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Summary 

Researches on deformable soft objects such as biological tissue, food dough, 
thread, and wire harness are now one of emerging issues in virtual reality, 
computer vision, medical engineering, and robotics. We have to tackle many 
topics including geometric and mechanical modeling of deformable soft objects, 
their model identification, and control of their deformation to treat the 
deformable soft objects in engineering. This workshop focuses on the current 
researches on modeling, identification, and control of deformable soft objects. 
Topics are 1) geometric/mechanical modeling of deformable soft objects, in 
robotics, automation science, and medical engineering, 2) identification of 
deformation model parameters, 3) realtime simulation of object deformation, 4) 
control of object deformation in robotics and automation, 5) manipulation and 
handling of deformable soft objects, and other related issues. 
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Contour and Shape Modeling of Wet Material Objects
using Periodic and Closed Spline Surfaces

Hiroyuki Fujioka and Hiroyuki Kano

Abstract— In this paper, we present a synthesizing scheme
for modeling the contour and shape of wet material objects
using optimal periodic and closed surfaces. The surfaces are
constructed by employing normalized uniform B-splines as
the basis functions. A concise representation for the optimal
surfaces is derived, which has the additional merit of lend-
ing itself to the development of computational procedures in
a straightforward manner. Moreover, the asymptotical and
statistical properties of optimal surfaces are presented. The
results are applied to the problem of modeling contour and
shape of wet material objects with deforming motion, and
the effectiveness is examined by numerical and experimental
studies.

I. INTRODUCTION

Wet material objects such as jellyfish, red blood cell
and amoeba, etc., move with various deformation motions.
One of important issues in their studies is to analyze and
understand such motions from the observational data, e.g.
some image frames in a movie file. Then the contour and
shape modeling may play the key role.

The problem of modeling the contour and shape of de-
formable objects has been studied in the field of image
processings. In the works, spline functions have been used
frequently [1], and various techniques, e.g. snakes and active
contour model [2], have been developed. However, the most
approaches have focused their attention on the problem of
modeling the contour of objects at some time instant, and
yield the difficulties to analyze and understand a whole
motion of the moving deformable objects, i.e. wet material
objects. Thus, a scheme of modeling the contour and shape
of the deformable objects is required.

An approach to the development of such a scheme would
be to design the periodic and closed surfaces by interpolating
or smoothing a set of given discrete contour/shape data
in some 3-dimensional space. In particular, employing the
periodic surfaces and a 3-D space composed of the 2-
dimensional image plane and the time axis, we may model
the contour dynamically, which may be useful to analyze
and understand a whole motion. This idea is similar to the
one for the spline-based solid modeling of the human organs
from a set of tomogram data obtained by the magnetic range
imaging (MRI) [3], etc. It is recognized, however, that the
interpolation often results in an oscillating surfaces, and
hence inappropriate in such cases where the image data may
include some noises. On the other hand, the approximation

H. Fujioka and H. Kano are with the Dept. of Information Sci-
ences, Tokyo Denki University, Saitama 350-0394, JAPAN. email:
fujioka@j.dendai.ac.jp, kano@j.dendai.ac.jp, tel.:
+81-49-296-2911, fax.: +81-49-296-6403

by smoothing splines is stable numerically and yields feasible
approximation results.

In this paper, we develop a synthesizing scheme for
modeling the contour and shape of wet material objects
based on the design method of optimal periodic and closed
smoothing surfaces. The surfaces are constructed by em-
ploying normalized uniform B-splines as the basis functions.
We first develop the method for designing optimal periodic
and closed smoothing spline surfaces. Then, assuming that
a number of data is given by sampling some surfaces f (s, t)
with noises, we analyze statistical properties of optimal
smoothing splines and derive an expression of the splines
as a functional of f (s, t) when the number tends to infinity.
Finally, the results are applied to model contour and shape
of wet material objects such as red blood cell and jellyfish.
The effectiveness are verified by numerical and experimental
studies. Also, we show that the proposed method is helpful
for analyzing and understanding the motions of wet material
objects.

For designing surfaces x(s, t), we employ normalized,
uniform B-spline function Bk(t) of degree k as the basis
functions,

x(s, t) =
m1−1

∑
i=−k

m2−1

∑
j=−k

τi, jBk(α(s− si))Bk(β (t − t j)), (1)

where α, β (> 0) are constants, m1, m2(> 2) are integers,
and si’s, t j’s are equally spaced knot points with si+1 − si =
1
α , t j+1 − t j = 1

β .
In the sequel, we briefly describe the normalized, uniform

B-spline functions: Bk(t) is defined by

Bk(t) =




Nk− j,k(t − j) j ≤ t < j +1 j = 0, · · · ,k

0 t < 0, k +1 ≤ t.
(2)

Here the basis elements Nj,k(t) ( j = 0,1, · · · ,k) are obtained
recursively by the following algorithm [4]. Let N0,0(t) ≡ 1
and, for i = 1,2, · · · ,k, compute



N0,i(t) = 1−t
i N0,i−1(t)

Nj,i(t) = i− j+t
i Nj−1,i−1(t)

+ 1+ j−t
i Nj,i−1(t), j = 1, · · · , i−1

Ni,i(t) = t
i Ni−1,i−1(t).

(3)

Thus, Bk(t) is a piece-wise polynomial of degree k with
integer knot points and is k−1 times continuously differen-
tiable. It is noted that Bk(t) for k = 0,1,2, · · · is normalized
in the sense of ∑k

j=0 Nj,k(t) = 1, 0 ≤ t ≤ 1, and this yields∫ ∞
−∞ Bk(t)dt =

∫ k+1
0 Bk(t)dt = 1.
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For the sake of later reference, we show here the function
B3(t),

B3(t) =




1
6 t3 0 ≤ t < 1
1
6

(−3t3 +12t2 −12t +4
)

1 ≤ t < 2
1
6

(
3t3 −24t2 +60t −44

)
2 ≤ t < 3

1
6 (4− t)3 3 ≤ t < 4

0 otherwise.

(4)

II. OPTIMAL PERIODIC AND CLOSED SMOOTHING

SPLINE SURFACE

In this section, we develop the method for designing op-
timal periodic and closed smoothing splines. For simplicity,
we restrict ourselves to the case of k = 3 in the sequel.

Equation (1) in the case of k = 3 is written as

x(s, t) =
m1−1

∑
i=−3

m2−1

∑
j=−3

τi, jB3(α(s− si))B3(β (t − t j)). (5)

Then, choosing appropriate weighting coefficient τi, j called
‘control point’, x(s, t) can represent an arbitrary spline sur-
face on the rectangular domain S = [s0,sm1 ]× [t0, tm2 ]⊂ R2.
Now suppose that a set of spatial data

D =
{
(ui,v j;di j) : (ui,v j) ∈ S , di j ∈ R,

i = 1,2, · · · ,N1, j = 1,2, · · · ,N2} (6)

is given, and let τ ∈ RM1×M2 be the weight matrix

τ = [τi, j]
i=m1−1, j=m2−1
i, j=−3 , (7)

where M1 = m1 +3 and M2 = m2 +3.
Then, a problem of designing optimal periodic/closed

smoothing spline surfaces is to find a surface x(s, t), or equiv-
alently a matrix τ ∈ RM1×M2 , minimizing a cost function

J(τ) = λ
∫ sm1

s0

∫ tm2

t0

(
∇2x(s, t)

)2
dsdt

+
N1

∑
i=1

N2

∑
j=1

wi j(x(ui,v j)−di j)2, (8)

subject to continuity constraints

∂ l

∂ tl x(s, t0) =
∂ l

∂ tl x(s, tm2), s ∈ [s0,sm1 ] (9)

or/and

∂ l

∂ sl x(s0, t) =
∂ l

∂ sl x(sm1 , t), t ∈ [t0, tm2 ] (10)

for l = 0,1,2. Here, λ (> 0) is a smoothing parameter, and
wi j (0 ≤ wi j ≤ 1) denotes weights for approximation errors.

These problems can be solved as follows: First, we express
the right hand side of (8) in terms of τ . Let b1(t) ∈ RM1 and
b2(t) ∈ RM2 be

b1(s) = [B3(α(s− s−3)) B3(α(s− s−2))
· · ·B3(α(s− sm1−1))]T (11)

b2(t) = [B3(β (t − t−3)) B3(β (t − t−2))
· · · B3(β (t − tm2−1))]T . (12)

Then with
τ̂ = vec τ (∈ RM1M2), (13)

x(s, t) in (5) can be written as

x(s, t) = (b2(t)⊗b1(s))T τ̂, (14)

and the cost function in (8) is obtained in terms of τ̂ as

J(τ̂) = λ τ̂T Qτ̂
+

(
(B2 ⊗B1)T τ̂ −d

)T
W

(
(B2 ⊗B1)T τ̂ −d

)
. (15)

Here, matrices B1 ∈ RM1×N1 and B2 ∈ RM2×N2 are defined by

B1 =
[

b1(u1) b1(u2) · · · b1(uN1)
]
,

B2 =
[

b2(v1) b2(v2) · · · b2(vN2)
]
, (16)

and W ∈ RN1N2×N1N2 and d ∈ RN1N2 by

W = diag{w11, w21, · · · , wN11, · · · ,
w1N2 , w2N2 , · · · , wN1N2}

d = [ d11, d21, · · · , dN11, · · · ,
d1N2 , d2N2 , · · · , dN1N2 ]

T . (17)

In (15), Q ∈ RM1M2×M1M2 is a Gramian defined by

Q = Q(00)
2 ⊗Q(22)

1 +Q(02)
2 ⊗

(
Q(02)

1

)T

+
(

Q(02)
2

)T ⊗Q(02)
1 +Q(22)

2 ⊗Q(00)
1 , (18)

where Q(i j)
l ∈ RMl×Ml (l = 1,2; i, j = 0,1,2) are given by

Q(i j)
l =

∫
Il

dibl(t)
dti

d jbT
l (t)

dt j dt (19)

with I1 = [s0,sm1 ] and I2 = [t0, tm2 ]. Each matrix Ql in (18) can
be computed a priori (i.e. regardless of the data di j) when the
relevant parameters such as m1 and m2 are specified. Thus,
the matrix Q is computed explicitly. Also, it can be shown
that the matrix Q is singular (see [5]).

Next we express the constraints (9) and (10) in terms of τ .
Letting τc

i ∈ RM1 , i =−3,−2, · · · ,m2−1, be the i-th column
vector of the matrix τ in (7), i.e.

τ = [τc
−3 τc

−2 · · · τc
m2−1], (20)

we can show that (9) for l = 0,1,2 is written respectively as

1
6

τc
−3 +

4
6

τc
−2 +

1
6

τc
−1 =

1
6

τc
m2−3 +

4
6

τc
m2−2 +

1
6

τc
m2−1

τc
−3 − τc

−1 = τc
m2−3 − τc

m2−1

τc
−3 −2τc

−2 + τc
−1 = τc

m2−3 −2τc
m2−2 + τc

m2−1,

yielding τc
−3 = τc

m2−3, τc
−2 = τc

m2−2, τc
−1 = τc

m2−1. Then,
letting Gl ∈ RMl×M1M2 , l = 1,2 be the matrix defined by

Gl = [I3Ml×3Ml 03Ml×(M1M2−6Ml) − I3Ml×3Ml ], (21)

the constraint in (9) is written as a linear constraint,

G1τ̂ = 0. (22)
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Similarly, the constraint in (10) is obtained as

G2E τ̂ = 0 (23)

with a computation matrix E ∈ RM1M2×M1M2 , i.e. vec τT =
E τ̂ . Thus the constraints for periodic and closed cases can
be written as

Ḡl τ̂ = 0, l = 1,2,3, (24)

where Ḡ1 = G1 and Ḡ2 = G2E are for periodic cases, and
Ḡ3 = [ḠT

1 ḠT
2 ]T ∈ R3M3×M1M2 (3M3 = 3M1 +3M2) for closed

case.
Minimizing the cost function subject to the constraints

(9) or/and (10) is now a straightforward task. For the cost
function in (8), i.e. (15), we form the following Lagrangian
function,

L(τ̂,µ) = λ τ̂T Qτ̂ +
(
BT τ̂ −d

)T
W

(
BT τ̂ −d

)
+µT

l Ḡl τ̂, (25)

where µ ∈ R3Ml , l = 1 or l = 2 is for the periodic case, and
l = 3 for the closed case. Then, by taking derivatives with
respect to τ̂ and µ , we get

λQτ̂ +BWBT τ̂ +
1
2

ḠT
l µl = BWd

Ḡl τ̂ = 0, (26)

or[
λQ+BWBT ḠT

l
Ḡl 03Ml×3Ml

][
τ̂

1
2 µl

]
=

[
BWd
03Ml

]
. (27)

It can be shown that this equation is consistent, i.e.

rank

[
λQ+BWBT ḠT

l BWd
Ḡl 03Ml×3Ml 03Ml

]

= rank

[
λQ+BWBT ḠT

l
Ḡl 03Ml×3Ml

]
. (28)

Here, in (28), if λQ+BWBT > 0 and Ḡl is of row full rank,
then the coefficient matrix is nonsingular, and the solution
exists uniquely. If it is singular, we employ the minimum
norm solution, yielding unique τ̂ .

III. ASYMPTOTICAL AND STATISTICAL PROPERTIES

In this section, we present asymptotical and statistical
properties of optimal periodic and closed smoothing surfaces
when the number of sampled data tends to infinity and the
data contains noises.

Now we assume that the data di j in (6) for constructing
smoothing surfaces is obtained by sampling a function f (s, t)
which is assumed to be continuous in both variables in
[s0,sm1 ]× [t0, tm2 ]. In order to analyze asymptotic properties
of spline surfaces as the number of data points N1,N2

increases, we employ the following cost function instead of
(8),

JN1,N2(τ) = λ
∫ sm1

s0

∫ tm2

t0

(
∇2x(s, t)

)2
dsdt

+
1

N1N2

N1

∑
i=1

N2

∑
j=1

(x(ui,v j)− f (ui,v j))2. (29)

When the data di j is obtained by sampling the function f (s, t)
with additive noises

di j = f (si, t j)+ εi j, i = 1,2, · · · ,N1, j = 1,2, · · · ,N2, (30)

we employ a cost function

Jε
N1,N2

(τ) = λ
∫ sm1

s0

∫ tm2

t0

(
∇2x(s, t)

)2
dsdt

+
1

N1N2

N1

∑
i=1

N2

∑
j=1

(x(ui,v j)− f (ui,v j)− εi j)2. (31)

Here, the noises εi j are assumed to be zero-mean and white,
i.e. E{εi j} = 0 ∀i, j, E{εi jεkl} = σ2 for i = j = k = l, and
E{εi jεkl} = 0 otherwise. Moreover, in order to analyze con-
vergence properties of solutions as N1,N2 →∞, we introduce
the following cost function,

Jc(τ) = λ
∫ sm1

s0

∫ tm2

t0

(
∇2x(s, t)

)2
dsdt

+
∫ sm1

s0

∫ tm2

t0
(x(s, t)− f (s, t))2 dsdt. (32)

Using the results in Section II, the optimal solutions τN1,N2

and τε
N1,N2

minimizing the cost functions in (29) and (31)
subject to the constraints in (9) or/and (10) are obtained
respectively as solutions of[

AN1,N2 ḠT
l

Ḡl 03Ml×3Ml

][
τ̂

1
2 µ

]
=

[ 1
N1N2

B f
03Ml

]
, (33)

and[
AN1,N2 ḠT

l
Ḡl 03Ml×3Ml

][
τ̂

1
2 µ

]
=

[ 1
N1N2

B( f + ε)
03Ml

]
, (34)

with l = 1,2,3, and AN1,N2 ∈ RM1M2×M1M2 is given by

AN1,N2 = λQ+
1

N1N2
BBT , (35)

and the vectors f ∈ RN1N2 and ε ∈ RN1N2 are defined by

f = [ f (u1,v1), f (u2,v1), · · · , f (uN1 ,v1), · · · ,
f (u1,vN2), f (u2,vN2), · · · , f (uN1 ,vN2)]

T ,

ε = [ ε11, ε21, · · · , εN11, · · · ,
ε1N2 , ε2N2 , · · · , εN1N2 ]

T .

On the other hand, we can show that the optimal solution τc

for the cost function in (32) is obtained as the solution of[
λQ+Q(00)

2 ⊗Q(00)
1 ḠT

l
Ḡl 03Ml×3Ml

][
τ̂

1
2 µ

]
=

[
φ

03Ml

]
,

(36)
where φ ∈ RM1M2 is defined by

φ =
∫ sm1

s0

∫ tm2

t0
f (s, t)(b2(t)⊗b1(s))dsdt. (37)

Note that the coefficient matrix AN1,N2 in (33) and (34)
may be singular since the matrix Q is singular, in which
case we use the minimum norm solution, yielding a unique
solution τN1,N2 , τε

N1,N2
. On the other hand, (36) always has a

unique solution τc since it holds that the matrix Q(00)
2 ⊗Q(00)

1
is positive-definite.
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(a) xε
N1 ,N2

(s, t) with N1 = N2 = 5 (b) xε
N1 ,N2

(s, t) with N1 = N2 = 40 (c) xc(s, t)

Fig. 1. Optimal periodic smoothing surfaces.

(a) xε
N1 ,N2

(s, t) with N1 = N2 = 5 (b) xε
N1 ,N2

(s, t) with N1 = N2 = 40 (c) xc(s, t)

Fig. 2. Periodic surfaces x(s, t) represented in the o− pqs space.

