deformation
fields. In summary, the interior density deformation fields are
interpolated by sparse deformation fields using finite element
model (FEM). In detail, the magnitude of sparse deformation
fields was first computed by corresponding pair in RPMS
using Euclid distance. The start point and end point of
field direction are defined by points of a corresponding pair.
Next, non-rigid object was reconstructed by using tetrahedra,
whose nodes are points in RPMS. Here, density deformation
fields then can be interpolated by using following finite
element method.

Let P be an arbitrary volume voxel at x = (x, y, z) within
a tetrahedron {P; P; P, P,. Its displacement may be approx-
imated by weighting the finite element’s node displacements
u; by their shape function [25]

4

u(x) = Z u, N, (18)
n=1

where N, is the shape function of nodal n = (3,7, k,1),

which is given by

_ OPPPP,

N, = ————.
OP; PP, P,

19)



Finally, approximation displacements of all voxels x; in
the volume can be obtained by using Eq.18.

III. EXPERIMENTS AND RESULTS

Some experiments are designed to demonstrate the ca-
pabilities of the proposed approach. All experiments are
performed by using our own tool developed with Visual C++,
which runs on Microsoft Windows XP. And all experimental
results described below are obtained on a Lenovo Portable
PC with a 2.20 GHz Intel(R) Core(TM) 2 Duo CPU T6600
and 4 GB of RAM.

Here, the initial MR volume and deformed MR volume are
acquired from a volunteer’s finger tip using an MR scanner
under initial and deformed situations, respectively, refering
to Fig.2. The size of initial MR volume and deformed MR
volume are all 512 x 512 x 52 voxels. Figure 3 illustrates
some slices in initial and deformed MR volume are used in
the experiments.

Fig. 2. The illustration of obtaining MR volume

(b} deformed state

(a) initial state

Fig. 3. Some slices used in experiment

First of all, 1000 features have been extracted from initial
volume and deformed volume, respectively. Next, intensity
correlation approach presented in [16], [17] is used as first
match. The iterative match algorithm is applied on the
result of first match resulted to an RPMS with 252 pairs.
Doubtlessly, false matches must exist in RPMS, but, we
note that most of them are robust,through checking it one by
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one artificially. This viewpoint will prove by the subsequent
experiment too.

I |__Point 1 | Peint 2 | Dizplace. A

241 (268,291,29)  (273,289,31) =
242 (311,274,48) (320,268, 48) 2
[243  (318,246,26)  (309,248,25)

244 (308,278,28)  (297,282,2T)

245  (279,293,49) (20,284, 48)

Oaes  (ss,2z2,24)  @63,221,20)

[0247  (264,235,49)  (254,243,49) =~
CENNCECNTET . 5
O249  (262,286,26) (270,300, 27) e
0250  (241,271,3T) (234, 284,38)

25t (312,289,400  (285,302,39)

< > slice in deformed volume

Fig. 4. The process of match result checking

Fig.4 is the process of feature match result checking. In
the Fig.4, the red cross in the red ellipse represents location
of the 248-th match pair in the RPMS.

Next, sparse deformation fields and density deformation
fields are computed to use method mentioned in above
subsections. Fig.5 shows the density fields model. From the
figure, we note that the large deformation takes place in tip
and bottom side of finger. this result is consistent with the
fact.

Fig. 5. The finger volume model with density deformation fields

IV. CONCLUSIONS AND FUTURE WORKS
A. Conclusions

We propose a local geometric preserved approach to find
the homologous feature for feature in initial MR volume so
that a robust PMS can be built. The PMS is used to compute
sparse deformation fields of non-rigid object.Moreover, the
deformation field of each voxels is interpolated by using
deformation fields of the nodes of tetrahedron.The prelim-
inary experiment reveals that result obtained from using the
proposed approach is consistent with the fact. In summary,
advantages of the proposed approach include:

1). The proposed approach takes full advantage of the local
geometric properties of non-rigid object. Compared to the
traditional intensity based approaches, the geometric based
approach is not sensitive to the noise in image.



2). The feature matching based approach for deformation
measurement does not need the initial contour of an object.
This is independent shape of the initial contour.

3). The proposed approach provide an option for feature
match in MR volume of non-rigid, non-uniform objects.

B. Future Works

1). The concave on the surface of object could not be effec-
tivelly handled when the volume of object are reconstructed.
This will lead that the volume model is inconsistent with
the actual situation. An effective method for reconstructing
the volume model need to be developed so that the density
deformation fields can be correctlly and intuitionisticaly
visualized.

2). False matches existing in the PMS will lead the low
precision result of interior deformation fields. Therefore, a
effective method for eliminating the false matches need to
be developed in future work.
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Abstract-Due to the nonlinear and nonuniform local
deformation of the nonrigid tissues, it is difficult whereas
important to extract and correctly match a considerable number
of feature points from the MR images for deformation
measurement. Current approaches are dissatisfying towards this
issue. In this paper, firstly the authors use SURF algorithm to
extract the feature points in the initial MR image, and take every
point in the deformed MR image as the feature point. Then the
SURF descriptors and Spatial Association Correspondence
(SAC) of the neighborhood pixels is adopted to match the
corresponding feature points between the initial and deformed
MR images. Finally, by clustering the coordinate differences
between the deformed points matched by SURF-SAC with the
corresponding points calculated by affine transformation, most
of wrong match points are eliminated. The experimental results
prove that the proposed method can extract and match more
correct corresponding feature point pairs than SURF and SIFT
methods.

Key words—SURF, Spatial Association Correspondence,
Clustering, Feature point, Matching, Deformation

I.  INTRODUCTION

Deformation field measurement of nonrigid biological
tissues from MR (Magnetic Resonance) images is often
required for clinical diagnosis, surgery simulation, operation
planning, and evaluation of physical characteristics of
biological tissues [1-4]. Usually we need to measure the local
irregular deformations accurately between the two MR
images obtained at different rotation, displacement, and soft
tissue deformations. In our opinions, current nonrigid medical
image registration and deformation measurement methods
can be classified into four categories, transformation model
estimation [5-7], physical model method [8-12], mutual
information [13-14], and feature points combined with TIN
(Triangular Irregular Network) [1-2].

The space transformation model such as low degree
polynomial [5], thin plate splines (TPS) [6], and B-splines [7]
can be applied to measure the nonlinear deformation of
images. According to such approaches, the interpolation and
matching of images is based on many feature points. Actually,
it is difficult to extract and correctly matched a considerable
number of feature points between the deformed images.

The typical methods of physical model include elastic
deformation model [8-9], viscous fluid [10], optical flow [11],
and finite element [12]. In elastic deformation models,
popular parametric deformation model cannot handle
topological changes [8], and geometric active model cannot
measure the interior deformation and tends to leak through
the weak boundary [9]. The viscous fluid method tends to
wrong matching when there are some different tissue fabrics
with similar pixel intensity distribution. When the gradient
information is weak, the optical flow method cannot behave
well in the deformation image estimation. The deformation
measurement accuracy of finite element model depends on
the matching boundary of image fabric, which is difficult to
obtain.

The maximal mutual information method is originally
applied in the rigid image registration. Now it is widely
adopted to match the nonrigid deformed images when
combined with the other methods, such as thin-plate splines,
B-splines, optical model and so on. In these cases, the mutual
information method mainly acts as a global estimate of the
image registration accuracy, so that it cannot avoid the
limitation of the other combined methods.

Zhang presented a deformation field measurement method
based on the feature point tracking and Delaunay TIN.
Considering the irregular local deformation of nonrigid and
nonuniform tissues, Zhang extracts and matches a
considerable number of feature points in MR images by
means of Harris algorithm and relaxation labeling method,
and then the Delaunay TIN is constructed based on feature
points to measure the deformation fields. While in this
method, the initial rough match is based on the points around
the rigid bone, and actually, a certain number of wrong
matched points which have negative effect on measurement
accuracy cannot be eliminated automatically [1], [2].

According to above discussion, we can see that the
extraction and correct matching of a considerable number of
feature points is very important to the deformation
measurement of nonrigid biological tissues, also it is a key
difficult to be solved.



Extraction and matching of the feature points, which
should be robust against the change in illumination, scaling,
rotation, and noise or slight distortion, is one of the most
important methods used to detect the correspondences
between the images. A wide variety key point detectors and
descriptors have already been proposed in the literature [15-
18]. The most widely used detector probably is the Harris
corner detector [19], based on the eigenvalues of the second-
moment matrix. However, Harris corners are not scale-
invariant. Lindeberg introduced the concept of automatic
scale selection, which detects interest points with their own
characteristic scale [15]. Mikolajczyk and Schmid created
robust and scale-invariant feature detectors with high
repeatability, called Harris-Laplace and Hessian-Laplace [20].

Lowe presented the Scale Invariant Feature Transform
(SIFT) approach, which approximated the Laplacian of
Gaussian (LoG) by a Difference of Gaussians (DoG) filter
[16], and can bring speed at a low cost in terms of lost
accuracy [21], [22]. Shown in the literature [22], SIFT
outperforms the other feature descriptors like Gaussian
derivatives [23], moment invariants [24], complex features
[25], phase-based local features. Various refinements on the
SIFT scheme have been proposed, the PCA-SIFT and the
GLOH methods are known well in them [18], [22].

Bay Herbert presented SURF (Speeded-UP Robust Feature)
in 2006 [26], it is invariant to scaling, rotating, illumination
change, affine transformation, and is robust to noise and
detection errors. By using the ‘Fast-Hessian’ to approximate
the Laplacian, describing a distribution of Haar-wavelet
responses within the interest point neighborhood, reducing
the descriptor to 64 dimensions, and exploiting integral
images, the SURF is more repeatable, distinctive, robust, and
furthermore the computing velocity is three times more than
SIFT. In the experimental results, Bay also proved that,
SURF outperformed the other methods such as GLOH and
PCA-SIFT [22], [26], [27].

Unfortunately, when we attempted to evaluate the
deformation measurement by SURF, the experimental results
were not inspiring. The amount of the matched points was too
few and not enough to construct the TIN which was very
important to the accurate deformation measurement.

In order to obtain more correct matched points, the authors
combined the SURF with the analysis of spatial association
correspondence to extract and match the feature points
between the initial and deformed MR images. Secondly, in
order to eliminate the wrong matched point pairs, we apply
clustering to analyze the coordinate differences between the
deformed corresponding points matched by our method and
the theoretic corresponding points calculated by the affine
transformation. The points which are not included in the
range of the maximum clustering are regarded as the wrong
matching points.

In our experiments, the SIFT, SURF, and the method
combined SURF, SAC and clustering are compared, and the
results showed that SURF-SAC can obtain more correct

corresponding points, furthermore, most of wrong matching
feature points can be eliminated by adopting coordinate
difference clustering algorithm.

II. SURF

The interest point detector of SURF is based on the Hessian
matrix. It relies on integral images to reduce the computation
time and called ‘Fast-Hessian’ detector [20]. On the other
hand, the descriptor of interest point describes a distribution
of Haar-wavelet responses within the interest point
neighbourhood.