Now we introduce the following assumption:
Assumption 1: The sample points (ui,v j), i =

1, · · · ,N1, j = 1, · · · ,N2, are such that

lim
N1,N2→∞

1
N1N2

N1

∑
i=1

N2

∑
j=1

g(ui,v j) =
∫ sm1

s0

∫ tm2

t0
g(s, t)dsdt

for every continuous function g(s, t) in [s0,sm1 ]× [t0, tm2 ].
Then we obtain the following result.
Theorem 1: Assume that the condition of Assumption 1

holds, and let τN1,N2 , τε
N1,N2

be the minimum norm solutions
of (33) and (34) respectively. Then,

(i) τN1,N2 converges to τc as N1, N2 → ∞.
(ii) E{τε

N1,N2
} = τN1,N2 and τε

N1,N2
converges to τc as

N1, N2 → ∞ in the mean squares sense.

IV. CONTOUR AND SHAPE MODELING

We apply the method for designing optimal periodic and
closed smoothing splines to the problem of contour and shape
modeling. We set k = 3 and α = β = 1 in below.

A. Numerical Study

For the periodic case, we generate the data D by sampling
the following periodic surface,

f (s, t) =

√
cosθ(t)+

√
b4(s)− sin2 θ(t) (38)

with θ(t) = 36π
180 t and b(s) = 1.1 + 0.4|sin(1.256s)|. This

function f (s, t) has frequently been used to model the contour
of red blood cell [6].

The optimal weights τε
N1,N2

and τc are computed for peri-
odic smoothing surfaces. Here, we set the noise magnitude
σ = 0.3, the smoothing parameter λ = 10−3, s0 = t0 = 0
and m1 = m2 = 10 (i.e. sm1 = tm2 = 10). Fig. 1 (a) and (b)
show the surface xε

N1,N2
(s, t) for the case of N1 = N2 = 5 and

N1 = N2 = 40 respectively, and Fig. 1 (c) shows xc(s, t).

Since these surfaces are periodic in t direction in the sense
of (9), the periodicity can be more easily seen by employing
a polar coordinate in terms of t. Namely, regarding s as a
parameter, we introduce the following coordinates

(p(s, t),q(s, t)) = (x(s, t)cosθ(t), x(s, t)sinθ(t)) . (39)

Fig. 2 shows the corresponding results plotted in o− pqs
space. As we see from these figures, xε

N1,N2
(s, t) approximates

the original surface f (s, t) more accurately as the number of
data N1,N2 increases, and eventually converges to xc(s, t).

Also, Fig. 3 shows a design example of optimal closed
smoothing surface and the corresponding 3-D shape model
of red blood cell [7] plotted in a polar coordinate system
o− pqr. Letting θ(s) and ϕ(t) be θ(s) = 36π

180 s and ϕ(t) =
36π
180 t, the data D is generated by sampling the following
closed surface,

f (s, t) =
√

h2
1(θ(s),ϕ(t))+h2

2(θ(s),ϕ(t))+h2
3(θ(s),ϕ(t))

5
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Fig. 3. Optimal closed smoothing surface (upper) and 3-D shape model
of red blood cell represented in the o− pqr space (lower).

with

h1(θ ,ϕ) = 0.1147+1.1103sin2 θ −1.123sin4 θ cosθ
h2(θ ,ϕ) = 1.1087sinθ sinϕ +0.5

h3(θ ,ϕ) = 1.1087sinθ cosϕ +0.5.

The other parameters are set as N1 = N2 = 21, λ = 10−3,
s0 = t0 = 0 and m1 = m2 = 10.

In these examples, Fig. 2, in particular, indicates that the
periodic spline surfaces can be used for dynamic contour
modeling as we see in the following example.

B. Experimental Study

We next apply the design method of periodic splines
to dynamic contour modeling of jellyfish from real digital
movie file1 with 101 [frame].

This experiment is worked out based on the idea employed
in the above numerical study. In particular, we here consider
the problem of modeling the jellyfish motion with deforma-
tion and translation by using a small number of image frames
in the movie file.

The modeling proceeds as follows. We first assume that
the i-th frame corresponds to the time s = 0.1 × (i − 1),
and among 101 frames, we use only 11 frames obtained
by sampling the 101 frames at every 10-th frames starting
with the 1st frame. Thus, we set N1 = 11 and ui = i−1, i =
1,2, · · · ,11 in the data D , and the interval for s as [s0,sm1 ] =

1Educational Image Collections, Information-technology Promotion
Agency (IPA), Japan. http://www2.edu.ipa.go.jp/gz/
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Fig. 4. Constructed translation motion of jellyfish.
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Fig. 5. Dynamic contour model of jellyfish.

[0,10] (i.e. m1 = 10). Next we show how the data points
v j, j = 1,2, · · · ,N2 and the data di j in D are selected. The
sampled i-th frame is converted to the binary image, and we
compute the centroid oi (i.e. center of mass) of target (i.e.
jellyfish). Then, fixing an oi − piqi plane with the origin at
the centroid, and employing the so-called ’signature’ [8], we
computed the distance di j from the centroid to the boundary
pixel at each angle θ = 0.2πv j [rad] with v j = j − 1, j =
1,2, · · · ,10 (i.e. N2 = 10). Moreover we set the interval for
t as [t0, tm2 ] = [0,10] (i.e. m2 = 10).

We are now in the position to model the translation and
deformation motions of the jellyfish. The translation motion
o(s) is constructed by designing smoothing curves for a set
of data oi, i = 1,2, · · · ,11, and Fig. 4 shows the motion
o(s), s ∈ [0,10] in pq-plane, where the centroids oi, i =
1,2, · · · ,11 obtained from the sampled images are denoted
by the corresponding numbers. On the other hand, the defor-
mation motion is obtained by designing the periodic surface
x(s, t) for the set of data (ui,v j,di j), i = 1,2, · · · ,11, j =
1,2, · · · ,10, where we set the parameters as s0 = t0 = 0,
sm1 = tm2 = 10, λ = 5 × 10−4 and wi = 1

N1N2
. Then, by

combining their results in movie frame space o− pqs, we
get the dynamic contour model of the jellyfish as shown in
Fig. 5.

Also, Fig. 6 shows some frames (26th, 46th, 66th and 86th
frames) of original movie overlaid with the corresponding
tomography of constructed model, i.e. the plot of x(s, t)
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(a) 26th frame (s=2.5) (b) 46th frame (s=4.5)

(c) 66th frame (s=6.5) (d) 86th frame (s=8.5)

Fig. 6. Some movie frames (unused frames in D) and the corresponding
contour from the dynamic model.

in pq-plane for s = 2.5,4.5,6.5 and 8.5. Although these
frame data are not used for the modeling, the contour agrees
with the real contour fairly precisely. Also, we confirmed
by animation that the contour model for the entire motion
period is in good agreement with the movie. Note that the
number of sampled data used for this entire modeling is only
N1 ×N2 = 110. Namely, we used 11 (= N1) frames out of
101 frames and 10 (= N2) data points in each frame.

In addition, such a model enables us to analyze the motion
from various viewpoints. For example, the area and the
smoothness from the contour model may give meaningful
information for evaluating the deformation motions of jelly-
fish. Specifically, the area S(s) and the smoothness C(s) at
s ∈ [s0,sm1 ] can be obtained as

S(s) =
1
2

∫ tm2

t0
det

[
p(s, t) q(s, t)

d
dt p(s, t) d

dt q(s, t)

]
dt

=
π

tm2

∫ tm2

t0
(x(s, t))2 dt

=
π

tm2

τ̂T
(

Q(00)
2 ⊗Bc(s)

)
τ̂, (40)

C(s) =
∫ tm2

t0

(
d2

dt2

√
p2(s, t)+q2(s, t)

)2

dt

=
∫ tm2

t0

(
d2

dt2 x(s, t)
)2

dt

= τ̂T
(

Q(22)
2 ⊗Bc(s)

)
τ̂, (41)

where Q(ii)
2 ∈ RM2×M2 for i = 0,2 is given by (19), and

Bc(s) ∈ RM1×M1 is defined as Bc(s) = b1(s)bT
1 (s). It is noted

that the quadratic forms in (40) and (41) are easy to compute
for each s since Q(00)

2 and Q(22)
2 are the pre-computed

constant matrices and τ̂ is the constant vector. Fig. 7 shows
the parametric representation of the computed (C(s),S(s)),
where the points (C(vi),S(vi)), i = 1,2, · · · ,11 obtained from
the sampled images are denoted by the corresponding num-
bers. This may be helpful for evaluating the deformation
motion of jellyfish.
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Fig. 7. Quantitative evaluation for deformation motion of jellyfish.

V. CONCLUDING REMARKS

In this paper, we developed the synthesizing scheme for
modeling the contour and shape of wet material objects
based on the design method optimal periodic and closed
smoothing spline surfaces. The concise expressions of the
optimal periodic and closed spline surfaces were derived.
These enabled us to analyze the statistical and asymptotical
properties of the optimal surfaces. Then, we applied the
method to the problem of modeling contour and shape of
red blood cell or jellyfish, and the effectiveness was verified
by numerical and experimental studies.

Extending this result to higher dimensional cases, we
may construct the 3D dynamic shape model of wet material
objects. Such studies might be helpful to understand their
whole movements involving deformation.
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A Method for Non-rigid 3D Deformation Fields Measurement:
Application to Human Calf MR Volumetric Images

Penglin Zhang, Shinichi Hirai and Kazumi Endo

Abstract— This work is concerned with inner deformation
fields measurement of non-rigid non-uniform objects from 3D
Magnetic Resonance (MR) volumetric images. In order to
obtain dense deformation fields of non-uniform objects, an
improved robust feature matching algorithm is presented and
used to obtain a matching feature point set which is the
foundation of sparse local deformation fields measurement.
Inner dense deformation fields can then be inferred using a
linear approximate approach in an irregular tetrahedra finite
element model. To test the validity of this proposed method,
some experiments were designed and conducted for this paper.

I. INTRODUCTION

Since its initial use for human imaging over 20 years ago,
magnetic resonance imaging (MRI) has become a widely
used clinical imaging modality [1]. MRI is being increas-
ingly employed in biomedical applications. Accordingly, MR
image processing techniques have become a central issue
in biomedical applications. However, most studies over the
past decades have focused on MR image segmentation,
registration and reconstruction, with biological tissue de-
formation measurement and physical parameter estimation
being investigated in only a few studies.

With an ever increasing application of biomedical imaging,
it is becoming more important for computer-assisted clinical
diagnosis, surgery simulation and operation planning to
acquire knowledge regarding the motion and deformation
of biological tissue. In addition, there is much focus on
the physical characteristics of tissues. In the past decade,
there has been much research involving deformation mea-
surements from MR volumetric images using elastic de-
formable models [2] [3] [4]. In general, deformable models
can be classified into two categories: parametric and geo-
metric active models [5]. The parametric active contours,
also called snakes, were first introduced by Kass, Witkin
and Terzopoulos in 1987 [6]. They were widely used in
deformation estimation, segmentation, motion tracking and
registration of biomedical images. Later, many researchers
expanded and developed their own approaches based on this
work. Lang et al. [7], Cho et al. [3] and Matuszewski et
al. [2] proposed estimating the deformation of the object
based on the parametric active contours. Their general idea of
parametric active contours is to first define an energy function

Penglin Zhang is with the Faculty of Science and Engineering
/ School of Remote Sensing and Information Engineering, Univer-
sity of Ritsumeikan / University of Wuhan, 525-8577 Kusatsu, Japan
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Shinichi Hirai and Kazumi Endo are with the Faculty of Science and
Engineering, Robotics, University of Ritsumeikan, 525-8577 Kusatsu, Japan
hirai@se.ritsumei.ac.jp

in which the local minimum is obtained at the boundary of
the object, and then to try to minimise the designed function
to deform a given initial contour toward the boundary of the
object to obtain deformation fields of the object.

The geometric active model was first proposed by Caselles
et al. [8]. Malladi et al. [9], Caselles [10] and Chenoune
et al. [5] developed different aspects of this method, but
their geometric partial differential equations were proposed
by Caselles et al. [8]. They used the propagation of curves
and surfaces for boundary detection and motion tracking.

Although the deformable model algorithm has undergone
significant development, some problems still remain. The
energy model of parametric active contours is not capa-
ble of handling changes in the topology of the evolving
contours when direct implementations are performed, and
special, often heuristic, topology handling procedures must
be used [10]. The geometric active contours do not work
well for objects that have poor contrast. That is, when the
object boundary is indistinct or has gaps, the contours tend to
leak through the boundary [11]. In addition, it is difficult to
characterise the global shape of an object with the geometric
active contour algorithm.

To avoid the problems associated with the deformable
model algorithm, we propose a feature tracking-based ap-
proach first to measure sparse local deformation of a non
uniform non-rigid object from biomedical MR volumetric
images. In our method, we automatically extract the high
curvature feature points (also called points of interest) from
the initial MR volumetric image, then, use the proposed
matching approach to obtain their homologous positions in
the final MR volumetric image. Finally, the dense deforma-
tion fields of the nonrigid non-uniform object are computed
using a linear approximation approach.

This paper is organised as follows. Section 2 describes fea-
ture extraction and matching. Section 3 introduces inference
of the dense deformation fields using the FF Method. Section
4 presents examples and the results of experiments. Section
5 presents a conclusion regarding the proposed approach.

II. FEATURE EXTRACTION AND MATCHING

A feature point is one of the most important factors in
the present application. It is often used in various areas
related to measurements based on computer vision. In this
paper, the feature point matching based approach is used
to obtain sparse local deformation fields of a nonrigid non-
uniform object. Briefly, we first extract a certain number of
feature points from the initial MR volumetric image and then
match their homologous points in the final MR volumetric

8



image. The displacements corresponding to feature points are
thus measured using their positions in the initial and final
volumetric images, respectively. Here, high curvature points
and edge points in the MR volumetric image are defined as
feature points (FPS).

A. Feature Extraction

In order to automatically pre-extract a certain number of
FPS, we extend the 2D Harris operator [12] to form a 3D
operator. We thus obtain an auto-correlation matrix M of 3D
operator, which is given by

G⊗M = G⊗



I2
x IxIy IxIz

IxIy I2
y IyIz

IxIz IyIz I2
z


 (1)

with eigenvector λ = [λ1, λ2, λ3]. Where Ix, Iy and Iz are
computed by convolving the image with a gradient template
along the x−, y− and z−axes. The Gaussian template G
reduces the influence of noise. Since the eigenvector λ
represents the principle curvature along x−, y− and z−axes,
we define response function RF as

RF = det(M)− k ∗ (trace(M))2 (2)

where k is an empirical constant (k = 0.04 to 0.06
from Harris’s suggestion), det(M) and trace(M) are the
determinant and trace of the matrix M, respectively. Voxels
whose RF exceeds a given threshold will be regarded as FPS.
From Eq.(2), we find that the selected empirical constant k
affects the matching result. Thus, to avoid the influence of
an improper k, in implementation, the response function also
can be defined as

RF =
det(M)

trace(M)
. (3)

B. Feature Matching

Feature matching is the foundation of our approach. The
outcome may determine the accuracy of later obtained defor-
mation fields. Our feature matching method consists of two
steps: First, we perform an initial matching process using a
correlation score between two cube regions around a point
pair. Next, the relaxation technique is used to disambiguate
matches and to obtain a potential match set (PMS). In fact,
this idea is similar to the method proposed by [13] and [14].
Namely, use of a homologous algorithm.

Here, we do not describe the initial matching process
as the correlation tool is a very popular algorithm used in
various areas. In the course of relaxation, the cost function is
defined as the average of strength of matches (SM), see [13].
The SM of a pair depends on its own correlation score
cs(·) and the influence factor of potential matches within
its neighborhood. The influence factor of potential matches
includes the correlation score, residual and relative distance.

However, in later practice, we note that direction con-
sistency of deformation fields corresponding to potential
matches within the neighborhood of a given match m(p,p′)
would be more important for SM(p,p′) than its residual.
This is mainly because the residual is likely to be affected

by noise, whereas direction will not. Moreover, in spite of
the direction of deformation fields (DODF) of non-rigid
non-uniform objects being inconsistent, they are usually
consistent within a local region. Therefore, if m(pi,p′j) is
a potential match, then its corresponding DODF must be
consistent with the DODF corresponding to the potential
matches within its neighborhood. In other words, if match
m(p,p′) is a good match, we expect to see more potential
matches within its neighborhood N (p,p′), whose corre-
sponding DODF are consistent. On the contrary, we expect
to see only a few such matches, or even none at all, in their
neighborhood.

Based on this idea, different to the pre-existing work, in
this paper, we use DODF corresponding to feature point
matches as a constraint to improve the robustness of the point
matching algorithm, especially when it is used for a non-rigid
non-uniform object. In this way, we yield

SM(pi,p′j) = cs(pi,p′j) + α
s∑

k=1

cs(nk,n′k) · w(nk, n′k) (4)

where w(nk, n′k) integrates the direction consistency and rel-
ative distance of potential matches (n, n′) within N (pi,p′j),
which is given by

w(nk, n′k) = exp(−Jk), k = 1, 2, · · ·, n (5)

with notation

Jk =
{

diff(pi,p′j ;nk,n′k) if O(nk, n′k) = 0
O(nk, n′k) · diff(pi,p′j ;nk,n′k) otherwise

where diff(·) represents the relative distance between nk ⇔
pi and n′k ⇔ p′j , and O(·) represents the constraint of
the direction of potential matches. Let start position of a
deformation field be the origin of Cartesian space, then, its
direction can be approximated to 8 states in 2D case or 26
states in 3D case, respectively, as shown in Figure 1.

Fig. 1. The direction of deformation field (left: 2D case, right: 3D case)

Let notation φp→p′ be the DODF corresponding to the
deformation p → p′, then we have

φp→p′ = {α | α = 1, 2, 3 , ..., 26} (6)

where notation p → p′ represents the deformation caused
by p moving to p′.

Furthermore, let An→n′
p→p′ be the angle between p → p′

and n → n′, and An→n′
p→p′ takes 0, 1, 2 or 3 corresponding
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to zero degrees, lower than 90 degrees, equal to 90 degrees
and higher than 90 degrees, respectively, Then, the direction
constraint factor O(·) of a potential match in SM(p,p′)
computation is defined as

O(n, n′) = An→n′
p→p′/3. (7)

The result of performing the above feature matching
algorithm is that a PMS is obtained, which will be used
to measure local sparse deformation fields and to infer the
dense interior deformation fields of a non-uniform object.

III. INFERRING DENSE DEFORMATION FIELDS USING THE
FE METHOD

In order to obtain dense interior deformation fields, an ap-
proximation approach using an FE model will be considered
in this paper.

A. FE Modeling

As the first step of obtaining dense deformation fields, a
finite element (FE) model of an object should be built using
irregular tetrahedra. Here, since the model will be used to
approximate the interior deformation fields, we use FPS
from the PMS as the input in an FE model. The irregular
tetrahedron algorithm used in FE modeling actually is an
extension of the Delaunay triangulation irregular network
(TIN) in 3D case, in brief it is given by the following
pseudo code.
Begin
N ← the number of FPS in the initial volume;
j ← 0; // The number of formed tetrahedrons.
Empty the Triangle List; // List of triangles which consist

of tetrahedrons.
for(i = 0 to N)

Searching 3 FPS ⇒ first triangle; //The triangle
//must satisfy the properties of Delaunay TIN.

for(i = 0 to N)
{

if (The points satisfy the D properties) Then
{

Form first tetrahedron;
Triangle List ← three new triangles;
j ← j + 1;

}
}
while (Triangle List isn′t empty)
{

Pop a triangle from Triangle List;
for(i = 0 to N)
{

if(The points satisfy the D properties) Then
{

Form a new tetrahedron;
if (triangles are not in the Triangle List);

Triangle List ← triangles;
j ← j + 1;

}
}

End.

The notation D properties, represents properties which
must be satisfied in the course of modeling a tetrahedron
by using a point and a triangle. These properties include:
(1) The circum-sphere of a tetrahedron formed by the point
and triangle must be empty. In other words, it must not
contain other nodes apart from the four nodes of the formed
tetrahedron. (2) The distance from a circum-sphere center
to the triangle must be the minimum of all circum-spheres
which may be constructed using the triangle and points.

Figure 2 illustrates the irregular tetrahedra FE model of
part of a human calf.

Fig. 2. Irregular tetrahedron model of part of human calf

B. Sparse local displacement measurement

Let D be the displacement of a voxel before and after
movement, x1 = (x1, y1, z1) and x2 = (x2, y2, z2) be the
coordinate of the voxel in the initial and final MR volumetric
image, respectively. Then, the displacement of a voxel is
defined using the Euclidean distance between the voxel and
its homologous point (Eq.8).

D = ‖R(x1)− x2‖ (8)

where R(·) represents the rotation transformation between
the initial and the final MR volumetric images. In this paper,
R(·) is calculated using the unit quaternion proposed by
Horn [15].

Here, we note that the translation transformation between
two volumes isn’t considered in the Eq.(8). This is because
the translation between the initial and final MR volumetric
image never affects the deformation of a nonrigid object.
Thus, we don’t have to consider translation but the rotation.

Through the above computation, we yield a displacement
vector ui = [dx, dy, dz]T at each FEM node within
the model. Displacement ui on a tetrahedron node will be
used to approximate the displacement of a voxel inside the
tetrahedron.

C. FE displacement

To obtain the inner dense deformation fields, we propose a
piecewise linear approximation based on a 3D finite element
method.
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For a tetrahedron ♦PiPjPkPl within the model, let Pi be
a nodal point of the tetrahedron, and [xi, yi, zi]T be coordi-
nates of point Pi. Then, the signed volume of tetrahedron
♦PiPjPkPl is given by

♦PiPjPkPl =
1
3!

∣∣∣∣∣∣∣∣

xi yi zi 1
xj yj zj 1
xk yk zk 1
xl yl zl 1

∣∣∣∣∣∣∣∣
(9)

Thus, for a volume voxel P at x = (x, y, z) lying anywhere
within an arbitrary tetrahedron ♦PiPjPkPl of the model, its
displacement may be approximated by weighting the finite
element’s node displacements ui by their shape function

u(x) =
4∑

n=1

unNn (10)

where Ni is the shape function of nodal n = (i, j, k, l),
which is given by

Nn =
♦PPjPkPl

♦PiPjPkPl
, (11)

Hence, approximation displacements for all voxels xi in the
volume are obtained.

IV. EXPERIMENTS AND RESULTS

Some practical examples were designed to demonstrate
the capabilities of the proposed approach. All experiments
were carried out using our own software developed using
Visual C++, which runs on Microsoft Windows XP. And
all experimental results described below were obtained on a
Dell PC with a 2.80 GHz Intel Pentium D CPU and 1 GB
of RAM.

In experiments, all MR volumetric images were sampled
from one volunteer’s calf using an MR scanner under initial
and deformed cases. The initial and deformed data were
sampled from the same location of the volunteer’s calf. Both
the initial and deformed MR volumetric images were of FOV
20× 20 cm and slice gaps of 2 mm. To ensure the sufficient
resolution along the z-axis, we performed linear interpolation
between each two initial slices. As a result, we obtained
256 × 256 × 57 voxels of initial and deformed MR volu-
metric images respectively. Figure 3 illustrates the volume
visualization result of the data used in the experiments.

Since feature matching plays a key role in the pro-
posed method, we compared our feature matching algorithm
with the homologous approach suggested by George.Q.Chen
in [14]. All the experimental results presented below are
based on the PMS obtained using these two feature matching
approaches.

Fig. 3. Original volumes used in the experiment (left: initial volume, right:
deformed volume)

Feature matching is the first phase of deformation fields
measurement. In this phase, the size of a match cube is set
as 9 × 9 × 3 pixels. Whereas, the size of a search cube
is dynamic varies depending on the distance of the feature
point far from the moment center of the slice which the
feature point lies on. The initial size of a search cube is set
as 17×17×3 voxels. Table I show the results obtained using
different feature matching methods.

After obtaining PMS, a finite element model of a nonrigid
object is reconstructed accordingly, and the displacements
of all nodes in the model are also computed by using
approaches introduced in section III. Figure 4 shows the
displacement of each FEM node.

Fig. 4. Displacement of an FEM node (Left: PMS obtained using the
proposed method, there are 4344 tetrahedra in total; Right:PMS obtained
using the method proposed in [14], there are 4798 tetrahedra in total)

Figure 5 illustrates the visualization result of dense de-
formation fields. Here, the dense deformation vector fields
are first computed using the above linear approximation
approach by our own software, then, it is saved into a file as
Metalmage format and visualized in free software Paraview.
To facilitate observation of the inner deformation of different
regions, only 30000 vectors are shown in the figure.

To evaluate the accuracy of the deformation fields, the
evaluation approach suggested in [16] is used in our exper-
iment. That approach uses the root mean squared (RMS) of
residual differences (Eq. 12) to evaluate the quality of the
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Fig. 5. Dense deformation fields (Deformation magnitudes are mapped
using rainbow color coding, with dark blue corresponding to 0-pixel, and
dark red corresponding to 30-pixels deformation magnitude.)

registration result using deformation fields.

ERMS =

√
1
N

∑

x∈Ω

(Ia(x)− Ir(x))2 (12)

In implementation, we deform the initial volume to obtain
a computation deformation volume using measured dense
deformation fields. Thereafter, an RMS algorithm is applied
between the actual deformed volume and two computation
results. Table I gives the comparison results. It is noted that,
due to rotation and translation transformation along the z-
axis, after resampling, some slices are out of the boundary
of z. Thus, in this experiment, slices from 10 to 50 are used
to compute ERMS.

Finally, to observe if the deformation fields are valid or
not, Figure 6 presents images of the calf part actual deforma-
tion slices, computation slices and the differences between
them. The computation slices were re-sampled results of the
initial volume dependent on the measured dense deformation
fields.

V. CONCLUSIONS AND FUTURE WORK

A. Conclusions

This paper proposed a feature match based approach to
measure the deformation fields of a non-uniform nonrigid
object from 3D MR volumetric images. Main contributions
include:

(1) Presentation of a new approach in feature matching
based deformation fields measurement from MR volumet-
ric images. Different from many registration approaches
currently used to measure deformation fields, this paper

(a)the actual deformed slices of the part of a calf

(b) computation result based on the proposed method

(c) difference between (b) and (a)

(d) computation result based on the method proposed in [14]

(e) difference between (d) and (a)

Fig. 6. Resample and Difference (From left to right, slice numbers are 15,
30 and 45, respectively)

proposed inferring dense deformation fields dependent on
the sparse local deformation fields corresponding to the
feature points in the MR volumetric image. The advantages
include:(a)The computation cost of finite feature points is
lower than that of voxel-by-voxel as used by most registration
approaches. (b)The proposed approach is noise insensitive
compared with traditional registration approaches.

(2) Improvement to the robustness of a feature matching
algorithm for a nonrigid non-uniform object, local direc-
tion consistency and relative distance are introduced into
the feature matching algorithm as constraints, making the
algorithm more suitable for application to nonrigid objects
than originally proposed in [13] and [14].

Our preliminary experimental results shown in section IV
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TABLE I
COMPARISON RESULT FOR DIFFERENT FEATURE MATCHING APPROACHES

Approaches Point Numbers in IV Point Numbers in FV Potential Matches Tetrahedra RMS
Approach in this paper 1000 5000 771 4344 26.004284253441

Approach in [14] 1000 5000 827 4798 26.351873220353
( IV: Initial volume; FV: Deformed volume.)

reveal that the improved feature matching method is efficient.
Moreover, the differences between the actual slices and the
computation slices (Figure 6) indicate that we can deform
the initial volume to the deformation volume using obtained
deformation fields. It further reveals that the deformation
fields are valid.

Further improvement includes applying the proposed ap-
proach to other data-sets in order to further test the robustness
of this method.

B. Future Works

Physical parameters estimation is our final goal. Thus our
next work should be to estimate the physical parameters of
non-rigid non-uniform objects based on the Finite Element
Model (FEM) shown in Eq. (13).

f = kd (13)

where vector f represents the force acting on the FEM
nodes, k represents the stiffness matrix which depends on the
physical parameters of the object, and d is the displacement
vector corresponding to the FEM nodes.

It is obvious that the deformation fields obtained using
the approach presented in this paper will act as the input for
physical parameters estimation.
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Modeling of Linear and Belt Object Deformation Based on
Differential Geometry

Hidefumi Wakamatsu, Eiji Arai, and Shinichi Hirai

Abstract—A modeling of linear and belt object deformation
based on differential geometry is proposed. It is difficult to
manipulate linear objects such as cables and belt objects such
as film circuit boards successfully by a robot because they
can be easily deformed and must be appropriately deformed
for assembly. Therefore, estimation of linear/belt object de-
formation is required. First, a modeling method to describe
linear object deformation including flexure, torsion, and ex-
tension is proposed by extending differential geometry. Next,
some computational results are compared with experimental
results to demonstrate the accuracy of our proposed model.
Knotted/knitted shapes of a linear object are also computed
to show the versatility of this method. Finally, this method is
applied to belt object deformation and its validity is verified
with measuring experiments.

I. INTRODUCTION

Many manipulative operations deal with deformable linear
objects such as wires, cords, and threads with flexural,
torsional, and extensional deformations in 3D space. For
example, wires and cables are manipulated in the manufac-
turing of electrical apparatuses and automobiles. In addition,
flexible thin objects with belt-like shape such as film circuit
boards and flat cables are installed into various electronic
devices. Linear/thin objects are defined as objects that are
much larger/smaller along one of the orthogonal directions
than along the other two. Modeling of linear/thin object de-
formation is required for many purposes, including planning
of manipulative operations and design of products.

There has been a great deal of research regarding the
modeling of linear/thin object deformation. Linear objects
have been approximated using beams in the engineering
community; models exist to describe small deflection of
beams[1], and also large deformation using nonlinear beam
finite elements[2]. With respect to thin objects, Kirchhoff
theory for thin plates and Reissner-Mindlin theory for thick
plates have been used[3]. For very thin plates, the inexten-
sional theory was proposed[4]. In this theory, it is assumed
that the middle surface of a plate is inextensional, that is,
the surface of the plate is developable. Displacement of
linear/thin objects can be calculated using FEM based on
these models/theories. However, the high aspect ratio of
linear objects such as wire and thread, and thin objects such
as paper and cloth often causes instability in computation of
deformed shapes. Thus, various modeling techniques have

H. Wakamatsu and E. Arai are with Dept. of Materials &
Manufacturing Science, Graduate School of Eng., Osaka Univ.,
2-1 Yamadaoka, Suita, Osaka 565-0871, Japan {wakamatu,
arai}@mapse.eng.osaka-u.ac.jp

S. Hirai is with Dept. of Robotics, Ritsumeikan Univ., 1-1-1 Noji Higashi,
Kusatsu, Shiga 525-8577, Japan hirai@se.ritsumei.ac.jp

been adapted for linear or thin objects. For example, the
deformed shape of a thread suspended by two points has been
analyzed using calculus of variations, and shown to be de-
scribed by a catenary[5]. The deformation of clothes has also
been described using catenaries[6]. Nonlinear shell theory
has been applied to the modeling of fabric deformation[7].
A particle-based model of cloth has been proposed for
drape simulation[8]. Implicit numerical integration has been
introduced to the particle-based cloth model to reduce
computation time[9]. Fast algorithms have been introduced
to describe linear object deformation using the Cosserat
formulation[10]. Cosserat elements possess six degrees of
freedom; three for translational displacement and three for
rotational displacement. Flexure, torsion, and extension of a
linear object can be described by use of Cosserat elements.
In differential geometry, curved lines in 2D or 3D space have
been studied to describe their shapes mathematically[11].
Moll et al. have proposed a method to compute the stable
shape of a linear object under some geometrical constraints
quickly based on differential geometry[12].

In this paper, a modeling of linear object deformation
based on differential geometry is described and applied to
a structure composed of linear objects such as a fabric
and a rectangular thin object, namely, a belt object. First,
differential geometry is extended to describe linear object
deformation including flexure, torsion, and extension. Next,
some computational results are shown to demonstrate the
feasibility of the proposed modeling technique and they
are compared with experimental results to demonstrate the
accuracy of the model. Moreover, knotted/knitted shapes of
a linear object are computed using our proposed approach.
Finally, this approach is applied to deformation of an in-
extensible rectangular belt object and the validity of the
object model referred to as fishbone model is verified with
measuring experiments.

II. MODELING OF LINEAR OBJECT
DEFORMATION

A. Differential geometry coordinates

In this section, the deformation of a linear object in 3D
space will be formulated. As described by Frenet-Serret
formulas in differential geometry, any curve in 3D space can
be specified by Frenet frame field[11]. But, extension along
a linear object and torsion around its central axis cannot be
described in the Frenet frame field. Instead, we will specify
the relationship between two frame fields defined in natural
and deformed states of a linear object.
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Fig. 1. Coordinate systems describing linear object deformation

First, we assume that the shape of cross-section of a linear
object is not changed, namely, deformation in any direction
perpendicular to its central axis is negligible. Let L be the
length of the object and s be the distance from one end point
of the object along its central axis. Let P(s) be the point on
the object at distance s. In order to describe the deformation
of a linear object, the global space coordinate system and
the local object coordinate systems at individual points on
the object are introduced as shown in Fig.1. Let O − xyz
be the coordinate system fixed in space and P − ξηζ be the
coordinate system fixed at an arbitrary point P(s) on the
object. Assume that the object is straight along the z-axis
in its natural state whereby the object has no deformation.
Select the direction of coordinates so that the ξ-, η-, and ζ-
axes are parallel to the x-, y-, and z-axes, respectively, in the
natural state. Deformation of the object is then represented
by the relationship between the local coordinate system P−
ξηζ at each point on the object and the global coordinate
system O− xyz. This is referred to as differential geometry
coordinate representation.

Let us describe the orientation of the local coordinate
system with respect to the space coordinate system by use
of Eulerian angles, φ(s), θ(s), and ψ(s). The rotational
transformation from the coordinate system P − ξηζ to the
coordinate system O−xyz will be expressed by the following
rotation matrix:

A(φ, θ, ψ) =
 CθCφCψ − SφSψ −CθCφSψ − SφCψ SθCφ

CθSφCψ + CφSψ −CθSφSψ + CφCψ SθSφ

−SθCψ SθSψ Cθ


 . (1)

For the sake of simplicity, for example, cos θ and sin θ are
abbreviated as Cθ and Sθ , respectively. Note that the Eulerian
angles depend on distance s. Let ξ, η, and ζ be unit vectors
along the ξ-, η-, and ζ-axes, respectively, at point P(s). These
unit vectors are given by the first, second, and third columns
of the rotation matrix, respectively. Namely,

A(φ, θ, ψ) =
[

ξ η ζ
]
.

Let us describe the curvature of a deformable linear object

and its torsional angle in order to express flexural and
torsional deformations of the object. Let ωξ, ωη, and ωζ

be infinitesimal ratios of rotational angles around the ξ-,
η-, and ζ-axes, respectively, at point P(s) to distance s.
They correspond to differentiation of rotational angles around
these three axes with respect to distance s and they are
described as follows:
 ωξ

ωη

ωζ


 =


 −SθCψ

SθSψ

Cθ


 dφ

du
+


 Sψ

Cψ

0


 dθ

du
+


 0

0
1


 dψ

du
.