A.  Fast-Hessian Detector

Rather than using a different measure for selecting the
location and the scale as the Hessian-Laplace detector [20],
SURF relies on the determinant of Hessian for both. Given a
point p = (x,y)in an image /, the Hessian matrix H(p, o)
in P at scale O is defined as follows

L. .(po) L. (p,0o)

H -
(PO)= L (po) L, (po)|

(M

where o is the scale factor, L., (p, o) is the convolution of
Gaussian second order derivative (0”/0x”)g (o) with the
image / in point p, and similarly for L, (p, ¢) and L, (p, 0).

As Gaussian filters are nonideal in any case, and given
Lowe’s success with LoG approximations, Bay further
applied the box filters to approximate the second order
Gaussian derivatives. The other hand, the integral images is
applied to accelerate the process of interested point detection
and descriptor estimation, independently of the image size.
The 9X9 box filters D,.,, Dy, and D,,, in Fig. 1 approximate
Gaussian second order derivatives with the lowest scale o =
1.2, and the grey regions in the figures equal to zero.

L

=i
Lyy Dyy

Figure 1. The box filters Dx,y and Dy,y used to approximate Gaussian
second order partial derivatives in xy-direction and yy-direction

The weights, 1 in black regions while —1 in white regions,
applied to the rectangular regions are kept simple for
computational efficiency. Bay proposes the following
formula as an accurate approximation for the Hessian
determinant using the approximated Gaussians:

det(H

— _ 2
approx) - Dxnyy (09va) (2)
In SURF, the scale space can be created by applying
kernels of increasing size to the original image. This allows
multiple layers of the scale space pyramid to be processed



simultaneously. The scale-space is divided into a number of
octaves, where an octave refers to a series of response map
layers covering a doubling of scale. In SURF the output of the
above 9 X9 filter is considered as the lowest level of scale
space, which correspond to a real valued Gaussian with ¢ =
1.2. The scales of subsequent layers can be evaluated by the
following formula

o = CurrentFilterSize-(1.2/9). (3)

approx

In the lowest octave, the filter size of the first layer is 9 X9,
and the filter size increases by 6 between the two neighboring
layers. For each new octave, the filter size increases double.

B.  Descriptor

The SURF descriptor describes how the pixel intensities
are distributed within a scale dependent neighbourhood of
each interest point detected by the Fast-Hessian. This
approach is similar to that of SIFT but integral images used in
conjunction with filters known as Haar wavelets are used in
order to increase robustness and decrease computation time.
The first step consists of fixing a reproducible orientation
based on information from a circular region around the
interest point. Then describing the interest point by
calculating the Haar wavelet responses over the square region
aligned to the selected orientation.

1) Orientation Assignment: Assigning the interest point a
reproducible orientation is to achieve invariance to image
rotation. To determine the orientation, Haar wavelet
responses of size 4o are calculated for a set of pixels around
the detected point with a radius of 65, where o refers to scale
at which the point was detected.

Once the wavelet responses are weighted with a Gaussian
(2.50) centered at the interest point, they are represented as
vectors in space with the horizontal response strength along
the abscissa and the vertical response strength along the
ordinate. The dominant orientation is estimated by calculating
the sum of all responses within a sliding orientation window
covering an angle of 7/3. The longest responses vector lends
its orientation to the interest point.

2) Descriptor Components: The first step in extracting the
SUREF descriptor is to construct a square window around the
interest point. This window contains the pixels which will
form entries in the descriptor vector and is of size 200, where
o also refers to the detected scale. Furthermore the window is
oriented along the dominant orientation such that all
subsequent calculations are relative to this direction.

As shown in Fig. 2 the descriptor window is divided into 4
X 4 regular subregions. Within each subregion Haar wavelets
of size 20 are calculated for 25 regularly distributed sample
points. If we refer to the x and y wavelet responses by dx and
dy respectively, then for these 25 sample points (i.e. each
subregion) we collect,

Vsubregion = [de? Zdy’ Z|dx > Z|dJ’|] . (4)

Therefore each subregion contributes four values to the
descriptor vector leading to an overall vector of length 4 X4
X4 = 64. The resulting SURF descriptor is invariant to
rotation, scale, brightness and, after reduction to unit length,
contrast.

Figure 2. Left: Haar wavelet types for SURF (top the x-direction and bottom
the y-direction). Right: SURF descriptor component. The brown arrow

directs the dominant orientation, and the green rectangle refers to one of the
descriptor subregion.

III. SPATIAL ASSOCIATION CORRESPONDENCE

Although SURF is outstanding to extract the invariant
interest points in an image, the number of correctly matched
point pairs is too few to measure the tissue deformation
accurately. Actually, many interest points that SURF extracts
between the initial and deformed images are not really
corresponding because of the nonuniform elastic deformation
of the nonrigid tissues. In this paper the Spatial Association
Corresponding method is proposed to obtain more correctly
matched point pairs.

A.  Spatial Association Correspondence

The Spatial Association Correspondence method is based
on the supposition that the neighboring pixels in the initial
MR image would also be most probably neighboring in the
deformed MR image although the elastic deformation.

S
e

Figure 3. A pair of corresponding pixel neighbourhood regions between
initial and deformed MR images. Left: neighbourhood in initial image, Right:
corresponding neighbourhood in deformed image.

iP4) | iP(3) | iP(2)

iP(5) | iP(0) | iP(1)

iP(6) | iP(7) | iP(8)

As shown in Fig. 3, there is a pixel neighbourhood region
in initial and deformed image respectively. Because the pixel
neighborhood has only 9 pixels and is very small, we only
need consider the rotation and translation. We can suppose
that if the initial point iP(0) is corresponding to the deformed
point dP(0), the initial neighboring pixel iP(1) would be
corresponding to the deformed neighborhood pixel dP(1).



Pixels iP(2) through iP(§) also correspond to the dP(2)
though dP(8).

B.  Feature Point Matching
How to match the interest points between the images is
based on the method as follows:

iP(0) dP(0_1) | dP(0_2)| dP(0 3)|  --ee: dP(0_k0)
iP(T) dP(1_1) | dP(1_2)| dP(L 3)| === dP(1_k1)
iP(2) dP(2_1) | dP@2 2)| dP(2 3)| == dP(2_k2)
iP(8) dP(8_1) | dP(8 2)| dP(8 3)|  -+=-- dP(8_k8)

Figure 4. Candidate corresponding points of the the neighbourhood of iP(0).

1) Corresponding Candidates Searching: We extract and
match several correctly corresponding point pairs between the
two images by means of SURF and the ratio of the nearest
and the second nearest neighbor (NN/SCN) matching method.
Then approximate affine transformation model of deformed
image is calculated with the several matching pairs.

For the interest point iP(0) extracted, we only need to
search a region in the deformed image. This region centered
with the corresponding point of iP(0) calculated by the
approximate affine transformation model, and the range of
the corresponding region reflects a pre-estimation of
maximum deformation. The SURF descriptors distances
between iP(0) and all of the pixels in the corresponding
region are compared. Usually, the point with the least
descriptor distance to iP(0) may not be the real
corresponding point. So we can set a threshold which is a
little bigger than the least descriptor distance to iP(0), the
deformed pixels whose SURF descriptor distances to iP(0)
are smaller than the threshold will be taken as the
corresponding candidates such as dP(0_1) through dP(0_k0).
For the other pixels in the 3 X3 neighborhood of pixel iP(0),
the corresponding candidates would be detected by the same
process. For every point of iP(0) through iP(8) there are
several corresponding candidates in the deformed image as
shown in Fig. 4.

2) Corresponding Point Detection: In this step, we need to
detect the corresponding point of iP@) from the
corresponding candidates by using Spatial Association
Corresponding as shown in Fig. 5.

Firstly, we create a chain set C, which consists of the
corresponding candidates of iP(0)), those are dP(0_1) through
dP(0 _k0), as shown in the Fig. 5-a) are the red circles.
Secondly, if every corresponding candidate of iP(1), which
refers to the green circle, is adjacent to any corresponding

candidates of iP(0), the two candidates are composed as a
new binary chain element of the chain set C. Then check the
set C, and eliminate the elements which consist of only one
point, Such as the {dP(0_4)} and {dP(0 _6)} in Fig. 5-b).
Thirdly, if every corresponding candidate of iP(2), which
refers to the blue circle, is adjacent with both of the
corresponding candidates of iP(0) and iP(l) in one of the
binary chain elements of C, and the spatial position
relationship between the three candidates is the same as iP(0),
iP(1) and iP(2) except the rotation, it is combined with the
binary chain as a ternary chain element of C. Similarly
eliminate the elements which consist of only two point, such
as the {dP(0_5), dP(1_5)} in Fig. 5-¢).

Step by step, we check the corresponding candidate points
of the other neighboring points iP(3) through iP(8) as the
same process shown above. When only one element left in
the chain set, we regard the first point of the element as the
corresponding point of the pixel iP(0).

{dpO_1)} {dP( 4)}

o8

[ ) [} {dP(0_1), dP(1_2), {dP(0_1), dP(1_3),
S dP(2_6), dP(3_2)}
{dP(0_2)} (dr0 3} aP2_ 1), dPG_6)} }
@ ;
@ (woey (FOV {dp(0 2), dP(1_5), dP(2.3)}
- - N = {dP(0_i), dR(1_j),
POy e e s =
- 4P K), dP(3_1)}
a) d) >
* f 3| tdpoi) dpo1_i), P k), PG
. >>>>>> . dP(7_p). dP(8_q)}
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q p {dP(0_1), dP(1_2), dP(2_1)} b
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{dr0_6)} {dpo_i),dP(1_j)}

{dP(0_5)dP(1_5)} eeeees

{dP(0_i), dP(1_j), dP2_K)}

{dP(0_5), dP(1_5)}
b) c)
Figure 5. Corresponding point detection process of iP(0).

IV. CLUSTERING

Actually, although matching the points between the initial
and deformed images by means of the SURF and Spatial
Association Correspondence, many feature points are
incorrectly matched because of the deformation, blurry, noise,
or other complex influence factors of the MR images. In
order to eliminate the wrong matching points, the authors
adopt the affine transformation and the clustering of the
coordinate differences between the corresponding points
matched by our method and the corresponding points
calculated by the affine transformation method.

A.  Affine Transformation

Given a point P in the initial image, the corresponding
point P’ in the deformed image matched by the affine
transformation is as follows

p': p ’ T;zﬁine > (5)

where T, is the affine transformation matrix, which can be
calculate by



afine = Lscate x T;'otate x ]Wtrans > (6)

where Ticue, Trowae and Ty are respectively scaling matrix,
rotate matrix and translation motion matrix, given as follows:

u 0 0
scale = O v O ’ (7)
0 0 O
cos@ sinfd O
T, =|-sin@ cos@ O] (®)
0 0 1
1 0 Ax
trans = O 0 Ay : (9)
0 0 1

There are five variables in the three matrices; the scaling
parameter u and v are along x-direction and y-direction
respectively, 6 is the rotation angle, Ax and Ay are the
displacement along x-direction and y-direction.

B.  Difference Clustering

In this paper, several correct matched pairs of points are
detected by SURF, and the affine transformation was
evaluated based on the least square method. Then, the
difference cluster method is adopted to judge a pair of
matching points is correctly corresponding or not.

The difference clustering is as follows. Suppose that P(x, y)
refers to a feature point in the initial image, P’(x’, y’) is the
corresponding point in the deformed image calculated by the
affine transformation T.p., and P7(x”, y”) 1is the
corresponding point in the deformed image matched by
SURF-SAC. The difference between P’ and P” refers to
difference point dP(d,, d,) is as follows

) . xll x(
dp(d.d)=(p"-pH)=| ,|-| ,|- @10
y y

Difference clustering method is based on the supposition
that if the point pairs are matched correctly the values of their
difference points maybe most probably near to each other.
Because the main tendencies of the biological deformation in
the correct matched points are probably similar to each other,
although the deformation displacements of them are not
uniform. The other hand, the wrong matched point
elimination is based on our method SURF-SAC, and the
affine transformation can evaluate the great deformation such
as scaling, rotation, and translation.

Given R refers to the cluster radius, C(7) refers to a cluster
centered with the difference point dP(i), and C(7) consists of

the difference points whose distance with dP(i) is less than R.
In this paper, every difference point is taken as the cluster
center, and the cluster which includes the most difference
points are considered as consisting of correctly matched
feature points.

V. EXPERIMENT RESULTS ANALYSIS

In our experiments, SIFT, SURF, and the proposed SURF-
SAC are compared. An initial MR 2-D slice image and a
deformed MR 2-D slice image of the volunteer’s calf are
tested. For SIFT and SURF method, the image pyramid
consists of 3 octaves, every octave have 4 layers with the
different scales (more octaves and more layers are not better
to this experiments), and after the feature points are extracted,
the method of NN/SCN is adopted to match the feature points
between MR images. The procedure of SURF-SAC is as
follows. 1) Extract the feature points in the initial MR image
by SURF; 2) Take all the points in the deformed MR image
as the feature points, and match the feature points between
the two images based on SURF-SAC; 3) Eliminate the wrong
matched pairs by coordinate difference clustering. We
showed the experiments results from Fig. 6 to Fig.10.

The experiment results of SIFT were shown in Fig. 6. We
can see that only 9 pairs of points are matched, which were
signed in Fig. 6-b). Furthermore, the pairs 7 and 9 are
matched incorrectly obviously.

The experiment results of SURF were shown as Fig. 7. The
parameter 7T is defined as the threshold value of the
determinant of the Fast-Hessian, the point whose fast-Hessian
determinant is smaller than 7 would not be extracted. We set
T equal to 0.0004. In SURF experiments, among many
feature points extracted by SURF, there are 41 pairs of points
are matched, even though the ratio of NN/SCN is assigned to
0.9 to obtain more matched pairs. Furthermore only 11 pairs
of points are matched correctly, and the matching correct rate
is 26.83%.

The experiment results of SIFT and SURF showed that the
correct matched points was few, which are not enough to
used to measure the deformation field of nonrigid nonuniform
biological tissues. Actually in SIFT and SURF methods,
many interest points of initial image could not obtain the
really corresponding points among the interest points in the
deformed image, when the MR images are blurry and
especially with nonuniform elastic deformation in the tissues.
On the other hand, the match method such as the ratio of
NN/SCN behaved not well in this case.

a) Feature points extracted by SIFT



b) Matched points between initial and deformed MR image
Figure 6. The results of SIFT. Left: initial slice, Right: deformed slice.

f) Correctly matched points (52 pairs)
h
dy-

¢) Correctly matched points (11 pairs) ”‘ Vd,lf“
Figure 7. The results of SURF

i) The matching points after clustering (48 pairs)

b) The results of background segmentation



k) The correct matched points missed by clustering (10 pairs)
Figure 8. The results of SURF-SAC and Clustering

The experiment results are shown in Fig. 8. We used
SURF-SAC to extract and match the feature points from the
two MR images. In SAC method, we adopted spatial
association corresponding relationship of two points in the
neighbourhood of feature point, because when the number of
the point increase the correct matched pairs decrease although
the correctly match rate increase in this experiment. The
matched points extracted by SURF-SAC are shown in Fig. 8-
a). Fig. 8-b) showed the results of background segmentation,
we used seed fill algorithm to segment the background, which
avoided estimating the feature point in the background.

The evaluation of the affine transformation is based on the
4 pairs of matched points extracted by SURF (parameter T =
0.0004) and matched by NN/SCN with the ratio is of 0.65,
which is shown in Fig. 8-c). The parameters of the affine
transformation are € = —-14.19, u = 13.869, v = 0.8974, Ax =
44.73, and Ax = —13.68. Given a feature point in the initial
image, we only need to search the region centered with the
corresponding point of affine transformation in the deformed
image. The radius of the rectangle region equal to 30, and it
reflects a pre-estimation of maximum deformation. Fig. 8-d)
shows this step. By means of SURF-SAC, we obtained 93
pairs of matched points, and 52 pairs of points were correctly
matched as shown in Fig. 8-¢) and 10-f). The number of the
correctly matched points was much more than that of SURF
(or SIFT).

After this, for all initial points of the 93 matched pairs by
SURF-SAC, we calculated the coordinate differences
between the deformed points estimated by SURF-SAC with
the corresponding points of affine transformation. Then we
adopted clustering of the differences to eliminate the wrong
matched points. The initial affine transformation model is
estimated by the 4 points obtained by SURF, which is shown
in Fig. 8-c). We set radius of the cluster circle equal to 5, and
the difference points located in the cluster circle are used to
calculate the affine transformation model again. Then the

second affine transformation model is adopted to estimate the
coordinate clustering. This process is repeated, and it can
reduce the error introduced by the initial transformation
model, which only adopted 4 points. In this experiment we set
the iterative time equal to 10, more times are proved no much
use to the results. The distribution of coordinate difference
points is shown in Fig. 8-g), and results of clustering after 10
times iterative process is showed in Fig. 8-h), where the red
points in the green circle denote to the correctly matched
pairs.

There are 48 pairs of points are left after clustering, as
shown in Fig. 8-i), and 6 wrong pairs are not eliminated by
clustering as shown in Fig. 8-j). The correct rate reaches to
87.5%, especially in Fig. 8-j), the initial points and the wrong
matched deformed points seem very likely to corresponding
to each other although they are not the really corresponding
pairs actually. Furthermore, there 10 correct pairs are missed
by this means as shown in Fig. 8-k).

From the results of the experiments by our method, we can
see that, SURF-SAC method can obtain more correctly
matched point pairs between the initial and deformed MR
images of the elastically deformed biological tissues than
SURF (or SIFT) combined NN/SCN method. Furthermore,
the coordinate difference clustering method can eliminate a
large number of the wrong matched pairs.

VI. CONCLUSION

Current methods such as the transformation model
estimation, physical model method, mutual information, and
feature points combined with TIN cannot measure the
nonrigid and nonuniform biological tissues deformation
accurately. The extraction and matching of considerable
number of feature points and elimination of the wrong
matching pairs are the key issues of accurate elastic
deformation field measurement.

SURF maybe the most outstanding method of feature point
extraction, while unfortunately, when used in the deformation
field measurement with the MR images of the nonrigid
nonuniform biological tissues, the correctly matched points
detected by SURF is too few to measure the local elastic
deformation accurately.

In order to detecting more correct matching points between
the initial and deformed MR images, the authors present
Spatial Association Correspondence method combined SURF
(SURF-SAC) to extract and match the feature points. SAC is
based on the supposition that the neighboring pixels in the
initial MR image would be probably neighboring in the
deformed MR image. Further, clustering of the coordinate
difference method is adopted to eliminate the wrong matched
point pairs.

In the experiments, SIFT, SURF, and SURF-SAC are
compared in the feature points extraction and matching of the
MR images of the volunteer’s calf. The experiment results
show that SURF-SAC can detect more correctly matched
points. For the elastic local deformation of nonrigid



nonuniform tissues, the accurate deformation is better to be
measured by getting more correctly matched features. The
other hand, the clustering of the difference between the
deformed points matched by SURF-SAC with the
corresponding points calculated by affine transformation can
eliminate most of the wrong matched pairs.

While there are some limitations about our method, such as
the computation cost is more than that of SIFT and SURF,
and there are still some wrong matched pairs are not
eliminated by clustering method also some correctly matched
pairs are missed.
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Abstract—The extraction and matching of feature points is
very important for measuring deformation fields of MR
images. Current methods cannot extract and match enough
feature points correctly when non-rigid soft biological tissues
are deformed in MR images. The authors have therefore
used SURF to extract feature points from initial MR images,
utilizing every point in deformed MR images as feature
points. Subsequently, SURF descriptors and Spatial
Association Correspondence (SAC) of neighboring pixels are
utilized to match the corresponding feature points of the
initial and deformed MR images. Finally, by clustering the
differences between deformed points matched by SURF-SAC
with the corresponding points calculated by affine
transformation, most incorrect match points can be
eliminated. Our experimental results show that the proposed
method can extract and match more correct corresponding
feature point pairs than SURF and SIFT methods.

Key words—SURF, Spatial Association Correspondence,
Feature point, Extraction, Matching, Deformed

I. INTRODUCTION

ATCHING the correspondence between two

images is an important aspect of computer vision
applications. Many actual problems depend on
correspondences matching, including the detection of
differences between images obtained at different times
and under different conditions, the calculation of
information on three dimensional objects from images
obtained when the scene is changed or the imaging system
is transformed, motion tracking, pattern identification and
object recognition.

Extraction and matching of the feature points, which
should be robust against the change in illumination,
scaling, rotation, and some noise or slight distortion, is
one of the most important methods used to detect the
correspondences between the images. Many key point
detectors and descriptors have already been described [1]
— [4]. The most widely used detector is likely the Harris
corner detector [5], based on eigenvalues of the second-
moment matrix. Harris corners, however, are not scale-
invariant. Other important methods include automatic
scale selection, which detects points of interest at their
own characteristic scale [1] and robust, scale-invariant
feature detectors with high reproducibility, called Harris-
Laplace and Hessian-Laplace detectors [6].

The Scale Invariant Feature Transform (SIFT) approach
approximates the Laplacian of Gaussian (LoG) by using a
Difference of Gaussians (DoG) filter [2], resulting in
greater speed with reduced loss of accuracy [7], [8]. SIFT
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has been shown to outperform other feature descriptors,
including Gaussian derivatives [9], moment invariants
[10], complex features [11], phase-based local features,
and the descriptors representing the distribution of
smaller-scale features within the area of the point of
interest [12].

SURF (Speeded-UP Robust Feature), first presented in
2006 [13], uses the ‘Fast-Hessian’ to approximate the
Laplacian, describing a distribution of Haar-wavelet
responses within the area of the point of interest. By
reducing the descriptor to 64 dimensions and exploiting
integral 1images, the SURF is more reproducible,
distinctive, and robust, with a computing velocity 3 times
greater than that of SIFT. Experimentally, SURF
outperformed other methods, such as GLOH and PCA-
SIFT (8], [13], [14].

Deformation field measurements of non-uniform and
non-rigid biological tissues from magnetic resonance (MR)
images are often required for clinical diagnosis,
simulation and planning of surgery, and evaluation of the
physical characteristics of biological tissues. Usually,
there is a need to accurately measure local, non-regular
deformations between initial and deformed images. When
used to evaluate deformation fields, popular parametric
deformation models cannot handle topological changes,
whereas geometric active models cannot measure interior
deformations [15], [16]. A deformation field measurement
method, based on feature point tracking, has been found to
overcome the disadvantages of deformation model
methods. Using this method, there are a certain amount of
wrong matched points which have negative effect on the
measurement accuracy [17], [18].