(2)
Let κ and ω be the curvature and the torsional angle at point
P(s), respectively. The curvature and torsional angle can then
be described using infinitesimal angle ratios as follows:

κ2 = ω2
ξ + ω2

η =
(

dθ

ds

)2

+
(

dφ

ds

)2

sin2 θ, (3)

ω2 = ω2
ζ =

(
dφ

ds
cos θ +

dψ

ds

)2

. (4)

Note that the curvature κ and the torsional angle ω both
depend on distance s.

In order to express the extensional deformation of a linear
object, a strain at each point P(s) is introduced. Let ε be
extensional strain at point P(s) on a linear object along its
central axis. It turns out that the unit vector along the ζ-axis
at the natural state can be transformed into the following
vector due to the object deformation:

(1 + ε) ζ(s) = (1 + ε)


 SθCφ

SθSφ

Cθ


 . (5)

Let x(s) = [x(s), y(s), z(s)]T be the position vector of point
P(s). The position vector can be computed by integrating
vector (1 + ε) ζ(s). Namely,

x(s) = x0 +
∫ s

0

(1 + ε) ζ(s) ds, (6)

where x0 = [ x0, y0, z0 ]T is the position vector at the end
point P(0).

From the above discussion, it is found that the geometrical
shape of a deformed linear object can be represented by
four functions, namely, Eulerian angles φ, θ, and ψ, and
extensional strain ε. Note that each function depends upon
parameter s.

B. Potential energy and geometric constraints

In this paper, the variational principle in statics will
be applied to the modeling of linear object deformation.
According to this principle, under the imposed constraints,
the potential energy of a linear object attains its minimum
value in its stable deformed state.

First, the potential energy of a linear object is formulated.
Applying Bernoulli and Navier’s assumption, it turns out that
the potential energy U can be described as follows:

U = Uflex + Utor + Uext + Ugrav (7)
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where Uflex, Utor, and Uext represent the flexural, torsional,
and extensional energy of the object, respectively, and U grav

denotes its gravitational energy.
The object’s total flexural energy Uflex and total torsional

energy Utor can be computed by integrating, respectively,
flexural energy and torsional energy at point P(s) over the
object. Assuming that the flexural energy and the torsional
energy are proportional to the bending moment and twisting
moment at each point P(s), respectively, the energies can be
described as follows:

Uflex =
1
2

∫ L

0

Rfκ2 ds, (8)

Utor =
1
2

∫ L

0

Rtω
2 ds (9)

where Rf and Rt represent the flexural and torsional rigidity
at point P(s), respectively. Note that Rf and Rt may vary
with respect to distance s. Assuming that the extensional
energy is proportional to the extensional strain at each point
P (s), extensional energy Uext is given by

Uext =
1
2

∫ L

0

Reε
2 ds (10)

where Re denotes the extensional rigidity of the object,
which may depend on distance s. Assuming that gravity
forces act along the x-axis, the gravitational energy is given
by

Ugrav =
∫ L

0

Dx ds (11)

where D represents weight per unit length of the object. The
quantity D may also vary with distance s. Thus, the potential
energy can also be represented in terms of the four variables
φ(s), θ(s), ψ(s), and ε(s).

The interaction between the linear object and other objects
such as fingertips or obstacles imposes geometric constraints
on the linear object. Let us formulate these geometric con-
straints. The relative position between two points on the
object is often controlled during a manipulative operation of
the object. Consider a constraint that specifies the positional
relationship between two points on the object. Let l =
[lx, ly, lz ]T be a predetermined vector describing the relative
position between two operational points, P(sa) and P(sb).
Recall that the spatial coordinates corresponding to distance
s are given by (6). Thus, the following equation must be
satisfied:

x(sb) − x(sa) = l. (12)

The orientation at one point on the object is often controlled
during an operation as well. This constraint is simply de-
scribed as follows:

A(φ(sc), θ(sc), ψ(sc)) = A(φc, θc, ψc), (13)

where φc, θc, and ψc are predefined Eulerian angles at one
operational point P(sc).

Contact between a linear object and rigid obstacles in
operation space also yields other geometric constraints. Note

that any point on the object must be located on or outside
each obstacle. Let us describe the surface of an obstacle fixed
in space by function f(x) = 0. Assume that the value of the
function is positive inside the obstacle and negative outside
it. The condition that a linear object is not interfered by this
obstacle is then described as follows:

f(x(s)) ≤ 0, ∀s ∈ [0, L], (14)

where x(s) is described in (6). Note that the condition that
an object is not interfered by obstacles is described by a set
of inequalities since mechanical contacts between the objects
constrain the motion of the object unidirectionally.

Furthermore, self-interaction of a linear object should be
considered. Assume that the cross section of a linear object
is circular. Let r(s) be the radius of the cross section at point
P(s). Then, in order to avoid interference with itself, a linear
object must satisfy the following condition:

|x(si) − x(sj)| ≥ r(si) + r(sj),
∀si, sj ∈ [0, L], s.t. |si − sj | ≥ r(si) + r(sj). (15)

From the above discussion, it is found that the geometric
constraints imposed on a linear object are given by not
only equational constraints such as (12) and (13) but also
inequality constraints such as (14) and (15). The deformed
shape of the object is, therefore, determined by minimizing
the potential energy described in (7) under these geometric
constraints imposed on the object. Namely, computation of
the deformed shape of an object results in a variational
problem under equational and inequality constraints.

III. VERIFICATION OF LINEAR OBJECT MODEL

A. Computation algorithm

Computation of the deformed shape of a linear object
results in a variational problem as mentioned in the previous
section. One method to solve a variational problem is Euler’s
approach, which is based on the stationary condition in
function space. Recall that the geometric constraints resulting
from mechanical contacts are unidirectional and mathemat-
ically describable by inequalities such as (14) and (15).
These conditions are nonholonomic constraints[13]. Thus,
the shape of an object that minimizes internal energy does not
necessarily satisfy the stationary condition. This implies that
Euler’s approach, which is based on the stationary condition,
is not applicable.

In this paper, an algorithm based on Ritz’s method[14]
and a nonlinear programming technique will be developed.
Let us express functions φ(s), θ(s), ψ(s), and ε(s) by linear
combinations of basic functions e1(s) through en(s):

φ(s) =
n∑

i=1

aφ
i ei(s)

�
= aφ · e(s), (16)

θ(s) =
n∑

i=1

aθ
i ei(s)

�
= aθ · e(s), (17)

ψ(s) =
n∑

i=1

aψ
i ei(s)

�
= aψ · e(s), (18)
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ε(s) =
n∑

i=1

aε
i ei(s)

�
= aε · e(s), (19)

where aφ, aθ , aψ, and aε are vectors consisting of coeffi-
cients corresponding to functions φ(s), θ(s), ψ(s), and ε(s),
respectively, and vector e(s) is composed of basic functions
e1(s) through en(s). Substituting the above equations into
(7), potential energy U is described by a function of coeffi-
cient vectors aφ, aθ , aψ, and aε. The geometric constraints
are also described by conditions involving the coefficient
vectors. In addition, discretizing (14) and (15) by dividing
interval [0, L] into N small intervals yields a finite number
of conditions. As a result, a set of the geometric constraints
is expressed by equations and inequalities in terms of the
coefficient vectors.

Consequently, the deformed shape of a linear object can
be derived by computing a set of coefficient vectors aφ,
aθ, aψ, and aε that minimizes the potential energy under
the geometric constraints. This minimization problem under
equality and inequality constraints can be solved by the use
of a nonlinear programming technique such as the multiplier
method[15]. In this method, a minimization problem under
geometric constraints is converted into an unconditional
minimization problem with Lagrange multipliers. The La-
grange multipliers denote the components of reaction forces
corresponding to individual geometric constraints. The shape
of the deformed object corresponding to a set of coefficient
vectors can be computed by (6).

B. Computation of Linear Object Deformation

In this section, numerical examples will demonstrate how
the proposed method computes the deformed shape of a
linear object. The following set of basic functions are used
in the computation:

e1 = 1, e2 = s,

e2i+1 = sin
2πis

L
,

e2i+2 = cos
2πis

L
, (i = 1, 2, 3, 4). (20)

We apply the multiplier method and BFGS formula in the
quasi-Newton method to the nonlinear optimization. The
multiplier method converts a minimization problem with
geometric constraints into an unconditional minimization
problem. The BFGS formula solves the converted uncon-
ditional minimization problem. All optimizations start from
the natural state of a linear object.

Let us consider deformation of a linear object with flexure
and torsion. The potential energy of the object is then given
by the sum of the flexural and torsional energies of the object;
U = Uflex + Utor. Let us align the central axis at both end
points of a linear object in the initial state. Then, let us move
one end point along this axis in order to shorten the distance
between the two end points specified by l. Computed shapes
of a linear object of length L are shown in Fig.2. Values
of the distance l corresponding to the computed shapes are
0.6L, 0.5L, 0.4L, 0.3L, 0.2L, and 0.1L. The shape of a

linear object changes from a knot-free shape into a one-
knot shape while the distance between the two end points
decreases, as shown in the figure. In a one-knot shape, the
object has not only flexural deformation but also torsional
deformation. This topological shape transition occurs when
the potential energy of a one-knot shape becomes smaller
than that of a knot-free shape. Our proposed approach can
simulate such shape transition.

C. Measurement of Linear Object Deformation

In this section, the computation results will be experimen-
tally verified by measuring the deformed shape of a linear
object. We have measured the shape of a metal wire 871mm
long. The wire’s flexural rigidity Rf and the torsional rigidity
Rt are 6.6× 10−4 N·m2 and 2.3× 10−4 N·m2, respectively.
Weight D per unit length of the wire is 1.0×10−2 N/m. Two
manipulators control the position and orientation of both end
points of the wire. In the initial state, one end point is rotated
by ω0 while keeping the wire straight. Next, the distance
between the two end points lz is decreased by controlling
the motion of the two manipulators. Then, the object is both
flexed and twisted. This implies that its shape is no longer
limited to one plane. The shape of the deformed wire is
measured by two cameras. The optical axes of the cameras
intersect at one point at right angles. Let one optical axis be
the x-axis and the other axis be the y-axis. The projections
of the deformed shape onto the z-x and z-y planes can then
be directly measured by the two cameras.

Fig.3 shows the computed and measured shapes of a
deformed wire at ω0 = πrad. The solid and dotted lines
represent the computed and measured values, respectively.
From the measured values, the distances between the two
end points along the x-axis and the y-axis; lx and ly , and
the orientations at the end points; A(φ(0), θ(0), ψ(0)) and
A(φ(L), θ(L), ψ(L)) have been estimated. The estimated
values have been used in the computation of the deformed
shapes of a wire. The gravitational effect is assumed to be
negligible. The difference between the computed and experi-
mental values along the x- and y-axes is 50mm at most. The
ratio of the difference in the wire length is approximately 6%.
This difference may be caused by accuracy of estimation of
the orientations at the end points. We can easily measure
the direction of vector ζ, namely, the direction of the central

Fig. 2. Computational result of topological shape transition
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Fig. 3. Computed and measured 3D shapes of wire

axis, but it is difficult to estimate directions of vectors ξ and
η.

IV. APPLICATION TO LINEAR OBJECT
STRUCTURE

A. Knotted shape

Deformable linear objects such as threads and yarns are
used to suture or ligate organs and tissues in surgery and
to weave or knit textiles. For training of surgery or textile
design, modeling of such objects is required. Knot tying of
a thread has been simulated using a particle-based model
of the thread[16]. Shi et al. has been developed a real-time
simulator with visual and force feedback for suturing, that
is, knotting and unknotting threads[17]. The deformed shape
of threads in a fabric has been described geometrically[18].
Wada et al. modeled plain knitted fabrics as combination of

Fig. 4. Computational result of overhand knot

yarns deformed in 2D space[19]. In this section, we will ap-
ply our method of linear object deformation to more complex
shapes such as knots and knitted fabrics to demonstrate its
versatility.

First, let us consider the knotted shape of a linear object.
A knotted linear object has some crossings. For example, an
overhand knot has three crossings. The object contacts with
itself at each crossing. Therefore, self-contact of a linear
object must be considered to express the knotted shapes.
Assume that the cross section of a linear object is circular.
Let r(s) be the radius of the cross section at point P(s). Let
su

i and sl
i be distance at the upper and the lower crossing

point at i-th crossing, respectively. To contact with itself at
the crossing, the following equations must be satisfied:

z(su
i ) − z(sl

i) = 0, (21)

x(su
i ) − x(sl

i) = 0, (22)

y(su
i ) − y(sl

i) = r(su
i ) + r(sl

i). (23)

The sequence of crossing points along the object must be
maintained. If the upper crossing point is closer to the left
endpoint P(0) than the lower crossing point, the following
condition must be satisfied:

su
i < sl

i. (24)

Note that su
i and sl

i are parameters which determine the
stable knotted shape as well as coefficients a described by
(16) through (19). Then, the knotted shape can be derived
by computing a, su

i , and sl
i which minimize the potential

energy under constraints including (22) through (24). Fig.4
shows the computational result of an overhand knot.

B. Knitted shape

A fabric is a structure composed of linear objects such as
yarns. Fig.5 illustrates a plain knitted fabric. Assume that the
radius of all yarn is constantly equal to r. As shown in this
figure, the same structure called a knitted loop is arranged in
the plain knitted fabric. The column and the row directions
are referred to as wale and course, respectively. Let lw and
lc be loop intervals in wale direction and in course direction,
respectively. One loop, which is hatched, has eight crossings
1 through 8 as shown in Fig.5. Let s1 through s8 be distance
at corresponding crossing points, respectively. Recall that a
plain knitted fabric has iterative structure. So, we assume that
the shape of the fabric can be represented by repetitions of
the same shape of one loop. Then, the following conditions
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Fig. 5. Loop structure of plain knitted fabric

Fig. 6. Computational result of plain knitted fabric

must be satisfied:

z(si) − z(si+2) = 0, (i = 1, 2, 5, 6), (25)

x(si) − x(si−2) = lw, (i = 3, 4), (26)

x(si) − x(si+2) = lw, (i = 5, 6), (27)

y(si) − y(si−2) = 2r, (i = 3, 7), (28)

y(si) − y(si+2) = 2r, (i = 2, 6), (29)

si < si+1, (i = 1, · · · , 7). (30)

Note that s1 through s8 are determined by minimization of
the potential energy of one loop. Fig.6 shows the computa-
tional result of a plain knitted fabric. In this figure, one loop
is arranged in 2 × 2 matrix. Thus, various deformation of
linear objects can be computed using our proposed method.

V. MODELING OF BELT OBJECT DEFORMATION

A. Differential Geometry Coordinates

In section II, we have proposed a modeling method for
linear object deformation. This method can be applied to a
sheet object if the shape of the object is regarded as rectangle,
namely, the object has belt-like shape. However, in section II,
it is assumed that the shape of cross-section of a linear object
is fixed. This assumption is not appropriate to represent 3D
shape of a belt object because the shape of its cross-section
can change due to deformation. Therefore, in this section,
we will adapt our method for linear object deformation to
belt object deformation.

First, we formulate the deformation of a belt object in 3D
space. Assumptions in this section are as follows:

ξ η

ζ

O

u

P(u, 0)
x y

z

v

x0

Lu

L
v

Fig. 7. Coordinate systems describing belt object deformation

• A belt object has rectangular shape.
• The width of the belt object is sufficiently small com-

pared to its length.
• The object is inextensible. Namely, it can be bent and

twisted but cannot be expanded or contracted.
• Both ends of the object cannot be deformed because

connectors are attached to the ends.

We focus on deformation of the central axis in a longitudinal
direction of a belt object and attempt to represent the whole
shape of the object using it.

Let Lu and Lv be the length and the width of the object,
respectively. Let u be the distance from one end of the
object along the central axis in its longitudinal direction,
corresponding to s in case of a linear object. Let v be the
distance from the central axis in a transverse direction of the
object. The global space coordinate system and the local ob-
ject coordinate systems at individual points on the object are
introduced as shown in Fig.7. Assume that the central axis in
a longitudinal direction of the object is parallel to the y-axis
and the normal vector of any point on the object is parallel
to the x-axis in its natural state. Deformation of the object is
then represented by use of Eulerian angles, φ(u, 0), θ(u, 0),
and ψ(u, 0). Let x(u, 0) = [ x(u, 0), y(u, 0), z(u, 0) ]T be
the position vector of point P(u, 0). The position vector can
be computed by integrating vector η(u, 0). Namely,

x(u, 0) = x0 +
∫ u

0

η(u, 0) du, (31)

where x0 = [ x0, y0, z0 ]T is the position vector at the end
point P(0, 0).

Infinitesimal ratios of rotational angles ωξ, ωη, and ωζ are
also defined. In case of a linear object, ωξ and ωη represents
flexure of the object and ωζ corresponds to torsion of the
object. In case of a belt object, ωζ and ωη correspond to
flexure and torsion of the object, respectively. Note that ω ξ

indicates curvature of the central axis of the object in uv-
space.

B. Description of Surface Bending

Next, we consider general description of 3D surface. Let
x(u, v) be the position vector of point P(u, v) on a surface.
Let xu(u, v) and xv(u, v) be tangent vectors at point P(u, v)
along u- and v-axes, respectively, and let e(u, v) be the
normal vector at point P(u, v). According to differential
geometry, the normal curvature κ in direction d = axu+bxv

is represented as follows:

κ =
La2 + 2Mab + Nb2

Ea2 + 2Fab + Gb2
, (32)
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where E, F , and G are coefficients of the first fundamental
form and L, M , and N are those of the second fundamental
form of the surface. These coefficients are defined as follows:

E = xu · xu, F = xu · xv, G = xv · xv, (33)

L =
∂xu

∂u
· e, M =

∂xu

∂v
· e, N =

∂xv

∂v
· e. (34)

The normal curvature κ depends on the direction d and its
maximum value κ1 and its minimum value κ2 are called the
principal curvatures. Direction d1 of the maximum curvature
κ1 and direction d2 of the minimum curvature κ2 are referred
to as principal directions. The principal curvatures and the
principal directions specify bend of a surface. A surface is
also characterized by Gaussian curvature K(u, v) and the
mean curvature H(u, v). They are related to the principal
curvatures κ1 and κ2 by

K = κ1κ2 =
LN − M2

EG − F 2
, (35)

H =
κ1 + κ2

2
=

EN − 2FM + GL

2(EG − F 2)
. (36)

Vectors xu, xv, and e correspond to η, ζ, and ξ in this
paper, respectively. Then, coefficients of the first fundamental
form are E = 1, F = 0, and G = 1, respectively. Moreover,
the derivation of unit vectors η and ζ can be described using
infinitesimal ratios of rotational angles as follows:

∂η

∂u
= −ωζξ + ωξζ, (37)

∂ζ

∂u
= ωηξ − ωξη =

∂ξ

∂v
. (38)

Substituting (37) and (38) into (34), L and M can be
represented as a function of infinitesimal angle ratios as
follows:

L = (−ωζξ + ωξζ) · ξ = −ωζ, (39)

M = (ωηξ − ωξη) · ξ = ωη. (40)

In contrast, N cannot be described by Eulerian angles. So,
we introduce the fourth parameter δ(u, 0): N = δ(u, 0).
It corresponds to the curvature in a transverse direction.
Consequently, Gaussian curvature K and the mean curvature
H is described by

K = −ωζδ − ω2
η, (41)

H =
−ωζ + δ

2
. (42)

Thus, bending of a surface is characterized by Eulerian
angles φ(u, 0), θ(u, 0), and ψ(u, 0) and the curvature in a
transverse direction δ(u, 0). Note that K and H depends on
not only coordinate u but also coordinate v. In this paper,
we assume that the whole shape of a belt object can be
described by the shape of the central axis in a longitudinal
direction because the width of a belt object is sufficiently
small compared to its length.

If a principal curvature κ2, i.e., the minimum value of the
normal curvature is equal to zero, the surface is developable.
Namely, it can be flattened without its expansion or contrac-
tion. Such surface is referred to as a developable surface.

rib line

spine line

Fig. 8. Fishbone model

α

P(u, 0)

d1d2
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α α+dα

P(u, 0)

(a) (b)

Fig. 9. Rib angle and rib lines

In this paper, we assume that a belt object is inextensible.
Then, the deformed shape of the object corresponds to a
developable surface. It means that the object is flexed in
direction d1 and it is not deformed in direction d2. Namely,
a line the direction of which coincides with direction d2

is kept straight after deformation. In this paper, the central
axis in a longitudinal direction of the object is referred to as
the spine line and a line with zero curvature at a point on
the object is referred to as a rib line as shown in Fig.8. We
assume that flexure and torsion of the spine line and direction
of the rib line of each point specifies deformation of a belt
object. This model is referred to as a fishbone model in this
paper. Let α(u, 0) be rib angle, which is the angle between
the spine line and direction d1 as shown in Fig.9-(a). Let
r(u) be a unit vector along a rib line at point P(u, 0) on the
spine line. It is described by

r = −η sinα + ζ cosα. (43)

Then, coordinates of a point on a rib line and on either
longitudinal edge x(u′,±V/2) is represented as follows:

x(u′,±V/2) = x(u, 0)± V

2 cosα(u, 0)
r(u, 0), (44)

where u′ satisfies

u′ = u +
V

2
tan α(u, 0). (45)

Consequently, the whole shape of a belt object can be
represented using five variables φ(u), θ(u), ψ(u), δ(u), and
α(u). Note that they depend on only the distance u from one
end of the object along the spine line.

C. Constraints on Belt Object Variables

Let us consider conditions which five variables must
satisfy so that the surface of a belt object is developable.
Gaussian curvature K of a developable surface must be zero
at any point. So, the following constraint is imposed on the
object.

K = −ωζδ − ω2
η = 0, ∀u ∈ [ 0, U ]. (46)

From (46), δ is described by

δ = −ω2
η

ωζ
. (47)
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Recall that infinitesimal ratio of rotational angle around ξ-
axis ωξ indicates curvature of the spine line on the object.
In the initial state, the spine line is straight, that is, its
curvature is constantly equal to zero. So, ωξ must be satisfied
the following equation after any deformation because of the
inextensibility of a belt object:

ωξ = 0, ∀u ∈ [ 0, U ]. (48)

Moreover, as shown in Fig.9-(b), to prevent rib lines from
intersecting with themselves on a belt object, the following
inequalities must be satisfied:

V

2
tanα + du ≥ V

2
tan(α + dα), (49)

V

2
tan(α + dα) + du ≥ V

2
tan α. (50)

Then, rib angle α at any point on the spine line must be
satisfied

−2 cos2 α

V
≤ dα

du
≤ 2 cos2 α

V
, ∀u ∈ [ 0, U ]. (51)

Substituting (47) into (32) and (42), The normal curvature in
direction d1 = ξ cosα + η sin α, i.e., a principal curvature
κ1 is as follows:

κ1 = −ωζ cos2 α + 2ωη cosα sin α − ω2
η

ωζ
sin2 α

= −ωζ −
ω2

η

ωζ
(52)

Then, α can be described as follows:

α = − tan−1 ωη

ωζ
. (53)

Now, let us introduce parameter β(u):

β = tan α. (54)

Then, β must satisfy the following equation from (53):

ωη + ωζβ = 0, ∀u ∈ [ 0, U ]. (55)

Moreover, (51) is described as follows by substituting (54):

− 2
V

≤ dβ

du
≤ 2

V
, ∀u ∈ [ 0, U ]. (56)

Consequently, the shape of a belt object can be represented
by four variables φ(u), θ(u), ψ(u), and β(u). And, they
must satisfy (48), (55), and (56) in any state to maintain
developability.

D. Potential Energy and Geometric Constraints

Let us formulate the potential energy of a deformed belt
object. We can assume that a belt object is flexed along
direction d1 without torsional deformation. This implies that
the shape of cross-section along rib line is fixed while that
along a transverse direction can change. Then, the potential
energy U can be described as follows assuming that the
flexural energy is proportional to the bending moment at
each point P(u):

U =
∫ Lu

0

Rf

2
κ2

1 du =
∫ Lu

0

Rf

2
(ω2

ζ + ω2
η)2

ω2
ζ

du, (57)

O

0.7U

x y

z

π/6

Fig. 10. Example of belt object deformation

where Rf represents the flexural rigidity of a belt object
along the spine line at point P(u).

Geometric constraints imposed on a belt object can be
represented as described by (12) through (14). Therefore,
the shape of a belt object is determined by minimizing
the potential energy described by (57) under necessary con-
straints for developability described by (48), (55), and (56)
and geometric constraints imposed on the object described
by (12) through (14).

VI. VERIFICATION OF BELT OBJECT MODEL

A. Computation of Belt Object Deformation

In this section, numerical examples demonstrate how the
proposed method computes the deformed shape of a belt
object. The deformed shape of a belt object also can be
computed by use of the algorithm proposed in section II. Let
us express functions φ(u), θ(u), ψ(u), and β(u) by linear
combinations of basic functions e1(u) through en(u) as
described by (16) through (19). Then, the deformed shape of
a belt object can be derived by computing a set of coefficient
vectors aφ, aθ, aψ, and aβ . In the following examples, basic
functions described by (20) are used. Suppose that the length
of the object Lu is equal to 1, its width Lv is equal to 0.1,
and its flexural rigidity along the spine line Rf is constantly
equal to 1. Necessary constraints for developability described
by (48), (55), and (56) are divided into 16 conditions at
point P(iLu/15) (i = 0, · · · , 15) respectively in the following
examples.

Fig.10 shows an example of belt object deformation. In
this example, positional and orientational constraints are
described by

x(Lu) =
∫ Lu

0

η(u) du =


 0

0.7
0


Lu, (58)

φ(0) = θ(0) = ψ(0) = β(0) = 0, (59)

η(Lu) =


 0

cos(π/6)
sin(π/6)


 , ζ(Lu) =


 0

− sin(π/6)
cos(π/6)


 ,(60)

β(Lu) = 0. (61)

Namely, both end of the spine line are on the same line
but directions of the spine line at these points are different.
Fig.11 shows computational results. Fig.11-(a), -(b), and -(c)
illustrate the top, front, and side view of the object, respec-
tively. As shown in this figure, the object is flexed and twisted
to satisfy given geometric constraints. Coordinates of the
highest point of the object are [ 0.3Lu, 0.4Lu, −0.01Lu ]T .
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(a) Top view

(b) Front view (c) Side view
Fig. 11. Computational result of belt object deformation
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Fig. 12. Experimental result of belt object deformation

B. Measurement of Belt Object Deformation

Next, the computation result is experimentally verified by
measuring the deformed shape of a belt object. We measured
the shape of a rectangular polystyrene sheet which is 200mm
long, 20mm wide, and 140µm thick with a 3D scanner. Their
flexural rigidity is unknown but from (57), it is found that
the deformed shape is independent of it when it is constant
along the spine line. Fig.12 shows the experimental result
of deformation illustrated in Fig.10. As shown in this figure,
the computed shape on xy- and xz-planes is qualitatively
similar to the actual shape and x- and y-coordinates of the
object peak almost coincide. Thus, our method can estimate
flexural and torsional deformation of a rectangular belt object
using only flexural rigidity of the object along its spine line
if the object is isotropic.

C. Discussion of Fishbone Model

In this section, we discuss the fishbone model. Recall that
the surface of an inextensible belt object corresponds to a
developable surface, which is a kind of ruled surfaces. A
ruled surface is a surface that can be swept out by moving
a straight line, which is called a ruling, in 3D space and it
can be formulated as follows:

x(u, v) = p(u) + vq(u), (62)

where p(u) and q(u) are referred to as the base curve and the
director curve, respectively. Rib lines in the fishbone model
correspond to rulings. Moreover, x and r in (44) are similar
to the base curve and the director curve, respectively. The
formulation described by (62) is sufficient to represent the
object surface after deformation. However, it is not suitable
for representation of energy increment from the initial shape.
To estimate potential energy of the object and to derive its
stable shape, we have to specify dependent parameters on
deformation and independent parameters of deformation. As
a belt object is assumed to be inextensible, its shape in
uv-space is not changed by any deformation. This means
that the length, width, and angle between u- and v-axes are
constant. So, E = 1, G = 0, F = 1. Furthermore, the
constraint described by (48) is added for straightness of the
spine line in uv-space. Then, the object only can be flexed
around ζ-axis and twisted around η-axis, and the rib angle
is determined from these flexure and torsion. As mentioned
before, the object shape is represented by four variables φ(u),
θ(u), ψ(u), and β(u). Note that they must satisfy constraints
described by (48) and (55). Therefore, we can conclude that
deformation of an inextensible belt object is described by
two independent variables.

D. Application of Fishbone Model

Some flexible circuit boards bend like a polygonal line
or curve like a circular arc. Let us discuss application of
our model to such bent/curved boards. First, to represent
a belt object with multiple bends, Eulerian angles and rib
angles of straight parts between bends should be defined
separately. The deformed shape of the object is then derived
by minimizing total potential energy of each part. But,
continuity of the rib line at each bend should be discussed.
Fig.14 shows a computational result of deformation of a
belt object with one bend illustrated in Fig.13. Next, let us
consider a curved belt object. As we assume that the spine
line is straight in this paper, ωξ is constantly equal to zero. If
an object is curved with a certain curvature, ωξ must be equal
to that curvature even if the object deforms. We can impose
this constraint on the object instead of (48). This implies
that our proposed method can be applied to a curved belt
object. Fig.16 shows a computational result of deformation of
a curved belt object illustrated in Fig.15. Thus, our proposed
method can represent deformation of various belt objects.

VII. CONCLUSIONS

In this paper, a modeling method of linear/belt object
deformation based on differential geometry was proposed.
First, differential geometry was extended to describe linear
object deformation including flexure, torsion, and extension.
The shape of a linear object can be described by four
independent variables if extensible and by three otherwise.
Next, the validity of this method was verified with measuring
experiments. Moreover, it was shown that more complex
shapes such as knots and knitted fabrics also can be com-
puted using our proposed approach. Finally, this approach
was applied to deformation of an inextensible belt object. It
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Fig. 13. Bent Belt Object

(a) Top view

(b) Front view (c) Side view
Fig. 14. Deformation of Bent Belt Object

Fig. 15. Curved Belt Object

(a) Top view

(b) Front view (c) Side view
Fig. 16. Deformation of Curved Belt Object

was found that the belt object shape can be described by two
independent variables.
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Rope Knotting and Unkotting with Haptic Feedback

Hans Fuhan Shi and Shahram Payandeh

Abstract— In this paper, we present a mechanics-based ap-
proach to simulation of deformable linear objects (DLOs) with
visual and force feedback. In our rope model, which can
represent the mechanical properties of a real thread such as
stretching, compressing, bending, and twisting, we simulate
not only external forces, but also internal forces including the
friction force during knotting and unknotting. We also present
how forces propagate along the rope when the user pulls it with
one or two hands. We developed a simulator to allow users to
grasp and smoothly manipulate a virtual rope, and to tie an
arbitrary knot.

I. INTRODUCTION

THe application of knots can ascend to the Paleolithic
era. We use all kinds knots in our everyday lives such

as fastening our shoes or clothes, wrapping gifts, animal
handling, fishing, sailing, climbing, carving, and even for
decoration etc. In the medical field, they are essential to
suturing in today’s surgery procedures. Real-time simulation
of deformable linear objects (DLOs) is need in many areas,
such as surgical training systems and rock climbing or sailing
training systems to teach users how to tie and un-tie a knot.
It also related to cloth-like deformable objects simulation,
an area has attracted much attention in Computer Graphics
recently.

Computer-based training systems, using computers and
electromechanical user interface devices, open new pos-
sibilities in training, offering many benefits compared to
traditional training methods. Real-time knotting and unknot-
ting simulations raise unique and difficult issues because
of the rope’s deformability, difficulty of collision detection
and management, and the demanding requirements of force
feedback output. In this paper, we developed a simulator in
our training environment to allow users to tie and untie any
kind of knot.

There are a number of works which have made some
contributions to the development of DLO simulation. Most of
these previous models can be categorized as geometry-based
models or mechanics-based models. Geometric models are
slightly less accurate because they only simulate displace-
ments. Mechancis-based models are often more accurate,
although, for the virtual reality simulation, they may shift
continuously until converge to equilibrium points, which
makes them difficult for users to manipulate. In our training
systems, because the purpose is to enable users to feel the

H. Shi is with Experimental Robotics Laboratory, School of Engineering
Science, Simon Fraser University, Burnaby, BC V5A 1S6, CANADA
fuhans@ensc.sfu.ca

S. Payandeh is with Experimental Robotics Laboratory, School of
Engineering Science, Simon Fraser University, Burnaby, BC V5A 1S6,
CANADA shahram@ensc.sfu.ca

force feedback when they manipulate the rope, especially
during knotting and unknotting, to make it more realistic,
we need to consider both external and internal forces to
determine the force output. Thus geometric models are
obviously inappropriate.

Some researchers have been focusing on knotting ma-
nipulation by robots. In [1], Wakamatsu, Arai and Hirai
established a model of DLOs based on an extension of
differential geometry, and proposed a planning method for
knotting/unknotting of DLOs based on the knot theory. If
the initial and the objective states of the linear object are
given, all possible knotting/unknotting plans can be derived
and be executed by their system. However, their proposed
models can not simulate the DLOs dynamically in 3D
space. In addition, their system does not allow any user
interaction, and can not simulate the knotting/unknotting
procedure in real-time. [2] describes a 2D DLOs dynamic
model based on the differential geometry coordinates. In [3],
a knot planning from observation(KPO) system is described.
First, this system observes the procedure of tying a knot
by a human as a sequence of movement primitives. Then,
by repeating the sequence, it can tie a similar knot. The
topological information of a knot is represented in a P-
data representation. In [4], a topological motion planner
for manipulating DLOs and tying knots using cooperating
robot arms was introduced based on Probabilistic RoadMaps
(PRMs). Our initial system is to allow interaction where
the user can form and tie a knot. In the future work, we
can include a real-time planner which can assist and guide
the user during the knotting task. However, for the virtual
reality simulation, we must allow a user to interact with
the computer-simulated environment, and enable the user to
feel, touch, and manipulate the virtual objects such as during
virtual suturing tasks.

In [5] [6] [7], a Cosserat approach of modeling DLOs
based on the Cosserat theory of elastic rods has been
introduced. Cosserat model is well suited for real-time
applications because it needs less computation compared
to finite elements models and provides a clear delineation
between basic physical principles, material properties and
mathematical approximations. However, in return, it yields
a set of ordinary differential equations to be solved. If two
end points or multiple points along the length of a suture are
specified (as in the procedure of knotting or unknotting with
two hands), it is significantly more difficult to solve these
equations. In addition, the ”shooting” technique which is
mentioned in [5] makes it very difficult to integrate external
forces [8].