Using SURF, we attempted to evaluate deformation
measurements, but our experimental results were not
encouraging. Too few points could be matched or used to
construct the triangle mesh necessary for accurate
measurements of deformation. To obtain more correctly
matched points, we combined SURF with Spatial
Association Correspondence (SAC) to extract and match
featured points in the initial and deformed MR images.
We also analyzed differences between the deformed
points matched by SURF-SAC and those calculated by
affine transformation, using difference clustering methods
to automatically eliminate incorrectly matched points.

Experimentally, we compared the method combining
SURF and Spatial Association Correspondence (SURF-
SAC) methods with the SIFT and SURF. We found that
SURF-SAC can result in more correctly corresponding



points, and most incorrectly matched feature points can be
eliminated by the difference clustering algorithm.

II. SURF

The interest point detector of SURF is based on the
Fast-Hessian matrix, and the descriptor of each interest
point describes a distribution of Haar-wavelet responses
within the area of that point of interest.

A. Fast-Hessian Detector

In contrast to the Hessian-Laplace detector [6], which
uses different measures to select the location and the
scale , SURF relies on the Hessian determinant for both.

At a point p =(X,)in an image /, the Hessian matrix
H(p,0) in Patscale O is defined as

| Lii(po) L, (p,0)
L) L, (p.0)

where O is the scale factor, L __(p,0)is the convolution

H(p,0) (1)

of the Gaussian second order derivative (9°/0x”)g (o)
with the
L, (p,0)and L, (p,O).

Application of box filters to approximate the second
order Gaussian derivatives results in very rapid
evaluations using integral images, independent of size.

The 9 X 9 box filters D D, ,and D, in Fig. 1

X,x
approximate Gaussian second order derivatives with the

image [/ at point p, and similarly for

lowest scale 0 =1.2, and the grey regions in the figures
equal to zero.

D xy

D yy

Fig. 1. The box filters Dx e and Dy e used to approximate Gaussian

second order partial derivatives in the xy- and yy-directions.

The following formula has been proposed as an
accurate approximation for the Hessian determinant using
the approximated Gaussians:

det(H ,,.,.)=D,D,—(09D,)’ )

In SUREF, the scale space can be created by applying
kernels of increasing size to the original image. This
allows for multiple layers of the scale space pyramid to be
processed simultaneously [13].

approx

B. Descriptor

The SURF descriptor describes how pixel intensities
are distributed within a scale dependent on the area
surrounding each point of interest, as detected by the Fast-
Hessian.

1) Assignment of Orientation: To determine the

orientation, Haar wavelet responses of size 40 are
calculated for a set of pixels at a radius of 60 around the

449

point of interest, with O referring to the scale at which
the point was detected.

Once the wavelet responses are weighted with a
Gaussian (2.50°) centered at the interest point, they can
be represented as vectors in space, with the horizontal
response strength along the abscissa and the vertical
response strength along the ordinate. The dominant
orientation can be estimated by calculating the sum of all
responses within a sliding orientation window covering an
angle of 77/3 . The longest responses vector lends its
orientation to the interest point.

2) Descriptor Components: The first step in extracting
the SURF descriptor is to construct a square window
around the point of interest. This window contains the
pixels that will form entries in the descriptor vector and is
of size 200 , where O also refers to the detected scale.
Furthermore the window is oriented along the dominant
orientation, such that all subsequent calculations are
relative to this direction.

Z:.'.\

X lax]|

Z dy

2 ldvl

Fig. 2. Left: Haar wavelet types for SURF (top, x-direction; bottom,
y-direction). Right: SURF descriptor component. The brown arrow
shows the dominant orientation, and the green rectangle refers to one
of the descriptor subregions.

As shown in Fig. 2 the descriptor window can be
divided into regular 4 X 4 subregions. Within each
subregion, Haar wavelets of size 20 are calculated for 25
regularly distributed sample points. At x and y wavelet
responses of dx and dy respectively, 25 sample points (i.c.
each subregion) can be described as

Sladl @

vsubregion = [z dx’ zdy’ Z|dx

Therefore each subregion contributes four values to the
descriptor vector leading to an overall vector of length 4 X
4X4=64.

III. SPATIAL ASSOCIATION CORRESPONDENCE

Although SUREF is outstanding in its ability to extract
the invariant interest points in an image, the number of the
correct corresponding point pairs is too few to measure the
tissue deformation accurately. Many points of interest
extracted by SURF in the initial and deformed images do
not correspond because of the non-uniform elastic
deformation and blurriness of the MR images. In our
opinions, only considering the distance between the SURF
descriptor is not suitable, the other useful information can
be used to match the feature points, such as the spatial
association between the neighboring pixels is very useful
to the interest point matching.



A. Spatial Association Correspondence

To obtain more correctly matched pairs of points, we
developed the Spatial Association Correspondence
method, which is based on the hypothesis, that
neighboring pixels in the initial MR image would likely
also be neighboring pixels in the deformed MR image,
despite elastic deformation.

iP4) | iP3) | iP(2)
iP(5) | iP(0) | iP(1)
iP(6) | iP(7) | iP(8)

Fig. 3. A pair of corresponding pixel neighborhood regions in initial
(left) and deformed (right) MR images.

For example, Figure 3 shows a pixel neighborhood
region in initial and deformed images. Because this pixel
neighborhood, which consists of only 9 pixels, is very

small, we need to consider only its rotation and translation.

Thus, if the initial point iP(0) corresponds to the deformed
point dP(0), the initial neighboring pixel iP(1) would
correspond to the deformed neighboring pixel dP(1).
Similarly, pixels iP(2) through iP(§) would correspond to
pixels dP(2) though dP($).

B.  Feature Point Matching

The method of matching the points of interest in the
initial and the deformed images is based on Spatial
Association Correspondence:

dP(0_1) | dP(0_2)| dP(0_3)| ... dP(0_k0)
dP(1_1) | dP(1 2)| dP1 3)| ...... dP(1_k1)
dP2_ 1) | dP2_2)| P2 3)| ... dP(2_k2)
dP@8 1) | dP(8 2)| dP(8 3)| ... dP(8_k8)
Fig. 4. Candidate points corresponding to the points neighboring
iP(0).

1) Searching for Corresponding Candidates: For point
iP(0), extracted by SURF from the initial image, all of the
pixels in the deformed image are regarded as interest
points, and the distances between their SURF descriptor
vectors and that of iP(0) are compared. Usually, the point
with the least descriptor distance to iP(()) may not be the
real corresponding point. Therefore, we can determine a
threshold slightly larger than the least descriptor distance
to iP(0). Thus, the deformed pixels whose SURF
descriptor distances to iP(()) are smaller than the threshold
would be regarded as the corresponding candidates; e.g.,
dP(0_1) through dP(0_k0). For the other pixels in the 3 X
3 neighborhood of pixel iP(0), the corresponding
candidates would be detected by the same process. Every
point, from iP(0) through iP(8), would therefore have
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several corresponding candidates in the deformed image
(Fig. 4).

2) Detection of Corresponding Points: The next step is
to use Spatial Association Corresponding to identify the
point corresponding to iP(0) from the corresponding
candidates (Fig. 5).

o2

{dP(_1), dP(1_2),
dP(2_1), dP(3_6)}

{dP(O_1).dP(1_3),
@6, 03.2)}

4P(0_2), dP0_3), dP(2_3)
{dP0.2) &0\ 8.3} 4tV ap1 ),

dP(2_k), dPG_1)}

$o

) 4

—» {dP(0_i), dPO1_j), dB(2_1), dP(3_1)
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{dP(0_1), dP(1_2)} {dro_a}
{dP(0 1), dP(1 2), P2 1)}
{dP(0_1), dP(1_3)}
{aP(0_2), dP01_5)} {dP(0_1).dP(1_3)dP(2_6)}
[ ) {dP(0 2),dRQ 5). A2 3)}
{dP(0_6)}{dP(O
{dP(© 5)dP1_5)} 8 {dPO 1), P01 ), P2 )}
{dP(O.3), dP(1LS)}  =eeeee

<)
Fig. 5. Processing of detecting points corresponding to iP(0).

The first step is to create a chain set C, which consists
of the candidates corresponding to iP(0); this set, dP(0 1)
through dP(0 k0) consists of the red circles in Fig. 5-a).
Second, if any candidate corresponding to iP(1),
designated by the green circles, is adjacent to any
candidate corresponding to iP(0), the two candidates are
used to compose a new binary chain element of the chain
set C. By examining set C, any elements consisting of a
single poinb) can be eliminated (e.g., {dP(0_4)} and
{dP@© _6)} in Fig. 5-b). Third, if every candidate
corresponding to iP(2), indicated by the blue circles, is
adjacent to both the candidates corresponding to iP(0) and
iP(1) in one of the binary chain elements of C, and the
spatial position relationship among the three candidates is
the same as that iP(0), iP(1) and iP(2), except for rotation,
it is combined with the binary chain to form a ternary
chain element of C. This is followed by the elimination of
elements consisting of only two points, e.g. {dP(0_5),
dP(1 _5)} in Fig. 5-c).

Using this same process, we can determine the
candidates corresponding to the points of interest of the
other neighboring points, iP(3) through iP(8). When only
one element is left in the chain set, the first point of the
element is regarded as the point corresponding to pixel
iP(0).

IV. ELIMINATION OF WRONG MATCHING POINTS

Actually, although matching the points by means of the
SURF and Spatial Association Correspondence, many
wrong matching feature points still existed because of the
deformation, blurry, noise, or other complex influence
factors of the MR images. To eliminate incorrectly
matched points, we utilized clustering of differences
between deformed points matched by our method and
those calculated by affine transformation.

A. Affine Transformation

For each point P in the initial image, the corresponding
point P’ in the deformed image matched by the affine
transformation may be described as



p'=p- ];[ﬁne (5)
where Yzlﬂpme is the affine transformation matrix, which

can be calculated as

T

afine

and T

trans

=T

scale

xXT

rotate

X T;rans (6)
T

rotate

where T

scale ? are the scaling, rotating

and translation motion matrices, respectively, which can
be described as:

u 0 0
Tiwe =10 v O 7
0 0 O
cosd sind 0
Towe =|—sin@ cos® 0 ®)
0 0 1
1 0 Ax
T, =0 0 Ay ©)
0 0 1

There are five variables in the three matrices: the
scaling parameters u and v along the x- and y-directions,

respectively, the rotation angle @, and the displacements
along the x- and y-directions, Ax and Ay , respectively.

B. Difference Clustering

In this paper, we choose several correctly matched pairs
of points to calculate the approximate affine
transformation between the two images based on the least
square method. This was followed by application of the
difference cluster method, which was utilized to determine
whether or not a pair of matching points corresponds
correctly.

Difference clustering was determined as follows: If

p(x, y)refers to a feature point in the initial image, then

P'(x",y") would be the corresponding point in the
deformed image, calculated by the affine transformation

T e » and P’(x”, y") would be the corresponding point

in the deformed image matched by SURF-SAC. The
difference between P’ and P” refers to the difference

pointdP(d,,d ), calculated as

, , xll xl
dp(d,.d,)=(p —p){ }{ } (10)
Yoy

The difference clustering method is based on the
supposition that, if the two pairs are matched correctly, the
values of their difference points would most probably be
near to each other. Why we can draw the supposition is
because of that although the deformation displacements of
them are not uniform, the main tendencies of the
biological deformation in the correct matched points are
probably similar to each other. Furthermore, the wrong
matched point elimination is based on our method SURF-
SAC, and the affine transformation can evaluate the great
deformation such as scaling, rotation, and translation.
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If R refers to the cluster radius and C(7) refers to a

cluster centered at the difference point dP(i), then C(i)
consists of the difference in points whose distance with
dP(i) is less than R. In this paper, we regarded every

difference point as the cluster center, with the cluster that
included the most difference points considered as
consisting of correctly matched feature points.

V. ANALYSIS OF EXPERIMENTAL RESULTS

In our experiments, SIFT, SURF, and the proposed
SURF-SAC calculations were compared, using initial and
deformed MR images of a volunteer’s calf. For the SIFT
and SURF methods, the image pyramid consisted of 3
octaves, each having 4 layers with different scales
(increases in octaves and layers did not yield better
results). Following extraction of the feature points, the
NN/SCN method was used to match the feature points in
the initial and deformed MR images. The procedure for
SURF-SAC consisted of 3 steps: 1) SURF extraction of
the feature points in the initial MR image; 2) Taking all
the points in the deformed MR image as the feature points,
followed by matching the feature points between the two
images based on SURF-SAC; 3) Elimination of wrongly
matched pairs by evaluating affine transformation and
difference clustering. Experimental results are shown in
Fig. 6-12.

The experimental results of SIFT are shown in Fig. 6.
Only 9 pairs of points were matched, with pairs 7 and 9
being matched incorrectly.

The experimental results of SURF are shown in Fig. 7
and 8. These two experiments utilized different values for
the parameter 7, defined as the threshold value of the
determinant of the Fast-Hessian; thus, any point whose
fast-Hessian determinant was smaller than 7 would not be
extracted. Usually, the stabilities of the points of interest
increase as the threshold 7 increases. Table I shows the
relationship between the value of 7 and the number of
feature points. Many feature points were extracted by
SURF, with more extracted in Fig. 8 than in Fig. 7.
Although 41 and 48 pairs of points were matched in Figs 8
and 9, respectively, only 11 pairs were correctly matched
in both, making the rates of correct matching 26.83% and
28.92%, respectively.

Fig. 6. Results of SIFT. Left two images: feature points extracted by
SIFT. Right two images: matched points between two images

Fig. 7. Results of SURF, T'= 0.0004, Left two images: matched points
(41). Right two images: correctly matched points (11).



Fig. 8. Results of SURF, 7' = 0.00001. Left two images: matched
points (48). Right two images: correctly matched points (11).

TABLE I
RELATIONSHIP BETWEEN VALUES OF T AND PN (NUMBER OF FEATURE
POINTS)
T | 0.0000001 | 0.000001 | 0.00001 | 0.0001 | 0.001 | 0.01 | 0.1
PN 150 148 123 102 65 3 0

d) The matched points used for affine transformation evaluation

;

by

L3

§%. L

f) Matched points after clustering (38 pairs)
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g) The wrong matched points are not eliminated by clustering (2 pairs)
Fig. 9. Results of SURF-SAC and SURF: T = 0.00001.

Experimental results are shown in Fig. 9. We used
SURF-SAC to extract and match the feature points from
the two MR images. T equaled 0.00001, small enough to
determine many feature points. In this case, 123 feature
points were extracted (Table I). Although some of these
feature points were not very stable, that had no effect on
our experimental results. The feature points extracted
from the initial MR image are shown in Fig. 9-a), the
matched points extracted by SURF-SAC shown in Fig. 9-
b), and the 46 pairs of correctly matched points are shown
in Fig. 9-c), which are much more than the correctly
matched pairs extracted by using SURF (or SIFT) and
NN/SCN.

The evaluation of the affine transformation was based
on the 4 pairs of points correctly matched by SURF (Fig.
9-d)). The parameters of the affine transformation were
6=-14.19", u=1.3869, v=0.8974, Ax=44.73, and
Ay =—13.68. Subsequently, for all initial points of the

pairs matched by SURF-SAC, we calculated the
differences between the deformed points matched by
SURF-SAC with the corresponding points evaluated by
affine transformation. We then clustered the differences to
eliminate incorrectly matched points.

TABLE II
RELATIONSHIP BETWEEN DIFFERENCE CLUSTERING RADII AND
ELIMINATION OF INCORRECTLY MATCHED PAIRS (7= 0.00001)

Radius 8 9 10 11 12
NP 32 37 41 43 47
NCP 30 35 37 39 40
NWP 2 2 4 4 7
NMP 16 9 9 7 6

The radius of the clustering had a significant effect on
the elimination of incorrectly matched points. In Table 1I,
NP (the number of the points in the biggest cluster), NCP
(the number of correctly matched points in the biggest
cluster), NWP (the number of wrongly matched points in
the biggest cluster) and NMP (the number of correctly
matched points missed by clustering) were compared. We
can see that a clustering radius equal to 9 pixels gave the
best results.

The red points in the green circles in Fig. 9-e) denote
correctly matched pairs decided by clustering. We found
that 38 pairs of points were included in the biggest
difference cluster (Fig. 9-f)), with only 2 wrongly matched
pairs not eliminated by clustering (Fig. 9-g)). The rate of
correctly matched pairs was as high as 94.74%, especially
in Fig. 9-g), the wrongly matched points likely
corresponding to each other although they are not really
corresponding pairs. Furthermore, this method missed 9
correct pairs.



Another experimental comparison of our method with
SIF and SURF also show that our method was much better
(Figs. 10-12). We found that our SURF-SAC method
could result in more correctly matched pairs of points in
the initial and deformed MR images of elastically
deformed biological tissues than the SURF (or SIFT)
combined NN/SCN method. Furthermore, the difference
clustering method could eliminate most of the incorrectly
matched pairs.

Fig. 10. Matching results of SIFT, showing that 10 of 14 pairs were
matched correctly.

Fig. 11. Matching results of SURF. Left two images: matched points
(26 pairs); Right two images: correctly matched points (9 pairs).

Fig. 12. The matching results of SURF-SAC and clustering. Top left
two images: matched pairs (96 pairs). Top right two images: correctly
matched pairs (50 pairs). Bottom left two images: clustering results
(33 pairs). Bottom right two images: wrongly matched points were
not eliminated by clustering (3 pairs).

VI. CONCLUSION

Feature points are important for image registration,
pattern identification, motion tracking, and tumor
detection. Although SURF may be a superior method of
feature point extraction, when used in deformation field
measurements of MR images of non-rigid, non-uniform
biological tissues, this method yields too few correctly
matched points to accurately measure local elastic
deformation.

Our SURF-SAC method was able to detect more
correctly matched points for accurate measurement of
deformation, by extracting and matching feature points.
Further, we used affine transformation and the clustering
method to eliminate wrongly matched pairs of points.

In the experiments, SIFT, SURF, and SURF-SAC are
compared in the feature points extraction and matching of
the MR images of the volunteer’s calf. The experiment
results show that SURF-SAC could detect more correctly
matched points, which is very important to the
deformation field measurement. For elastic local
deformation of non-rigid non-uniform tissues, accurate
deformation is better measured by obtaining more
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correctly matched features. Furthermore, the clustering of
differences between deformed points matched by SURF-
SAC with the corresponding points calculated by affine
transformation can eliminate most incorrectly matched
pairs.

These two improvements may be very useful in
measuring the deformation field of non-rigid non-uniform
biological tissues, similar to other applications, such as
image registration and motion tracking.

Our method had some limitations, including a higher
computation cost than SIFT and SURF. These limitations
must be addressed in future research.
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40 0OUddoooooobobon

4.1 OO

It is well known that we can grasp and manipulate objects with outstanding dexter-
ity thanks to our highly developed brain, binocular vision, and abundance of motor
and sensory nerves in our hands and fingers. Human structure of fingertips may con-
tribute such dexterity in grasping and manipulation. It is well known that, not only
the anatomy of our hands, but also that of our fingers are well designed for grasping
and manipulating objects. In addition to allowing us to pick up small objects, the
fingernails are essential for the high level sensitivity and as a buttress for the pad.
Because our fingers are so good at grasping and manipulating, much research in the
field of robotics has focused on soft-fingered grasping and manipulation. However,
little research has considered the shape and function of our fingernails. Recently,
it has been reported that such structure consisting soft fingertips and hard finger-
nail behind contributes to stable grasping and manipulation [45, 50]. A mechanical
model of fingertips has been proposed and grasping and manipulation process has
been analyzed based on the proposed model. Unfortunately, the model and the
analysis were two-dimensional; three-dimensional grasping and manipulation have
not been formulated.

This paper focuses on three-dimensional grasping and manipulation by robotic
fingers with softtips. As shown above, we have proposed two-dimensional parallel-
distributed model of a soft fingertip to describe the dependency of its potential energy
to the relative orientation between the fingertip and the object. Here we extend
the previous two-dimensional model to three-dimensional model, incorporating the
rotation in three-dimensional space. We formulate the elastic potential energy stored
in a soft fingertip due to the contact with the planar surface in three-dimensional
space. We sketch the Lagrangian of the system consisting of a rigid prism grasped
by three fingers with soft fingertips.

Related work
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O 4.1: Parallel distributed model

Finite element (FE) analysis is often used when studying the deformation of ob-
jects, and can be used to describe deformation of a hemispherical soft fingertip ex-
actly [51, 52, 53|. However, though FE analysis can be used to simulate grasping and
manipulation numerically but cannot be applied to theoretical analysis of grasping
and manipulation due to its complex formulation. The Hertzian contact model pro-
vides a simple closed-form description of the contact between two quadratic surfaces
of elastic objects [54], but because the surfaces are assumed to be open-ended, it can-
not be applied to a hemispherical elastic fingertip with a rigid back plate. Arimoto
et al. formulated dynamics of pinching by a pair of soft fingertips [55], and used a
radially distributed deformation model to analyze the mechanics of a soft fingertip
[56]. Based on the concept of stability on a manifold, they showed theoretically that
a 2-DOF finger and a 1-DOF finger can together realize secure grasping and posture
control [57, 58].

Rolling contact in three-dimensional space yields nonholonomic Pfaffian constraints.
Rolling contact between rigid bodies has been formulated in [59] and rolling contact
between a soft fingertip and a rigid body has been formulated in [60, 61].

4.2 OJO0O0OOOOOOO

We have proposed parallel distributed model of soft fingertips to formulate the
dynamics of planar soft-fingered grasping and manipulation [45, 50]. Figure 4.1-
(b) shows the parallel distributed model. Let a be the radius of a hemispherical
fingertip in its natural shape and E be Young’s modulus of the material of the
fingertip. When the soft fingertips contact the planar surface of the rigid object,
they deform, thereby applying elastic forces. Let d be the maximum displacement
of the soft fingertip and 6, be the relative orientation between the fingertip and the
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object. In the parallel-distributed model, the contact force given by

mEd?