A particle-based model of a rope is represented in [9]
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by overlapping spheres representing mass-points, which are
connected by simple springs. Each mass-point can collide
with other mass points as in the instantaneous elastic colli-
sion model, but the author only considers the linear spring
forces and does not allow any user interaction. In [10], inner
bending force and the gravity are taken into consideration.
In [11], the author mentioned gravity, stretch/compression
force, forces from bending and twisting, dissipative friction,
and contact forces with environment or to self-collsion, but
there is no detail about how to compute those forces.

A mass-spring model for suture in surgical training system
has been built in [12]. Torsional spring, torsional damper,
and viscous damper are mentioned in this paper, but, the
author did not use them in the simulation due to the complex
computation. Further more, there is no discussion about col-
lision detection and force propagation for haptic interaction
between the user and the suture model.

Our rope model is built based on all the force definition
given in [12], and we provide a user-interface to allow
users tie an arbitrary knot. Also we analyze how the forces
propagate along the suture during knotting and unknotting.
With the virtual coupling technique[13], we can provide very
smooth force feedback to the user.

The rest of this paper is organized as follows: Section
II describes the model we are using and illustrates how
to calculate internal and external forces. Section III covers
how forces propagate along the suture during knotting and
unknotting. Section IV describes case studies and results,
and section V gives the conclusion and discusses about the
future work.

II. MODEL DESCRIPTION

For 1D element, we model our rope as a mass-spring
system which consists of a sequence of mass points laying
on the centreline of the suture. (see (a) of Fig. 1).

z
x

y

0

P0i

n

P

P

Fig. 1. Rope model

During graphic rendering, we use cylinders as rope seg-
ments connecting two successive points. We use Euler
method to calculate the shape of our rope. First we compute
the total force acting at each point, Pi, and then update its
position based on the computed force. Once the total force at
each of the nodes has been calculated, with the interval time
dt, we can obtain the velocity and position of each point.

The following part of this section explains the forces we
simulate in our simulator. We can use various combinations
of these forces to build different models. The springs and
dampers both contribute some force to the net force f at each

point. Different springs and dampers all behave differently
and we calculate their force contributions using their own
particular equations.

A. External Forces

The external forces include the gravitational force, the user
input forces through haptic devices, the friction forces during
knotting or unknotting, as well as the contact force with
obstacles:

1) Gravity: fg = Gm. where G = 9.8N/kg, and m is the
mass of the mass point.

2) User Input Force: Allowing the user to provide both
input and output to the simulation in the form of forces,
positions, and velocity etc, a haptic device becomes a natural
interface for a dynamic simulation, which needs to calculate
all the forces applied to the objects. However, a position con-
trolled impedance style haptic device, such as PHANTOM
Omni and PHANTOM Desktop from Sensable Tchenology,
forces are not directly available as input variables into the
model. Furthermore, the mechanical characterization and
digital nature of the haptic device make the operation of
directly incorporating the device as part of the simulation
more challenging. To overcome these difficulties, we use vir-
tual coupling technique which introduces a indirect layer of
interaction between the mechanical device and the simulation
by employing a spring-damper between a simulated body and
the device end-effector Another advantage of this technique
is that we can use different constants for computing the
output force for the device versus the input force for the
simulated body, which makes the forces appropriate for both
the haptic device and the dynamic simulation.

3) Friction Force: In this paper, we only consider dy-
namic friction forces, like sliding friction, during the pro-
cedure of knotting and unknotting, and we do not con-
sider any static frictions. During the simulation, we use
Coulomb’s model and consider each rope segment as rigid
body, hence we can not bend to any angle for any instant
time. From Coulomb’s observations we know that: kinetic
frictional force is approximately independent of contact area
and velocity magnitude of the object; Coefficient of friction
depends on pairs of materials. During knotting or unknotting
procedure, suppose there are only two segments colliding
with each other (see Fig. 2). Let µ be the friction constant,

Pd

Pa
C

Pc

Pb

bv
dv

cv
av

C

d

E

(a) Two Sliding Segments (b)Two Segments Intersection

Fig. 2. Friction during knotting / unknotting

ê be the friction direction vector, n be the force of repulsion,
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then the friction f f can be described as:

f f = µ||n||ê. (1)

To calculate the repulsion force n, we introduce a spring-
damper between the contact point C and the end point E.

n = (krsd− krd(vr · n̂))n̂, (2)
d = 2r− s. (3)

where krs is a spring constant for the repulsion force, r
is the radius of the rope model, d is the distance between
contact point C to point E (see (b) of Fig. 2), s is the distance
between the two centers of the contact cylinder, krd is the
damper constant for the repulsion force, vr is the relative
velocity of point C with respect to point E, n̂ is the unit
vector from point E to point C. We use linear interpolation to
compute the velocity of a point on the segment. For example
(see Fig. 2), vc = (1−a)va +avb, where a is the fraction of
point C along

−−→
PaPb, ve = (1− b)vc + bvd , where b is the

fraction of point E along
−−→
PcPd . Then the relative velocity

vr = vc−ve, and the friction direction vector ê is computed
as follows:

ê =
(vr · n̂)n̂−vr

||(vr · n̂)n̂−vr||
. (4)

B. Internal Forces

1) Linear spring force: The linear spring force is com-
puted by comparing the current segment length, li, between
point, Pi and Pi+1, with the rest length of the segment lr, and
by projecting the resulting difference on the direction from
point Pi to Pi+1. Then, li = ||Pi+1−Pi||, ∆l = li−lr

lr
, and lr, is

the rest length between point, Pi and Pi+1. Let êi be the unit
vector from point, Pi to Pi+1, then,

êi =
Pi+1−Pi

||Pi+1−Pi||
, (5)

fs = kl∆lêi. (6)

where kl is the linear spring constant.
2) Linear damper: We simulate all the factors that try

to stop the spring as it moves as one constant called the
damping factor, kd . This force opposes the direction of
movement and is proportional to the velocity of the moving
mass. When the system is at rest (v = 0), no linear damping
force is involved.

fd = kd(vi+1− vi)êi. (7)

where vi+1 = vi+1 · êi, vi = vi · êi, kd is the linear damper
constant. vi+1 and vi are the norms of the components of the
velocity of point Pi+1 and Pi on the direction êi.

3) Torsional spring: The torsional spring is derived from
the angle, α , between two connected segments of the rope.
The basic idea is to model each two connected segments
as a triangle with a spring as the hypothesis pushing the
end points to the full expanded position. The length of
the two connected segments remain unchanged. Only the
force component orthogonal to the segments is used for the
end points (See (a) of Fig. 3). Let êi−1 and êi be the unit
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^

Linear Damper

Tosioanl Damper

Swivel Damper
Pi+1

PiPi-1

(a) Torsional Spring (b) Swivel Damper

Fig. 3. Torsional Spring and Swivel Damper

vectors with directions from point, Pi−1 to Pi, and from Pi to
Pi+1, respectively. Let t̂i−1 and t̂i+1 be the unit vectors with
directions the same as the torsional force applied at the two
endpoints and therefore, orthogonal to êi−1 and êi respec-
tively. Then, t̂i+1 = êi× (êi−1× êi), t̂i−1 = êi−1× (êi−1× êi).
If êi−1 · êi = 0, α = arcsin(||êi−1 × êi||). If êi−1 · êi < 0,
α = π − arcsin(||êi−1 × êi||). The torsional spring force can
be computed as follows:

fi−1 = kts
α

π||Pi−1−Pi||
t̂i−1, (8)

fi+1 = kts
α

π||Pi+1−Pi||
t̂i+1, (9)

fi = −(fi−1 + fi+1). (10)

where kts is the torsional spring constant.
4) Torsional damper: The torsional damper works against

the torsional spring to prevent any harmonic motion from
accumulating. Similar to the linear damper, it also models
the internal friction that resists bending in regular objects.
Let, vi−1, vib, be the norms of the velocity components of,
vi−1, and, vi, on the direction of, t̂i−1, and let, vi+1, via, be
the norms of the velocity components of, vi+1, and, vi, on the
direction of, t̂i+1, Then, the torsional damper on the points,
Pi−1, Pi and Pi+1, can be computed by:

fi−1 = (
(vi−1− vib)
||Pi−1−Pi||

+
(vi+1− via)
||Pi+1−Pi||

)
ktd t̂i−1

||Pi−1−Pi||
, (11)

fi+1 = (
(vi−1− vib)
||Pi−1−Pi||

+
(vi+1− via)
||Pi+1−Pi||

)
ktd t̂i+1

||Pi+1−Pi||
, (12)

fi = −(fi−1 + fi+1). (13)

where ktd is torsional damper constant, vi−1 = vi−1 · t̂i−1,
vib = vi · t̂i−1, vi+1 = vi+1 · t̂i+1, via = vi · t̂i+1.

5) Swivel damper: Point, Pi−1, has a velocity relative
to the center point, Pi. So far, two components of that
relative velocity have been dampened. There still remains
a component perpendicular to those two. Without the damp-
ening, point Pi−1 could indefinitely orbit the line formed by
extending the edge connecting point Pi+1 and point Pi (See
(b) of Fig. 3).

Let ŝ be the unit vector of the swivel dampers of point
Pi−1 and Pi+1, then, ŝ = êi−1 × êi. The swivel dampers can
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be computed by:

fi−1 = ksw
(vi−1−vi) · ŝ
||Pi−1−Pi||

ŝ, (14)

fi+1 = ksw
(vi+1−vi) · ŝ
||Pi+1−Pi||

ŝ, (15)

fi = −(fi−1 + fi+1). (16)

where ksw is the swivel damper constant.

III. FORCE PROPAGATION ALONG THE ROPE

To prevent our rope from being stretched too long or
compressed too short, we set lmax and lmin as the maximum
and minimum length of one rope segment respectively.Let li
be the segment length between Pi and Pi+1. To analyze the
force propagation when the user grabs the rope, we need to
compute the forces acting at each point from the grabbed
point to the start point and to the end point of the rope. We
define different scenarios as follows:

A. Condition A

Assume the user grabs point Pi+1 with one hand. If lmin <
li < lmax. There is no propagation of the user input force
fh from point Pi+1 to Pi. All the user input force has been
converted to the internal forces along the rope.

B. Condition B

Assume the user grabs point Pi+1 with one hand. If the
expected segment length l′i > lmax or l′i < lmin, we need to
adjust the segment length to lmax or lmin (see (a) of Fig. 4).
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(a) One-Hand Pulling (b) Two-Hand Pulling

Fig. 4. Force Propagation

Let fp be the component of the input force fh along the
segment direction, and fp is the input force propagated to
point Pi from point Pi+1. fp and fm can be obtain from the
following equations:

fp = (fh · êi)êi, (17)
fm = (fh · êm)êm. (18)

where êm = êi×fh
||êi×fh||

× êi, êi can be obtain from equation
(5). Using the same method as above, we can derive the
user input force propagated at each point of the rope.

C. Condition C

In this condition, we assume the user is pulling two
points,Pk and Pi, of the rope. The method is almost the
same as in condition B. But we need to do the propagation
computation twice, first starting from point Pi, and then
starting from point Pk (see (b) of Fig. 4).

IV. COLLISION DETECTION AND MANAGEMENT

First, we build a bounding-volume hierarchy (BVH) from
the bottom-up representing the shape of the rope at succes-
sive levels of detail. (see Fig. 5).

Fig. 5. Bounding-Volume Hierarchy

This method is similar to the method proposed in [16]. To
find the self-collisions of the rope, we explore two copies
of the BVH from the top down. Whenever two BVHs (one
from each copy) are found to not overlap, we know that
they cannot contain colliding segments, and hence, we do not
explore their contents. When two leaf spheres overlap, the
distance between the two centers of the nodes is computed.
If it is less than the node diameter, 2r, then the two segments
are reported to collide. However, no node is ever considered
to be in collision with itself or its immediate neighbors along
the rope chain.

To find the collisions between the rope and grippers, we
consider the gripper as a triangle between two jaws which
are line segments with a given radius, and check if the BHV
of the rope has any overlap with this triangle. If intersection
happened, compute the intersection point which will be the
grab point.

For self-collison of the rope, when two rope segments are
detected to be at a distance d < 2r from each other, then, an
equal (but opposite) displacement vector is applied to each
segment along. This displacement is just long enough to take
the segments out of collision, with a slight ”safety margin”.
Hence, each node is shifted away by r−d/2+ε/2 (see Fig.
6).

Fig. 6. Collision management of two rope segments

If a collision occurred, during real time simulation, we
need to compute new velocities of mass points which are
involved in the collision. Similarly to the method presented
in [17], we apply impulses to the end points of these two
segments. See Fig. 2 for the case where point C with relative
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position a along the segment
−−→
PaPb interacts with point E

with relative position b along the segment
−−→
PcPd . Let i be the

impulse, then, i = n∆t. where n is the repulsion force that
we can obtain from equation (3). Then we can compute the
new velocities as follows:

i′ =
2||i||

(a2 +b2 +(1−a)2 +(1−b)2)
, (19)

vnew
a = va +(1−a)

i′

m
n̂, (20)

vnew
b = vb +a

i′

m
n̂, (21)

vnew
c = vc− (1−b)

i′

m
n̂, (22)

vnew
d = vd −b

i′

m
n̂. (23)

where m is the mass of each mass point Pa, Pb, Pc, and Pd .
n̂ is the unit vector from point E to point C.

V. HAPTIC FORCE FEEDBACK

In the previous section, we have mentioned to calculate
the user input force by introducing virtual coupling technique
(see Fig. 7).

Fig. 7. Virtual coupling

Change the direction of the input force to the opposite, we
can get the out put force which we need to feed the haptic
device. Point P is the real position of the end factor and
point Q is the grabbed point. By employing a spring-damper
between a simulated body and the device end-effector, we
can make the out put force as smooth as possible. We can
also adjust the K and B to satisfy the out put requirements
for different haptic devices.

In order to study the details inside our rope model, we
took the 15th node as an example and plot the spring force,
spring damper, torsional spring, torsional damper, and swivel
damper acting on it when the rope swings freely (see Fig.8
- Fig. 13 ).

Fig. 8. Screen shot of the rope swings freely

Fig. 9. Spring force acting on the 15th node

Fig. 10. Spring damper acting on the 15th node

Fig. 11. Torsional spring acting on the 15th node

Fig. 12. Torsional damper acting on the 15th node

Fig. 13. Swivel damper acting on the 15th node

To demonstrate how friction force changes when the
friction constant is changed, we plot the friction forces when
the rope is colliding itself and changed the friction constant
(see Fig. 14). Fig.15 to Fig. 18 are the friction force plots
when µ = 0.1,0.5,1.0,2.0

Because the maximum exertable face for PHANTOM
Omni is 0.75lbf (3.3N), we can not output the forces to
the Haptic devices from virtual coupling spring directly.
Therefore, we chose a constant equal to 0.003 to scale
the forces before we feed them to PHANTOM Omnis. We
plot the forces which we send to PHANTOM Omni during
each haptic update frame for one-hand pulling and two-hand
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Fig. 14. Screen shot of rope colliding

knotting cases. Taking the magnitudes of the forces as y-axis
and each haptic update frame as x-axis, we obtain the forces
plots as in Fig. 19 to Fig 23

VI. CASE STUDY AND RESULT

A. Experiment Setup

Our simulation was implemented on a PC with dual 3.2G
IntelrPentiumr4 CPUs and 512 MB memory. For physics-
based models, the most challenging part is how to determine
its parameters. If parameters are inappropriate, it may impact
the whole system’s stability or even over its limits. After
many experiments, we chose our rope parameters as in Table
I:

TABLE I
ROPE PARAMETER SETTING

Parameter Value Remarks
N 20 ∼ 50 Number of Points
l 5.0m Length of the rope
r 0.05m Radius of the rope
m 0.05kg mass of one point
G 9.8N/kg Gravity
kh 1200 Virtual coupling spring constant
s 0.003 Scale factor for output force
µ 10 Friction constant
krs 100 Repulse spring constant
krd 5 Repulse spring damper constant
kl 800 Linear spring constant
kd 1 Linear damper constant
kts 10 Torsional spring constant
ktd 0.05 Torsional damper constant
ksw 0.2 Swivel damper constant

With the parameters above, we can obtain around 500Hz∼
1000Hz update rate for both Phantom Omnis. Users can feel
the output forces of smooth quality.

B. Experiment of Knotting

We build five different models with various combinations
of forces models described in section III. With two PHAN-
TOM Omni haptic devices, users can tie an arbitrary knot
about the rope which is hung up on one fixed frame.

1) Model 1: This model contains only a linear spring
and a linear damper. It is the least realistic model. The two
connected segments can bend to any angle effortlessly.

Fig. 15. Friction plot when µ = 0.1

Fig. 16. Friction plot when µ = 0.5

Fig. 17. Friction plot when µ = 1.0

Fig. 18. Friction plot when µ = 2.0

Fig. 19. Screen shot of one-hand pulling

Force Output: One Hand Pulling
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Fig. 20. Output force plot of one-hand pulling
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Fig. 21. Screen shot of knotting
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Fig. 22. Output force plot of left hand

Force Output for Phantom Omni Two
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Fig. 23. Output force plot of right hand

Fig. 24. Rope model 1

2) Model 2: This model is almost the same as model 1,
but also contains a torsional spring. The torsional spring adds
a lot more realistic behaviour to the thread, but also, because
it uses a nonlinear function ‘acos’, it creates some harmonic
wave motions.

3) Model 3: Compared to model 2, a torsional damper has
been added to this model. This damper stops the harmonic
motion presented in model 2. But this model creates another
class of instability where it is very sensitive to the thread
and creates a self-excitation phenomenon.