—. 4.1
cos 0, (4.1)

perp —

The force is perpendicular to the planar surface behind the fingertip, as illustrated in
the figure. Note that the force magnitude depends on both the maximum displace-
ment d and the relative orientation 6,. This dependency is due to the hemispherical
shape of the soft fingertip subtended by a fixed rigid end, which is similar to a human
finger consisting of a soft fingertip and a hard fingernail. The parallel distributed
model reflects this structure consisting of a soft fingertip and a hard fingernail. The
potential energy of the fingertip is described as follows:

TEd?

3cos?0,

Uperp(dv Qp) = (4-2)

Note that the energy depends on the maximum displacement d and the relative
orientation 0.

In addition, tangential deformation should be introduced into the parallel dis-
tributed model so that a pinched object can rotate on a plane when an external
force is applied, which happens in actual grasping and manipulation. Let us intro-
duce the tangential displacement of a fingertip shown in Figure 4.1-(b). Letting d;
be the tangential displacement, the total potential energy caused by the tangential
deformation is as follows:

Utangent (d, dt, Qp) = WE{det tan 9p + dd?} (43)

As the perpendicular and tangential displacements are not orthogonal, the above
equation shows the coupling between them. Consequently, the total potential energy
of a hemispherical soft fingertip in the parallel distributed model can be formulated
as follows:

Uparallel(d7 dt7 Qp) - Uperp(da ep) + Utangent (d7 dt7 Qp) (44)

Note that this potential energy is dependent on the maximum displacement d, tan-
gential displacement d;, and relative angle 6,,.

4.3 UO00O0OO0OOOOOOOOOOOOO

It has been reported that a pair of 1-DOF fingers with soft fingertips can regulate
both grasping force and the orientation of a grasped object along 2D vertical space
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(c) T1°, 71°, 69°

0 4.2: Grasping by three 1-DOF fingers with soft fingertips
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[45, 50]. Let us observe the grasping and manipulation of a rigid object by three
fingers with soft fingertips. Figure 4.2 shows the grasping of a rigid cylindrical object
by three 1-DOF fingers with hemispherical soft fingertips. Figure 4.2-(a) shows the
initial location where joint angles at the base of three fingers are constantly equal
to 71°. The object is perpendicular to the planar surface. Figure 4.2-(b) shows
one location where three joint angles are 67°, 71°, and 74°. The cylindrical object
grasped by the three fingers is inclined. Figure 4.2-(c) shows one location where
three joint angles are 71°, 71°, and 69°. The object inclines toward the finger with
its joint angle 69°. Through such experiments, we found that both the grasping force
and the direction of the cylindrical object can be regulated by the joint angles of the
three fingers. Noting that the direction of the cylindrical object is described by two
parameters, this implies that this spatial hand system consisting of three fingers can
regulate three variables; one for the grasping force and two for the object direction.

4.4 J0O0OU0OO0OOOOOOOOOOOOO0

4.4.1 O0O0OOOOO

This section formulates normal and tangential constraints between a soft fingertip
and a rigid object in 3D space, based on rolling contact kinematics in [59] and rolling
contact between a soft fingertip and a rigid body in [60, 61]. A hemispherical soft
fingertip of radius a is in contact with a planar surface S of a rigid object, as shown
in Figure 4.3. Let X°" be a coordinate system attached to the object, £ be a
coordinate system attached to the finger, and >°P¢ be a system fixed to space. Let O
be the origin of ¥*P¢ and G be the origin of X°. The position of the object is given
by position vector x.p; and its orientation is described by rotation matrix Rgp;. Let
us describe rotation matrix Rop; by quaternions g through gs:

20+ ¢1) -1 2(a2 + 9) 2(0193 — Qg2)
Ronj = | 2(q1q2 — q093) 2(¢5 +43) — 1 2(qeqs + qoq1)
2(q1q3 + 90q2)  2(q2q3 — qoq1) 2(q3 +¢3) — 1

Let n°% be the outward normal vector of plane S described in the object coordinate
system. The outward normal vector is then described in spacial coordinate system as
n = Rop; n°. Let u®™ and v°™ be tangential vectors along the surface described in
the object coordinate system. Assume that n°", u°®, and v°" form a right-handed
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0 4.3: Contact between fingertip and planar surface in 3D space

coordinate system. Namely, n°%, u°P, and v°® are unit vectors orthogonal one
another. The tangential vectors are then described in spacial coordinate system as
U = Ropj u™ and v = Rop; v°M. Let Q be a point on planar surface S and &€q be its
position in the object coordinate system. The spacial position of point Q is given by
xq = Ropj&q+xobj- Any point on the planar surface then must satisfy the following

equation:
n'(x — zq) = 0.

Let P be the center of the hemispherical fingertip and A be its foot of perpendicular
on surface S. Let xg, be the position of point P. Let d,, be the maximum normal
displacement of the hemispherical soft fingertip. The positional vector of point A
is then given by @, + (a — d,)(—n). Since this point is on surface S, we have the
following equation:

n @ + (0 — dy)(=n) — (Robj €q + Zonj)} = 0.
This equation yields a normal constraint between a fingertip and an object:
Co 2 0 (T — Tn) — dn + a + () ¢q = 0. (4.5)

This constraint is holonomic. Note that the fourth term (n°®)T¢q is a constant
denoting a signed distance between the origin of ¥° and surface S.
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4.4.2 0O00O0O0O0O0O0

Assume that the deformation of a fingertip is at the maximum at point B. The
position of point B is given by xg, — an. Let V;t];g’ be the velocity of point B on the
object. Since the orientation of the object is given by rotation matrix Rp;, angular
velocity wgp; of the object is determined by

obj*

[ woij ] = Robj RT
Noting that GB= (Tan — am) — b, velocity Votgg’ is described as follows:

Vo = { Wobj X } {(®an — am) — Topj} + Tob; (4.6)

where @,,; denotes the translational velocity of the rigid object. The tangential
velocity of Vot];g’ along surface S is described by its projection on the surface. Since
the projection matrix on surface S is given by uu® + vv?, the tangential velocity is
described as

(wu” +v0") Vop? = (uViid) u+ (0TVD) v,

implying that velocity components along w and v are uTVotgg’ and vTVO%?, respec-
tively. Let us describe the orientation of a fingertip by rotation matrix Rg,. Let
Vﬁ?lp be the velocity of point B on the fingertip. Since the orientation of the finger
is given by rotation matrix Rg,, angular velocity wg, of the finger is determined by

[ Whn X } = Rﬁn Rgn
Noting that PB= —an, velocity Vﬁtrilp is described as follows:

vie = [ Whin X } (—an) + @gn (4.7)

where &g, denotes the translational velocity of the fingertip. The tangential velocity
of V;? along surface S is described by its projection on the surface, which is described
as

(wa™ +v0") Vi = (@TViP) wt (07 ViP) v,

implying that velocity components along w and v are uTVinlp and vTVﬁtIilp, respec-
tively. Let d, and d, be tangential deformations along w and v. From the above

150



discussion, we find that the time rate of the tangential deformations are described
by

du — ’U,TAtlp, dv — ,UTAtlp

where

1>

tip £ tip tip
A ‘/;bj — Vfin
= [ Wobj X ] (Tfin — Tobj — am) + [ Whp X } an + Topj — Lhn

denotes the relative velocity at point B. Note that when d, =0 and d, = 0, we have
no tangential deformations. The above equations yield the tangential constraints
between a fingertip and an object given by

¢, 2 uTA™ g, =0, (4.8)

¢, 2 vTAY 4, =0. (4.9)

The above two are nonholonomic Pfaffian constraints.

4.5 UU0O0UOO0O0OO0O0OO0OOO0OOO0OO00O

Let us formulate elastic potential energy stored in a hemispherical soft fingertip
due to the contact with a planar surface of a rigid body. Recall that the surface can
slide along w and v with constant d, keeping. Let d; is the displacement along the
direction of inclination and dy is the displacement perpendicular to the inclination.
Displacement d,, is described in Eq. (4.5). Let us formulate di, ds, and 6, in three-
dimensional grasping and manipulation.

Let us first derive derive the relative angle 0, between a fingertip and a planar
surface. Let b be the unit normal vector of the plate behind a fingertip described
in the finger coordinate system. The unit normal vector is then described in spacial
coordinate system as b = Rg, ™. The relative angle 6, is given by the angle between
two unit vector, m and b. Thus, the relative angle is formulated as follows:

cosf, = n'b=(Rpn°™)"(Ra,b™), (4.10)
sind, = +/1—cos?6,. (4.11)

Any non-zero 0, shows that the object surface inclines to one direction with respect to
the back plate of a fingertip. The direction of inclination is given by the projection of
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b on planar surface composed of w and v. The tangential deformation takes positive
values in the negative direction of the projection. Consequently, the direction of
tangential deformation is described as

(uu® + vv")(=b) = (—u'b)u + (—v b)v,

implying that components of the direction vector along u and v are given by (—u'b)
and (—v™b). Letting ¢, be the angle between u and the direction vector, we have

—uth
COS ¢y ()2 +u(va>2}1/2, (4.12)
—vb (4.13)

singy = {(uTb)2+(UTb)2}l/2'

Displacements d, and d, are converted into d; and d as follows:

[dt]:[ c?sgbt singbt][du]' (4.14)
dy —sin ¢y cos ¢ dy

Potential energy is then described by

U= % / k{(PQ + dysin6,)? + (d; cos0,)° + (ds)*} . (4.15)
ell

Computing the above equation, we have
U= Unormal + Utangent + Uside (416)

where

TEd3
Unormal(dm ep) = Wa
p

Utangent (dn, dt, ep) = WE{d?ldt tan Qp + dndg}7
Uside(dn, ds) = WEdndz

Potential energy U,ormal 18 caused by normal displacement d;. Potential energies
Usangent and Usige are caused by tangential displacements d; and ds, respectively.
Note that letting ds = 0, the above equation coincide with two-dimensional model
Eq. (4.4).
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(a) top view
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O 4.4: Three 1-DOF fingers grasping rigid hexagonal prism
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4.6 UO0OOOOOOOO

Assume that three 1-DOF fingers with hemispherical soft fingertips grasp a rigid
hexagonal prism, as shown in Figure 4.4. The hexagonal prism is inscribed to a
cylinder of radius w. The radius of each fingertip is given by a Fingertip 1 is in contact
with side face Sy, fingertip 2 is in contact with side face Sy, and fingertip 3 is in contact
with side face S of the hexagonal prism. Let O — xyz be the coordinate system
attached to space. Let G — &nC be the coordinate system attached to the prism.
Let Tob; = [Tobj, Yobjs Zobj] " be the position of the prism and gon; = [qo, q1, 92, ¢3]*
be quaternions describing the orientation of the prism. Let won; = [we, wy, we ]t be
the angular velocity of the prism. Let 6, be the rotation angle of the k-th finger
and Ry be the rotation matrix from spacial coordinate system O — xyz to the k-th
finger coordinate system Fy —&eni(r. Let dy, be the normal displacement of the k-th
fingertip and d,; and d,; are its tangential displacements.

Let us derive the Lagrange equations of motion in grasping by three 1-DOF fingers.