4) Model 4: This model includes a ‘swivel’ damper to
fix the problem of perpetual orbiting (the self excitation
mentioned in the above). The result is a thread that looks
more like a real thread.

Fig. 25. Rope model 2

Fig. 26. Rope model 3

5) Model 5: This model has all the components of model
4. The only difference is that the linear spring’s force
computed quadratically on the difference between its current
length and rest length, instead on linearly. This makes the
thread appear a lot less stretchy, which is more realistic since
the real threads stretch very little. The thread’s non-linear
response also makes it a lot more responsive to movements.

Comparing the results from above five different models,
we can draw a conclusion that model 4 is the most ideal
model for our surgical training environment.

C. Experiment of Unknotting

Same as the knotting experiment, the rope is hung up
on one fixed frame. Also, to make knotting and unknotting
easier, we set up a desk under the rope model to let part of
the rope lay on the desk.In order to untie a knot successfully,
we have to pick up the right point, otherwise the knot could
be more tightening instead of loosening. This is part of the
unknotting planning algorithm which will not be discussed
here. Fig. 29 show the successful unknotting of a over-hand
knot and a figure-of-eight knot. Fig. 30 shows if you grab
the wrong point, the knot can not be untied.

VII. CONCLUSION AND FUTURE WORK

We presented a fast and simple approach to compute
3D DLO simulations. We simulate both internal forces and
external forces. Also, we analyzed how forces propagate
along the rope when the user pulls the rope with one hand or
two hands. While our simulation cannot produce physically
exact shapes and forces, even sometimes the user might feel
the force feedback a little unstable (because of the high
demanding of the haptic device refresh rate), our methods
can be used in virtual reality simulation to give users more
realistic senses.
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Fig. 27. Rope model 4

Fig. 28. Rope model 5

Because our model is based on the finite element method,
to make ropes more realistic, we must add more segments
and more mass points to the model, which may cause
the program run more slowly (the more mass points the
model has, the more time we need to complete dynamic
computation and collision detection). Therefore, we cannot
guarantee the haptic rendering rate to be around 1000Hz.
Users may feel the force output less smooth sometimes.
To solve the problem mentioned above, we may introduce
level of detail methods to the modeling and undertake some
optimization of dynamic computation and collision detection
methods. Also, to speed-up the operation, we will look into
Physics Process Unit (PPU) for the case of suturing and
knotting in surgical training environment.

In this paper, we did not consider the static friction, our
next step is to study the forces when the user is trying to tie
a knot tightly and untie a tight knot.

Also, in the future, we will study how this rope model will
interact with deformable objects such as human tissue, which
is one of the most important parts of surgical simulations.
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Introduction
Modeling rheology object is a younger field.
The model is useful to manipulate an object by a 
robot arm in a real world.
The model is useful to feel its reactive force by a 
haptic device or to watch shape deformation in 
a 3-D graphics world of PC.

Force propagation and shape deformation should be 
quickly calculated. Precision and time are trade-off.
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Research Purpose
Elastic and Visco-elastic objects have been 
modeled by Mass Spring Damper (MSD) 
Method, Finite Differential Method (FDM),
Boundary Element Method (BEM),
Finite Element Method (FEM)

• Force propagation and shape deformation are precise.
• Calculation time is enormous.

Concerning to FEM

Concerning to MSD
• Calculation time is small enough.
• Force propagation and shape deformation are not 

so precise.
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MSD Basic Element

Basic element consists of 
Voigt model and damper.

K

C1

C2

M M

Basic element

a 1-a

Rheology property (e.g., residual 
displacement) is flexibly condensed.
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Voxel/Lattice Basic Model



HMIHuman Machine Interface Lab.Human Machine Interface Lab.

Constructing Dynamic Equation

M=Mobject / N
Mobject : Mass of object

N : Number of
mass pointsk-1

k
k+1

i+1ii-1
j-1

j

j+1

XZ

Y

Pi,j,k

Pi+α,j+β,k+γ :
Pi,j,k Neighbors for
the mass point

・
・MPi,j,k=Fi,j,k

int Fi,j,k
ext+

External forces directly 
acting to Pi,j,k

Fi,j,k
int = Σ

α,β,γ∈{-
1,0,1}(α,β,γ)≠(0,0,0
)

Fi,j,k
α,β,γ

Internal forces between Pi,j,k 
and its neighbor masses

The equation is solved by integration methods, 
e.g., RK, Midpoint, Euler, BDF methods.



HMIHuman Machine Interface Lab.Human Machine Interface Lab.

Local Volume Constant Condition

The 
gravity 
center 
of each 
voxel
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Global Volume Constant Condition

In order to converge virtual volume to real one, we 
always give an external force p around virtual object.

Feedback force under Pascal’s principle
p = - kvol (V - Vint) - cvol V

・

V < Vint Vint < V

Elastic coefficient：kvol

Viscous coefficient：cvol

Present volume：V
Initial volume：Vint

Difference of V：V・
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Measuring Shape Deformation of 
Real Rheology Object

Real Rheology Object
A real rheology object is 
made by mixing wheat 
flour and water.
The volume of rheology
object is 10× 6× 10 = 
600[cm3].

Real-time stereo visions
A set of surface points whose number is 
about 1000 is captured in real-time manner.
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Virtual Rheology Object

Virtual Rheology
Object

A virtual rheology
object is a 
rectangle whose 
volume is 5×3×5 
= 75[cm3].

How to measure the 
difference between 
virtual and real objects

A set of captured points 
are initially located on a 
virtual object.
The minimum distance 
from a captured point to a 
virtual object is calculated 
by a modified LCA.
The sum S of distances 
from captured points at 
four times are calculated.
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Parameters to Calibrate

Elastic coefficient K
Viscous coefficient 
C1, C2
Length ratio 
between Voigt and 
the other parts a

In order to minimize the sum S of distance errors 
at four times, we calibrate uncertain parameters.

K

C1
C2

M M

Our MSD basic element

a        1-a     

Randomized Algorithm (RA)
Genetic Algorithm (GA)
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Randomized Algorithm (RA)

1. Initialize all the uncertain parameters 
K,C1,C2 and a within their intervals.

2. We select a local minimum by the 
steepest descendent method.

3. If the past time amounts to a threshold 
Tcal (=168[hour]), this finishes.

4. Otherwise, after Δ(=10) is randomly 
added into one of many parameters 
Tran (=100[number]) times, return to 
step 2.
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Genetic Algorithm (GA)

1. Initialize Gind, Ggen, Geli and Gmut.

2. Gind is the number of individuals. Each 
consists of calibrating parameters. Pgen
and Ggen are present and threshold 
generations.

3. If Pgen amounts to Ggen, GA finishes. 

4. We calculate shape differences Sn
(n=1,2,… ,Gind) between real and 
virtual objects.
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Genetic Algorithm (GA)

5. [Selection] After sorting individuals by Sn. 
we select better individuals whose 
number is Gind× Geli (0.6< Geli <1.0). 

6. [Mutation] We generate individuals by 
reversing bits of their originals. whose 
number is Gind× Gmut (0.0< Gmut <0.05).

7. [Crossing] We cut and combine parts of 
two individuals to make the other ones.

8. After increasing Pgen by 1, we return to 2.
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PC Circumstance

3-D graphics acceleration board 
GeForce FX 5600, 128MB

PC (CPU : Pentium4 3.00GHz, 
Memory : 2048MB)

3-D graphics software Open-GL
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First Operation

Z

Y X

(0,0,5) (5,0,5)

(0,3,0) (5,3,0)

(5,0,0)

0.5
1.0

ratio
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Second Operation

Y

Z
X

(0,0,5) (5,0,5)

(0,3,0) (5,3,0)

(5,0,0)

0.5
1.0

ratio

0.5
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Time Schedule of Two Operation

Vertical displacement [cm]

6.0

4.0

1.0 2.0 3.0

First operation
(Right side)

Second operation

First operation
(Left side)

Calibrated point
Point1

Point2
Point3 Point4

Time [s]
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Stable Parameter Intervals

100≦K ≦3000[gf/cm3]
500≦C1≦10000[gfs/cm3]
500≦C2≦20000[gfs/cm3]
0.3≦ a ≦0.7

Intervals for all models

Time Step

・ d = 2.0[msec]

Deformation shapes are 
almost maintained while 
uncertain parameters are 
set within these intervals.

Otherwise, deformation 
shapes are almost 

destroyed.



HMIHuman Machine Interface Lab.Human Machine Interface Lab.

Search Space

=0.2

ΔRA
Tran =100 [number]

=10

GA Gind =50
Geli
Gmut=0.01

Calculation 
time is 
always the 
same.

To keep comparative fairness of RA and GA, 
we synchronously select Ggen and Tcal.

Model1: Ggen = 1900 (Tcal = 168 [hour])
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Shape Difference

Implicit-EEulerBDFMidpointRK RK-G

S [cm
]

・C2= 2000[gfs/cm3]
・ a = 0.5

・K = 500[gf/cm3]
・C1= 2000[gfs/cm3]

2000

1500

1000

500

0
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Integration Time

Implic-EEulerBDFMidpointRK RK-G

C
alcu

lation
 tim

e [sec]

5.0

10.0

15.0

0.0

・C2= 2000[gfs/cm3]
・ a = 0.5

・K = 500[gf/cm3]
・C1= 2000[gfs/cm3]
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Four kinds of MSD models

・Model1：without volume constant condition

・Model2：with local volume condition

・Model3：with global volume condition

・Model4：with both volume conditions

・ Fast calculation because the number
of basic elements is slightly larger
・ Hard calibration of shortest 

elements in each voxel
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Four kinds of MSD models

・Model1：without volume constant condition

・Model2：with local volume condition

・Model3：with global volume condition

・Model4：with both volume conditions

・ Few calibration because of
feedback property
・ Hard calculation since volume 

should be always calculated
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Calculation Time

Tim
e[m

sec]

[6×4×6]

Model1

[21×13×21][16×10×16][11×7×11]

Model2

Model3

Model4

・C2= 2000[gfs/cm3]
・ a = 0.5

・K = 500[gf/cm3]
・C1= 2000[gfs/cm3]

160.0

80.0

0.0
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Memory Storage

[6×4×6]

M
em

ory[M
B

]

[21×13×21][16×10×16][11×7×11]

Model1

Model2

Model3

Model4
Ncal0.0

30.0

60.0

0

2000

4000

・C2= 2000[gfs/cm3]
・ a = 0.5

・K = 500[gf/cm3]
・C1= 2000[gfs/cm3]

The 
number 
of mass 
points
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Surface and Core Areas

Different force propagations in surface and 
core areas are assumed. Surface parameters 
Ksurf , C1

surf ,C2
surf , asurf and core ones Kcore , 

C1
core , C2

core , acore should be calibrated.

A set of voxels facing
object surface is defined 
as surface area.

A set of the other voxels 
is defined as core area.

The number of masses：6×6×6
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Shape Comparison between RA and 
GA in the Model 1

The number of captured points is N = 14551
4 Parameters

S Volume K C1 C2 a
RA 2481 67.99 2256 648 15944 0.59
GA 2463 67.87 3000 3691 20000 0.70

8 Parameters
S Volume Kcore C1

core C2
core acore

GA 2350 67.85 293 9988 19961 0.63

Ksurf C1
surf asurfC2

surf

RA 1870 3026 2526 0.47

RA 2442 67.35 2245 4970 4277 0.68

GA 2477 561 0.634454
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External Force Transfers in sparse and 
dense models

Virtual Rheology Object

Mass number: 6×4×6
Lattice length: 1.0[cm]
●: Pushed masses

Mass number: 11×7×11
Lattice length: 0.5[cm]
●: Pushed masses
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Number of individuals in GA when 
model calculation is changed 

Ggen is selected while keeping the same 
calibration time Tcal=168 [hour]. Thus, 
comparison fairness against RA is maintained.

・Model 2 as Sparse Model : Ggen=1900
・Models 3, 4 as Sparse Model : Ggen=1100
・Model 2 as Dense Model : Ggen=  270
・Models 3, 4 in Dense Model : Ggen=  140

If the volume is always calculated,
calculation increases and generation

decrease in calibration.
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Number of individuals in GA when 
model calculation is changed 

Ggen is selected while keeping the same 
calibration time Tcal=168 [hour]. Thus, 
comparison fairness against RA is maintained.

・Model 2 as Sparse Model : Ggen=1900
・Models 3, 4 as Sparse Model : Ggen=1100
・Model 2 as Dense Model : Ggen=  270
・Models 3, 4 in Dense Model : Ggen=  140

If resolution increases,
calculation increases and generation

decrease in calibration.
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Calibrate Parameters in Local Volume 
Constant Condition (Models 2 and 4)

Gravity center

Parameters in each voxel

Ksurf-in , C1
surf-in ,

C2
surf-in , asurf-in ,

Kcore-in , C1
core-in ,

C2
core-in , acore-in

Parameters on each voxel

Ksurf-on , C1
surf-on ,

C2
surf-on , asurf-on ,

Kcore-on , C1
core-on ,

C2
core-on , acore-on

Sixteen parameters
should be calibrated.

50 ≦ Ksurf-in , Kcore-in ,

≦ 10000[gfs/cm3]

≦ 20000[gfs/cm3]

0.3 ≦ asurf, acore , asurf, acore≦ 0.7

≦ 3000[gf/cm3]

250 ≦ C1
surf-in , C1

core-in 

250 ≦ C2
surf-in , C2

core-in

100 ≦ Ksurf-on , Kcore-on ,
≦ 3000[gf/cm3]

≦ 10000[gfs/cm3]
500 ≦ C1

surf-on , C1
core-on 

≦ 20000[gfs/cm3]
500 ≦ C2

surf-on , C2
core-on
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Comparative Shape Results
The number of captured point is N = 15732

S (Sparse) S (Dense) Volume 
(Sparse)

Volume 
(Dense)Model 

2’
1831 1506 76.30 72.88

Model 3 1724 1663 74.97 75.16
Model 

4’
1835 1352 75.94 75.64

The number of points whose errors are larger than 0.25cm

First Second Third Fourth Total

Model 3 Sparse 361 265 299 267 1192
Dense 523 263 199 212 1197

Model 
4’

Sparse 215 331 480 567 1390

Model 
2’

Sparse 187 395 415 393 1390
Dense 219 167 232 267 885

Dense 258 188 168 147 761
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Comparative Shape Results (cont’d)

Model 2‘ Model 3 Model 4‘Real Rheology
Object

Front side

Upper side
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Comparative Shape Results (cont’d)

Model 2‘ Model 3 Model 4‘Real Rheology
Object

Front side

Upper side
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Conclusions

By using MSD voxel/lattice models and 
two volume constant conditions, we 
build a virtual rheology object.
Euler Method whose time step is 2 ms is 
selected concerning to computational 
efficiency and shape stability. 
If the number of uncertain parameters is 
larger, GA is better than RA.
The larger the numbers of calibrating 
parameters and discrete voxels are, the 
better precision of deformation shape is.
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Ongoing Works

For higher speed
Using octree as hierarchical voxel model. 
The smaller the number of basic elements is, 
the smaller calculation time of force 
propagation is.
Using FPGA as hardware programming. A lot 
of same procedures in basic elements are 
parallel processing.

For better precision
Using another structure such as tetrahedral 
structure. Also using another basic element 
such as Voigt and Maxell parts. Also using 
non-linear spring/damper coefficients.
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Force Outline
Introduction & Research purpose

Model1 - Cell/lattice structure with many basic 
MSD (Mass-Spring-Damper) elements

Model2 & 3 by adding each of local & global
volume constant conditions into Model1

Classic force models 
such as Pull-off & Friction forces

Calibrating uncertain parameters of each model by
shape deformation & force impulses

Experimental Comparisons

Conclusion & future works
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Introduction

Deformable soft materialsDeformable soft materials

Fabric

Modeling of a rheology object is younger field. 
Modeling is useful

Food Biomedical tissue

RheologicalRheological propertiesproperties

… for manipulating deformable materials 
… for feeling contact force with support of haptic device
… for watching shape deformation in a 3D graphics world

Precise force propagation & shape 
deformation should be quickly calculated.
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Research Purpose

Comparison of Several Types of MSD model 
with/without conservation lows of volume 

… by giving displacement at surrounding masses
… by calibrating & evaluating Shape difference

between real & virtual objects

Shape Precision

The model including conservation lows
of volume is effective for obtaining 
precise shape deformation.
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Research Purpose
Comparison of Several Types of MSD model 
with/without conservation lows of volume 

… by giving displacement at surrounding masses
… by calibrating & evaluating Shape difference

between real & virtual objects
Force Precision

All calibrations based on Shape difference
are not enough for feeling reactive force
from deformed virtual rheology object.

We applied a multiple combination of pushing, 
calibrating & evaluating operations to MSD models

Based on Force impulses

to investigate the best one & its properties
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Local Volume Constant Condition

The 
gravity 
center 
of each 
cell

Model2 – Model1 with Local 
volume constant condition

This feed-forward approach converges
a virtual volume to a real one indirectly.

To expand each cell :

Longer four elements 
are eliminated.
Their half elements are 
added. 
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Global Volume Constant Condition

Feedback force under Pascal’s principle
p = - kvol (V - Vint) - cvol V ・

Coefficient of 
Elasticity ：kvol
Viscosity ：cvol

Present volume ：V
Initial volume    ：Vint

Differential of V ：V・

Model3 – Model1 with Global
volume constant condition

In order to converge virtual volume to real one, we 
always give an external force p around virtual object.