Generalized coordinates are ®obj, Gobj, Oin = [01, 02, 0317, dy = [du1, dna, dus|T,
d, = [du, dw, d]t, and d, = [dy1, dya, dy3]T. Kinetic energy is described as
follows:
1 T L - 22
T = 5 Mobj L opjLobj + iwobj Iobj Wobj + Z ilﬁné’k
k=1
s, 5. 5.1
k=1 k=1 k=1
Potential energy is formulated as

where

Uk = Unormal(dnka 9pk> + Utangent (dnk7 dtka 9pk> + Uside(dnka dsk)

Ed® in o
= w4 1p {dﬁkdtk TR0k 4 + dnkdfk} L (k=1,2,3).

3 cos? Oy,

cos Opy,

Let 7, be the torque to drive the joint of the k-th finger. Work done by external
torques is given by

W = T191—|—7'2(92+T303. (419)
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Since the distance between origin G and the three side faces is constantly equal to
(v/3/2)w, the normal constraint at the k-th fingertip is described as follows:

an = (Robj nzbj)T(.’Bobj — Rk a:ﬁ“ — 'T'k) - dnk +a+ (\/3/2)10 = 0. (420)

Two tangential constraints at the k-th fingertip are described as follows

C'1u.1<: - (Robjuzbj)TA}Zip - duk = 0, (421)
ka: - (Roijzbj)TAzip - dvk = 0, (422)

where
A}?p - [ Wobj X ] (wk: — Lobj — ank) + [ Wi X ] any + Ci?obj — Xy (423)

Summing holonomic constraints with Lagrange multipliers yields
Ch = AQQ + M1Chni + An2Cha + A3Cha. (4.24)
Summing Pfaffian constrains with Lagrange multipliers yields
Cp = paaCu + ftu2Cu + pu3Cus + 1 Cot + f12Ch2 + 1133Chs. (4.25)

Let us introduce collective vectors consisting of Lagrange multipliers: A, = [ An1, An2,

An3; ]T7 M = [ futs Pz, Hu3, ]T
tem is then given as follows:

’ and My = [ley Hv2, Hvs, ]T‘ La’gra’ngian of the Sys-

L = T-U+W+Cy. (4.26)

Note that partial derivatives of the Lagrangian with respect to generalized coordi-
nates and their time derivatives are shown in the previous sections. Consequently,
applying the Lagrange equations of motion to the above Lagrangian, we can derive
dynamic equations of motion of the object and the three fingers with soft finger-
tips. Nonholonomic Pfaffian constraints are imposed to the equations of motion
with Lagrange multipliers [62].

4.7 O0QOUogooog

Let us simulate the spatial grasping and manipulation of a hexagonal prism via
three 1-DOF fingers with soft fingertips. The radius of the circumcircle of the
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0 4.5: Simulation result of three-fingered grasping (07 = 0°, 65 = 5°, 65 = 5°).

hexagon is 25 mm and the height of the prism is 80 mm. Let the density of the prism
be 6.88 x 10%kg/m?, implying that its inertial properties are mqp; = 8.94 x 10~? kg,
Igbj = I,; = 5.93x10°kg-m?, and Igbj = 2.33 x 107° kg-m?. The inertial properties
of each finger are given by mg, = 100g and Ig, = 582kg-mm?. In this simulation,
we have assumed that the gravitational effect is negligible during grasping and ma-
nipulation. We have applied a simple PID law to control individual finger joints to
observe the motion of the grasped object during the control of three fingers. Letting
A0y, = 0, — 0, control input 7, for the k-th finger joint is expressed as

t
Tk = —KpAek - KDQk - KI/ Agk(T) dT, (427)
0

where Kp, Kp, and Ki denote the proportional, differential, and integral gains,
respectively. Let us apply the same gain values of Kp = 300 Nm, Kp = 1 Nm-s, and
K1 =0.2Nm/s to the three fingers.

Figures 4.5 through 4.7 show the simulation results when the desired angles of the
three finger joints are given at time 0s. The desired angles are 07 = 0°, 65 = 5°,
and 05 = 5° in Figure 4.5. As shown in Figures 4.5-(a) through (c), the joint angles

converge to their desired values within 0.05s. Figures 4.5-(d) through (f) denote
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the coordinates of the grasped object. The coordinates converge, implying that the
object is stable with respect to the motion of three fingers. Let us investigate the
direction of the central axis of the hexagonal prism. The unit vector along (-axis,
which specifies the central axis, is described as [2(q1q3 — qoq2), 2(¢2q3 + qoq1), 2(¢2 +
¢2) — 1]". Note that this vector coincides with the third column of the rotation
matrix. Figure 4.5-(g) denotes the angle between the (-axis and the z-axis, which
is given by cos™!(2(g3 + ¢3) — 1). This angle represents the inclination of the prism.
Figure 4.5-(h) denotes the direction of the projection of the (-axis on the = — vy
plane, which is given by atan2 (2(g2q3 + qoq1), 2(¢1g3 — qoge)). This angle represents
the direction of the inclined prism. The desired angles are 67 = 5°, 65 = 0°, and
05 = 5° in Figure 4.6. The desired angles are 67 = 5°, 05 = 5°, and 05 = 0° in
Figure 4.5. Figures 4.5-(g), 4.6-(g), and 4.7-(g) suggest that the three fingers can
incline the prism toward any direction, implying that a set of three 1-DOF fingers
with soft fingertips can regulate the inclination and the direction of the grasped
object.

4.8 OO

This chapter focused on the formulation of grasping and manipulation via soft-
fingered hand in 3D space. First, we have formulated geometric constraints between a
hemispherical soft fingertip and an object planar surface. Second, we have formulated
the elastic potential energy stored in a soft fingertip due to the contact with the
planar surface. We proposed to decompose the energy into three terms: U,ommal,
Utangent » and Usige. Finally, we have sketched the Lagrangian of the system consisting
of a rigid prism and three fingers with soft fingertips.

We have formulated soft-fingered grasping and manipulation in 3D space but not
performed its experimental verification yet. We are measuring the object posture
manipulated by three fingers with soft fingertips. We will compare the simulation
result and experimental result to validate the formulation in this chapter.
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O 5.2: A conceptual diagram of the time-delayed robotic system in visual feedback

control.
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0 5.3: A robotic hand system with a monochrome camera.

[0 5.1: Specifications in the verification test

Camera model | Point Gray Research, Dragonfly Express
Interface IEEE 1394b (FireWire)
Imaging sensor Progressive scan CCD
Resolution VGA Grayscale image
Frame Rates 200 fps (Format 7 mode)
PC spec. Pentium 4 1.9 GHz
FSB & Cache 400 MHz, 256 KB
Memory 512 MB DDR 400 MHz x 1
OS Vine Linux 3.2 (kernel 2.4.31) Non-RT
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O 5.4: A wide gap in the control period, T¢, of a loop between the conditions of
T.=T,+ Ty (O 52-(a)) and T, = T,,, (O 5.2-(b)).

0 5.2: Four patterns of control period
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0 5.3: Simulation parameters

Parameters | Values ‘ ‘ Parameters Values
Kp 50 Nm a 20 mm
Kp 1 Nm-sec Wb 50 mm
K; variable M 86 g
T 3 Nm M; 88 g
L 76.2 mm Lo 12 kg-mm?
2Wy; 98 mm I 171 kg-mm?
15 15 15
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=5 S N T
g 5 — 35
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15 improved res. —— 15 10
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a) Gob; (b) 0 and 05 (c) g and 0

[0 5.5: Orientation trajectory of a grasped object when T,, = T}, + T1,.
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O 5.6: Orientation trajectory of a grasped object when T3, = 50 ms.
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O 5.7: Orientation trajectory of a grasped object when T;, = 75 ms.
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O 5.8: Orientation trajectory of a grasped object when T3, = 100 ms.
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O 5.9: Experimental results of orientation trajectory of a grasped object when
Ty =1, + T, Kp =40, Kp = 0.001. K is set at 12 in success and 1.2 in failure.
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O 5.10: Experimental results of orientation trajectory of a grasped object when
T, =50 ms, Kp =60, Kp = 0.001. K is set at 0.02 in success and 0.002 in failure.
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0 5.11: Experimental results of orientation trajectory of a grasped object when
T, =75 ms, Kp =60, Kp =0.001. Kj is set at 0.01 in success and 0.001 in failure.
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O 5.12: Experimental results of orientation trajectory of a grasped object when
T, = 100 ms, Kp = 60, Kp = 0.001. Kj is set at 0.008 in success and 0.0008 in
failure.
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0 5.13: Simulations and experimental results of the response of object orientation
in sinusoidal wave input.
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Abstract— A difference between the human and robots from
the viewpoint of motor control is a sampling time in everyday
movements. That is, the sampling time for controlling conven-
tional robot systems is required to become approximately 1
ms. On the other hand, the motor control based on human
nervous system permits considerably large time-delay due to
the transmission latency on afferent/efferent pathways of the
central nervous system. To date, it has been difficult for the
robot to acquire dexterous tasks and precise movements as
long as the robot system has an unexpected large delay in
terms of sensory informations. Based on the above observation,
this paper provides a new control strategy to accomplish precise
orientation control of a target object grasped by a robotic hand
consisting of two degrees-of-freedom (DOFs). The controller,
named as serial two-phased (STP) controller, proposed in this
study can realize secure grasping and manipulation in the
case that a large visual feedback delay induced by the low
specification of a camera is hiding in the control loop. Finally,
through several simulations, we indicate that the closed loop
dynamics designed by integrating the STP controller and a
soft-fingertip structure is robust even in at most 100 ms-delay
relating to the updating of camera images.

I. INTRODUCTION

Generally, most robots show high performance and enor-
mously high-speed motion than everyday movements of the
human. For instance, present automation technology is able
to accomplish 1 ms-periodic loop control because of high
performance of the computer. On the other hand, if intrinsic
neurophysiological latency that is expressed as a sum of
central motor conduction time (CMCT) and neuromuscular
transmission delay is applied to a controller designed for
the robot, it is clear that certain fatal disadvantages occur
in the robot control system. Fig. 1 shows a summary of the
neurophysiological latency that stems from central nervous
system (CNS) [1]. Based on these investigations, this paper
proposes a novel and simple control law and demonstrates
that stable and dexterous two soft-fingered manipulation can
be achieved even under at most 100 ms-delay relating to the
updating of camera images that are utilized for the visual
feedback of the robot.
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Fig. 1. The delay in latency from the stimulation to the onset of the CMAP
is summarized with the exception of the optic [1]. This neurophysiological
latency of human motor control is due to the sum of the nerve propagation
delay, the neuromuscular transmission delay, and the muscle fiber propaga-
tion delay [2].

II. EQUATIONS OF MOTION OF A TWO-FINGERED HAND
WITH SOFT FINGERS

Recalling a simple two degrees-of-freedom (2-DOFs)
robotic hand structure (Fig. 2) from our previous studies [3],
[4], Lagrangian of the hand can be rewritten as (Fig. 2)

2
L =K—P+Y AniCui, ey
i=1
where K and P be the kinetic energy of the total system
and be the potential energy including not only gravitational
potential but also elastic energy induced by deformation of
the soft fingertip, as shown in Fig. 2. Therefore, K and P
can be finally described as [3]

P= Pl (dnl;dtlaem 91) +P2(dn27dt2; 90762) +M0gy0
2
+Y MigLeos6r,  (2)
i=1

2 2
1 2
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Fig. 2. Soft-fingered manipulation by a pair of 1-DOF rotational joints.

TABLE I
DEFINITIONS OF PARAMETERS.

parameter definition
2WR base width of the hand
a fingertip radius
L length of each finger
dy thickness of the finger
Wo width of object
M, mass of object
M; mass of i-th finger
mass of fingertip
0; joint angle of i-th finger
6, orientation angle of object
Opi 6+ (1))
dnj maximum displacement of i-th fingertip
dii tangential displacement of i-th fingertip
X0y Yo position of object
Iy inertia of object
I; inertia of the finger

where parameters of the system are defined in Table I. In
addition, the last term of the right-hand side of Eq. (1)
corresponds to energy due to constraint forces, A,;, which
appear on the contact between object and soft fingertips.
Differentiating geometric constraints, Cy,;, with respect to
system variables, the direction of A,; that is dynamically
changed during the manipulation motion can be clarified.
As a result, the equations of motion of whole system are
described as

doz 83
dt 9

Lo}
Ci PREC 4)

ZM
where external force vector and control input vector are
newly added. Note that the input, u, corresponds to input
torque applied to the joint angle of the finger. The first term
on the right-hand side of Eq. (4) denotes constraint forces
tangential to the grasped object.

III. CONTROL STRATEGY

First, we introduce a very simple controller for achieving
precise object manipulation, which is named serial two-

d
+ 0i + + u
Sy L e ey ST
Fig. 3. It shows a block diagram of serial two-phased (STP) controller

capable of achieving robust convergence of object orientation, which is
grasped by two soft fingertips. Characteristic of this controller is that desired
trajectory of the joint angle in second stage (Eq. (6)) is serially coupled and
remains constant when the object orientation goes to convergence.

d d Tb 0
0o + = Oi + = + Ui -:(‘—>1
O— KI/S ! O~ Kp j_—i ﬁgﬁgt
Bo
o o
stop update of Qo
Fig. 4. It shows a block diagram of STP controller, in which the updat-

ing delay of information that results from image processing computation
contains.

phased (STP) controller in this paper [5], and recall

68 = —(—1)'K /’(e —0%ydr )
1 1 (o] 0 )
0

ui = —Kp(6; — 67) — Kp6; + T, (6)

where Kp, Kp, and Kj denote proportional, differential, and
integral gain respectively. This controller can perform precise
position and orientation control of grasped object even when
the robotic hand has minimal degrees-of-freedom shown in
Fig. 2 [3]. The block diagram of the STP controller can be
simplified as Fig. 3. In addition, the biased torque, 7, has
a positive constant value and acts to prevent that the motor
torque u; produced in Eq. (6) remains negative.

Through this research, we have consistently carried out
object-orientation control in two-fingered robotic hand. Es-
pecially, in simulation studies, the real-time trajectory of the
grasped object, 6, in Eq. (5), has been computed on the basis
of assuming minimal periodic time defined in the numerical
computation. That is, the orientation trajectory to be used in
the feedback loop could be updated according to the periodic
time of Runge-Kutta method, i.e., 0.1 ms. Hence, this paper
introduces true time-delay induced by the image processing
in the visual feedback robotic system.

IV. SIMULATIONS

In this paper, we verify a case that the updating delay of
information obtained by image processing exists on visual
feedback control system, as shown in Fig. 4. Usually, con-
ventional machine vision systems have inevitable time-delay
such as 33 ms as video frame rate. In this simulation, we
show successful results of object orientation control under
the case that the time-delay increases up to 99 ms.

In our previous studies, we had demonstrated that the serial
two-phased (STP) controller (Fig. 3) works well so as to
make the grasped object converge to a desired trajectory, and
obtained a successful result shown in Fig. 5. This simulation
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Fig. 5. This simulation result shows a successful convergence of the object-
orientation trajectory, where the periodic time of image updating is 0.1 ms
because of the numerical computation with Runge-Kutta method.
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Fig. 6. This result shows an improved trajectory of the object orientation,
in which the periodic time of image updating is assumed to be 33 ms. In
this result, we set the integral gain to be Ky = 0.01 in the case of failure
(a), and to be Ky =1 in the successful result (b). In addition, it implies
that the joint angle does not converge to each desired trajectory produced
in Eq. (5). That is, the desired angle, 7, corresponds to virtual desired

i
trajectory. Note that mechanical parameters and values for the controller is
expressed in Table II.

result indicates robust and fast convergence in terms of the
object orientation. However, the periodic time of the control
loop complies with the condition of numerical computation,
which corresponds to the step size of Runge-Kutta method,
i.e., 0.1 ms. Obviously, there does not exist such an extremely
fast periodic control combined with image processing.

On the other hand, we show another successful result
shown in Fig. 6, in which the periodic time of image updating
is assumed to be 33 ms. In fact, this improved trajectory was
obtained by only changing the integral gain from 0.01 to 1.
Thus, we can verify a very simple gain-tuning method such
as the STP controller for object manipulation. In addition,
we show another result obtained when the updating delay
be 99 ms, in which the dynamic response of the object
orientation was drastically improved by only modifying the
integral gain from K1 = 0.01 to K1 = 1. This successful result

15 15 T
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Fig. 7. This result shows an improved trajectory of the object orientation,
in which the periodic time of image updating is assumed to be 99 ms. In
this result, we set the integral gain to be Ky = 0.01 in the case of failure
(a), and to be K1 =1 in the successful result (b).

TABLE I
MECHANICAL AND SIMULATION PARAMETERS.

parameter value

parameter value
We 3(8) $$ I, 12 kg-mm?
7 762 mio I 171 kg-mm?
dg 4 mm II?) 5]0
Wo 50 mm D
M, 26 g Th 3 Nm
M; 88 g m,m 10g

comes from the fact that passive deformation of the soft
fingers contributes to stable rotation of the object grasped
by them. Further explanations of the successful grasping are
detailed in Sec.VI.

V. EXPERIMENTS

As well as the simulation, we give same task to the soft-
fingered robotic hand that is designed as opposed structure
by two fingers, as shown in Fig. 8-(a) and Fig. 2. In this
experiment, we utilize a CCD camera capable of capturing a
gray-scale image with keeping 200 fps (frame per second).
Continuously, the image grabbed is processed to converse
to a binary image and the object orientation can finally
be computed as Fig. 8-(b). As a result, this algorithm can
obtain object position and orientation at the interval of 5 ms.
Therefore, we intentionally slow the update of the object
information used for feedback control, that is, the update
timing becomes once per twenty times to simulate 100-ms
updating delay.

Fig. 9 shows an experimental result, in which the desired
trajectory of the object orientation, the delayed response, and
the improved response are depicted. It is obvious that the
orientation trajectory of the grasped object is dramatically
improved by only changing the integral gain. However, the
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Fig. 9. It shows an experimental result of the orientation trajectory of the grasped object, where the updating delay is equivalent to 100 ms. Gain

parameters were decided as Kp = 60, Kp = 0.001. As well as the simulation result, the orientation trajectory has been dramatically improved by only

changing Kj from 0.0008 to 0.008.
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Fig. 10. Sinusoidal wave input for the desired object orientation, 9(‘,1, is given to the robotic system. In simulations (a)-(c), the performance of tracking
control is gradually improved as the integral gain increases. Also in experiments (d)—(f), the same trend occurs, however the response in the initial state

clearly indicates oscillatory appearance.

TABLE III
SPECIFICATIONS IN THE VERIFICATION TEST

Camera model | Point Gray Research, Dragonfly Express
Interface IEEE 1394b (FireWire)
Imaging sensor Progressive scan CCD
Resolution VGA Gray-scale image
Frame Rates 200 fps (Format 7 mode)
PC spec. Pentium 4 1.9 GHz
FSB & Cache 400 MHz, 256 KB
Memory 512 MB DDR 400 MHz x 1
oS Vine Linux 3.2 (kernel 2.4.31) Non-RT

improved trajectory tends to become step-like response be-
cause of the large time delay. In addition, it is clearly clarified
that the discrepancy of joint angles remains throughout the

manipulation. In other words, this consistent error does not
have to be eliminated as long as the object orientation
converges to the desired trajectory, that is, Gl»d corresponds
to apparent desired trajectory in the STP controller.

Next, we show another simulation and experimental results
shown in Fig. 10, where the sinusoidal desired input for
the object orientation, 6(‘,1, is given in Eq. (5), and the
updating delay is equivalent to 25 ms consistently. It is
clearly indicated that the performance of tracking control
is gradually improved as the integral gain increases in the
both cases of simulation and experiment. In the experimental
result, the step-like response starts to increase gradually. This
result comes from the fact that nonlinearity due to Coulomb
friction of the finger joint appears obviously when the joint
torque increases according to the change of the integral gain.
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Fig. 8. It shows a two fingered robotic hand system with a CCD camera
and binary image of the object orientation.

In addition, the response in the initial state of experimental
results clearly indicates oscillatory appearance. This reason
is that the response becomes to be particularly-susceptible to
static friction when the angular velocity of the joint reduces.

VI. DISCUSSIONS

The performance of robust trajectory tracking shown in all
simulations and experiments results from passive flexibility
of soft fingers and opposing structure of both fingers on two
dimensional plane shown in Fig. 2. Soft fingers have such
a superior mechanical characteristic that the grasped object
comes to rest on a mechanically stable orientation during
the manipulation. That is, the potential energy function has
a minimal value with respect to the object orientation, 6,
as expressed in Eq. (3) [4]. This mechanical feature has
never been clarified, thereby, a relatively complicated control
law had been proposed to date even though the soft finger
was utilized in the robotic manipulation [6]. These control
laws require a torque to prevent unexpected rotation of the
grasped object. In contrast, the unstable rotation of the object
never occurs in the soft-fingered manipulation because of the
presence of the minimum of elastic potential energy.

In addition, the STP controller proposed contains no
Jacobian matrix. Recently, we had obtained a similar result
in a 5-DOFs robotic hand that consists of an index finger and
a thumb, as shown in Fig. 11. In this case, in order to achieve
the object orientation control, it is favorable that two links
located at the side of the base of both fingers generate counter
coupled movement. This corresponds to a kind of mechanical
constraint, therefore, Jacobian matrix used in the case of
individual joint control is not necessary. This contribution
and its detail will be presented in the next paper.

VII. CONCLUDING REMARKS

This paper has proposed a simple object orientation con-
troller that consists of two-phased controllers being serially
connected each other, which is named STP controller ex-
pressed in Egs. (5) and (6). The first stage acts as robust
integral controller from which virtual desired trajectories
of joint angles is generated. The actual joint angle is not
necessary to converge to the virtually-generated joint angle
as long as the object converges to a desired orientation of
the first phase. This is why the desired joint angle is named
virtual trajectory.

Fig. 11. It shows a five degrees-of-freedom robotic hand that consists of
an index finger and a thumb. This system has also a pair of soft fingertips
on the fore-end of each finger.

In addition, this paper has clarified that the STP controller
with soft fingers works well in the case that large time delay
exists within visual feedback robotic systems. It has also
been shown that the method of gain tuning for improving
delayed responses is very simple and useful in a lot of
practical usage.

In future works, we are going to present theoretical
verification associated with the stability of the STP controller
by describing a Lyapunov function.
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