V < Vint V > Vint
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Pull-off Force

Rheology
Object

Rigid
Body

Just Released

CCrrKKrr

VVrr, , LLrr

FFcc

CCrrVVrrKKrrLLrr

Pull-off force : Fc [N]
If a rigid is slowly left from the rheology object, 
we should consider a pull-off force as follows :

Voigt model is located 
at each mass point 
between rigid and 
rheology object.

Its force is neglected 
if the relative velocity 
is over a given 
threshold (Vt). 
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Friction Force
Friction force : Ff [N]
If two object are encountered, static (    Fd) or 
kinetic (    Fd) friction appears between rigid 
body and rheology object.

sµ
kµ

Rheology
Object

Fd

fix

fiy

Fi

Ff Ff = fiy

fiy ≦ Fdsµ

fiy ＞ Fdsµ
Ff =    Fdkµ

Rigid
Body
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Shape Measuring System 
Real Rheology Object

A real object is made by 
mixing wheat flour and 
water.
The volume is 
10×6×10=600[cm3].

Real-time stereo visions : A set of surface 
points whose number is about 1000 is captured at 
least ten times per second.
Difference calculation : The sum of errors is 
quickly cauculated by Lin-Canny algorithm.



HMIHuman Machine Interface Lab.Human Machine Interface Lab.

Force Measuring System 
Real Rheology Object

A real object is made by 
mixing wheat flour and 
water.
The volume is 
10×6×10=600[cm3].

Real-time force sensors : 3 DOF forces and 3 
DOF moments are captured by the sampling is 8 
[kHz]. 
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Video

pushed by a rigid
from upper side

Pushing   : 0.0 – 1.0
Keeping   : 1.0 – 3.0
Releasing : 3.0 –

[sec]
[sec]
[sec]
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Parameters to calibrate
In order to calibrate many uncertain parameters of MSD 
models, we define S which is the sum of {force or shape}
differences during the keeping period.

(e.g.,Force differences)

S

keeping period

Real
Virtual By using GA, we determine

a set of uncertain parameters
so that S can be minimized.
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Digital Force Transmission
Forces or displacements are exchanged between mass 
points around encountered rigid and rheology objects.
The magnitude of force or displacement is proportional 
to opposite areas.

Sn

F1

S1

Fn

F1=Fn(S1/Sn)

Upper View
Rigid
Body

Rheology
Object
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Comparisons
Three models applied by two kinds of combinations 
(TA, TB) are evaluated by their force differences
in order to clarify their characteristics.

Three kinds of models
Model1 – Our basic model with cell/lattice structure
Model2 – Model1 with a Local volume constant 
condition
Model3 – Model1 with a Global volume constant 
condition

Two kinds of combinations
TYPE-(A) : Pushing by displacement –
Calibrating by shape – Evaluating by force

TYPE-(B) : Pushing by force – Calibrating by force
– Evaluating by force
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Experimental results

Calibrated by sum of
Shape difference(A)

S=28116[N]

S=39979[N]

S=46636[N]

S=  6322[N]

S=34836[N]

S=29176[N]

Model1

Model2

Model3

Model1

Model2

Model3

Calibrated by sum of
Force difference(B)

Evaluated by sum of Force differences SS :

Real
Virtual
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Experimental results
Evaluated by sum of Force differences SS :

Calibrated by sum of
Shape difference(A)

Calibrated by sum of
Force difference(B)Real

Virtual
S=28116[N]

Model1

S=  6322[N]

Model1

Model1 made by the different two combinations

Model1 made by the combination of pushing 
& calibrating by force sequences and their 
difference shows high precision of force. 
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Conclusions

A modified MSD model is proposed for 
simulating rheological characteristic, and 
also classic pull-off, and friction models are 
additionally used. 
The model excluding volume constant 
condition (Model1) is more suitable for 
obtaining force precision because no ad-hoc 
force appears. 
The model made by the combination of 
pushing and calibrating by force sequences 
and their difference shows high precision of 
force. 
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Future Works

To improve force precision,
We increase calibrated parameters.
We select efficient calibration algorithm.
We anayze force propagation directly.

To try another set of complex pushing,
We use another basic element
(e.g., MSD element, Voigt & Maxwell element).
We consider a new combination of 
pushing/calibrating/evaluating for real & virtual 
rheology objects. 

For development of 
Virtual Environment

Tactile Feeling

Visual Feeling
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On Compression Model for Integrative Analysis of Different View

Breast Xrays

Yasuyo Kita, Shinichi Tokumoto, and Shinichi Hirai

Abstract— The breast deformation during medical proce-
dures makes it difficult to analyze different breast images
integratively. The simulation of the breast deformation is
effective to compensate the difference of the breast shape among
the images. However, realistic simulation is very difficult since
the actual deformation is quite complicated and the detailed
conditions about the deformation are hardly known mainly
because of the large individual variations in both geometry
and tissue organizations. For a CAD system for integratively
analyzing different view mammograms (breast Xrays) [1], a
simplified model to simulate the breast compression, which is
derived base on several approximations about the deformation
is used. Although it contributes to derive valuable results, the
precision of the results is desired to improve. In this paper,
we discussed about a breast compression model aiming at
more accurate solutions. Two trials for better understanding
on the breast deformation under the compression are shown:
simulation of mammographic compression using a mechanical
model and inspection of internal deformation using a devised
phantom. These experimental results gave us some clues for
better simulation.

I. INTRODUCTION

Breast cancer is one of the most serious disease for

women. Recently, several types of medical images are used

for screening programs to detect breast cancer in its early

stages with less oversight. Especially, mammograms, MRI

and Ultrasound are well used because of their good balance

in trade-off between specificity/sensitivity and cost. It is

effective to integrate the information obtained from differ-

ent images, as each modality has its merits and demerits.

However, it is not easy because a breast deformed into very

different shapes during the procedures. For mammograms, a

breast is strongly compressed into flattened shape primarily

to reduce x-ray dosage. For taking MRI, the breast is

pendulous in specially designed breast coil as the patient

lies on her front in the magnet; the gravity pulled down the

breast so as to get it away from her chest wall. On the other

hand, since women lie on the bed with her face up during

the ultrasound process, the breast shape is pulled toward the

chest wall by the gravity.

It is a natural and sensible strategy to simulate the de-

formation of the breast to compensate the difference in the

shapes among the images. At first, deformable models which

Y. Kita is with Information Technology Research Institute, National
Institute of Advanced Industrial Science and Technology, 1-1-1 Ume-
zono,Tsukuba 305-8568, Japan y.kit@aist.go.jp

S. Tokumoto is with System Division, Industrial Technology Center of
Wakayama Prefecture, Ogura 60, Wakayama city, Wakayama pref., 649-
6261, Japan tokumoto@wakayama-kg.go.jp

S. Hirai is with Dept. Robotics, Ritsumeikan Univ. Kusatsu, Shiga 525-
8577, Japan hirai@se.ritsumei.ac.jp

deform so as that image features of the two different images

coincide each other were used to compensate relatively

small deformation, such as pre-post contrast MRI[2][3] [4].

Later, to decrease deformations inconsistent to the physics,

constraints based on volume conservation principle were

introduced[5][6].

For larger deformation as like seen in compression

procedures, finite element models (FEM) of breast have

been intensively studied recently aiming at accurate

simulation[7][8][9][10][11][12][13]. However, FEM models

can simulate accurate deformation only when all internal end

external factors, such as geometry and biomechanics of the

breast, forces exerted to the breast, and boundary conditions

are given correctly. Unfortunately, in most of practical cases,

it is quite difficult to grasp these information: geometry of the

breast varies largely according to individuals; organization of

internal soft tissues are also different among the individuals;

both strength of compression and boundary condition at the

connection of chest wall are very complicated.

Especially, in the case of integrative analysis of different

view mammograms (breast Xrays), the input is only two

projective images of differently deformed breast. To simulate

the breast compression process for building a CAD (Com-

puter Aided Diagnosis) system under such situation, Kita

et al [1] introduced a simplified compression model based

on several approximations. For appropriate simplification,

it is important to understand the principle and tendency

of the breast deformation under compression. Actually, the

compression model was derived based on several clinical

studies[14],[15]. Especially, Novak[15] studied deformations

of the breast surface during compression by observing the

movements of marks made on the skin of volunteers’ breast.

However, such observations only give information about

skin movement, and do not strictly give information about

movements of tissue internal to the breast. To improve

the model, we need more investigations about the internal

deformation caused by the compression.

In this paper, we showed some preliminary trials for better

understanding of the breast deformation including its internal

deformation to improve the compression model used in the

CAD system. In Section II, we briefly explain the scheme of

the CAD system and the compression model used in the

current system. In Section III, the breast deformation by

compression is investigated by comparing a mammogram

and a MRI of the same breast through the intermediary of

a mechanical model. In Section IV, the internal deformation

by compression is investigated by observing a phantom in a

industrial CT scanner, which is devised to have 286 points of
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Fig. 1. Strategy for determining 3D position from two mammographic views.

marks inside of it. Finally, we discuss and clarify the matters

to improve in Section V.

II. SCHEME OF THE CAD SYSTEM [1]

Recently, performing two different views of the breast,

the medio-lateral oblique (MLO) and cranio-caudal (CC), is

spread in screening programs, since it may greatly improve

sensitivity and specificity. When a mammogram is performed

the breast is compressed between the film cassette and com-

pression plate in the direction of the x-ray source: “head to

toe” for the CC view and “over the shoulder diagonally to the

hip” for the MLO view, as shown in Fig. 1(a). Unfortunately,

radiologists find it difficult to relate points in the CC view

to those in the MLO view because the breast is largely

deformed in the different directions. To help their diagnosis,

a CAD (Computer Aided Diagnosis) system which simulates

the breast deformation during mammogram performance and

suggests the corresponding position between different viewed

mammograms has been developed[1]. The method calculates

the epipolar curve, that is the locus of possible corresponding

positions of the point in the other image by simulating

the five steps of the process: A: back projection → B:

uncompression → C: rotation → D: compression → E:

projection as shown by the solid arrows as shown in Fig.

1(b). As a result, the line in the MLO image is calculated.

This physics-based approach have another merit: it also

can help to estimate the 3D position of a lesion in the

uncompressed breast, despite the fact that the breast is never

imaged in the uncompressed state in mammography. This

technique works after finding the corresponding point along

the epipolar curve and then back-tracking the movement of

the point during the simulation of the processes as shown by

the dashed arrows in Fig. 1(b). Fig. 2 shows an example of

the resultant 3D position obtained by the system. Here, the

3D shape of the individual breast shown in the right-hand

two windows is automatically reconstructed from the breast

outlines in CC and MLO images. This localization is very

important to guide biopsies and/or fusion of multi-modal data

Fig. 2. 3D position of legion obtained by the CAD system

of the breast.

The breast deformation caused by compression and un-

compression is simulated using the simplified geometrical

compression model proposed in [16], This model enables the

calculation of the position of any point of the breast under

compression from its original position in the uncompressed

state, and vice versa as shown in Fig. 1(c). The model

was derived based on some approximations on the breast

deformation under the compression as like:

Approximation 1(A1). The cross-section for compression

of the breast is deformed only in the plane by compression.

Here, “the cross-section for compression” means the cross-

section cut by the plane which is parallel to the compression

direction and perpendicular to the chest wall.

Approximation 2(A2). In the mid-plane between the plate

and the cassette, there is no deformation.

Through experiments using about 50 pairs of CC and MLO

images of both English and Japanese women [16][1], average

error, which is distance from the actual corresponding point

to the predicted curve, is less than 7 mm. It overcomes the

current radiologists predictions, average error of which is

about 10 mm. The accuracy can be improved by replacing
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Fig. 3. 3D model reconstructed from MR MIP data

Fig. 4. CC data of the breast of the MR data in Fig.3

the compression model with a richer compression model,

Actually, Zhang et al[13] uses a breast FEM model which

is reconstructed from MRI data of the same breast to

calculate the similar corresponding lines. The accuracy of the

experimental results using six patients was reported as about

2.2 mm. However, it should be noticed the former method

has merits of working only with the two view mammograms

in real time, while the latter requires MRI of the same breast

and takes much longer time. This characteristics is important

for a handy and easy-to-use CAD system for aiding the

diagnosis of mass screening with mammograms only.

Therefore, the improvement of the simplified compression

model only with the input images is also desirable. Yam

et al [17] improved the compression model by introducing

some variable parameters into the model and by adjusting

the values based on the correspondences of prominent fea-

tures (micro-calcifications) on the images. However, mam-

mographic views do not always have enough numbers of

corresponding pairs of prominent features.

One direction is to build a more sophisticated geometrical

compression model by understanding the breast deformation

by compression in more details.

III. SIMULATION OF CC MAMMOGRAPHIC COMPRESSION

USING A MECHANICAL MODEL

To understand better the breast deformation by compres-

sion, we simulated CC mammographic compression of breast

using a mechanical model reconstructed from MR data and

compared the results with actual CC image. We use the

Fig. 5. Compression simulation 1

Fig. 6. Compression simulation 2

rheological model developed by Kimura et al.[18], which can

simulate the deformation of elastic, viscoelastic. and plastic

objects in almost real time. Although the parameters of

this model are not directly related with actual biomechnical

parameters like Young’s modulus, these can be adjusted

relatively intuitively. The 3D geometry of the model is

reconstructed from outlines in MRI MIP (Maximum Inten-

sity Projection) images as shown in Fig.3. For simulating

compression by two plates, Dirichlet boundary conditions

(displacement-controlled conditions) are applied to the nodes

touched to the plates which move gradually towards each

other until the distance between the plates becomes the width

at taking the CC image. At the connection to the fixed chest

wall, only the z coodinates of the nodes at the chest wall is

fixed. Fig. 5 shows a top and side viewsof a simulation result.

Although several simulations were tried while manually

adjusting the parameters of the viscoelasticity of the model,

the outline of the deformed breast did not get close to

the one observed in the actual CC image in Fig. 4. The

biggest difference is the tendency of elongation in the X
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Fig. 7. Projected positions of a lesion detected in MR data

direction, which is perpendicular to the compression and

along the chest wall. Although there are also some studies

simulating the CC compression[10][13], the consistency of

the simulated shape with the actual observation has not been

sufficiently investigated. As far as we review, such tendency

does not seen in any simulation results. We infer that this

is mainly because both the connection with the chest wall

and the compression action are fairly complicated and are

not well implemented in the simulations. Actually, it is hard

to represent this complicated boundary conditions. Instead

of sticking to that, we add one more Dirichlet boundary

conditions for the nodes on the horizontal plane through

the nipple, so as to the outline of the shape after the

simulation coincides with the one observed in actual CC

image. Concretely, the nodes are forced to move to the

position which produce the outline of CC. Fig. 6 shows the

deformation of the breast using this condition.

To examine the effects of this modification on the internal

deformation, we check the consistency of projected position

of a lesion. In Fig. 7, white crosses illustrate three projections

of a lesion which is detected in MRI (crosses in Fig. 3): from

left to right, the projection of the location at original MRI

shape, that after the compression simulation shown in Fig. 5

and that after the compression simulation shown in Fig. 6.

As you see, the last one gives best coincidence. This result

encourages us to make good use of the features observed in

images to specify the deformation.

This observation also gives a clue to the improvement of

the geometric compression model used in the CAD system:

the modification realizing this tendency of elongation along

the chest wall should be added.

IV. OBSERVATION OF INTERNAL DEFORMATION USING

DEVISED PHANTOM

In order to grasp internal deformation of flexible objects

in details, Tokumoto et al.[19] has devised gel phantoms in

which small metallic elements arranged with regular intervals

and measured the movements of the elements using an in-

dustrial CT scanner, TOSCANER-24200AV. Fig.8 shows one

example of the experimental results using a semi-ellipsoid

phantom made of human-skin gel. The size of the phantom

is 130 (major axis) × 110 (minor axis) × 70 (height) mm.

286 metallic elements are arranged inside of the phantom.

To observe the internal deformation, the movement of the

elements were observed by the CT scanner at three times:

with no compression, under compression to the width of 100

mm, and under compression to the width of 80 mm. In Fig.

8(a), white, red and blue colors illustrate the position of the

elements at each state respectively.

To observe more clearly, the movement of the metallic

elements which on a horizontal plane at the initial state is

picked up in Fig. 8(b). The movement in the compression

direction (in the Y direction) is big at the part which are

pressed directly by the plates (at the part of X = 60 ∼ 100

in Fig.8(b)). On the other hand, at the remaining outer part,

the movement in the X direction, which is perpendicular to

the compression direction is stronger. One more noteworthy

point is that the former part obviously got denser than the

latter part under the compression. This gives us a valuable

lesson that too strong volume conservation constraints could

cause removal from reality.

This observation suggested some amendments to the com-

pression model used in the CAD system.

1) On Approximation 1:

In the current system, for simplification, we ignore the

movement perpendicular to the cross-section and con-

sider the deformation only within each cross-section.

However, cross-sections tend to bend outward with

the biggest displacement at the mid-plane between the

plates.

2) On Approximation 2:

In the mid-plane between the plates, deformation in

the compression direction can by ignored. However,

the displacements in the other directions should be

considered.

3) On 3D reconstruction from the outlines of mammo-

grams:

In the current system, individual 3D breast shape is

reconstructed on the assumption that its horizontal

and vertical outlines can be approximated with 10-

percent scale-downed outlines of CC and MLO im-

ages respectively[1]. However, it looks better to take

into consideration the distortion of the outlines during

the compression rather than assuming the change as

similar transformation.

V. CONCLUSIONS

In this paper, we discussed about the model which can sim-

ulates breast compression for practical medical applications.

To shed light upon the physical deformation of breast under

mammographic compression, we have done two-types of ex-

periments: simulation of mammographic compression using

a mechanical model and inspection of internal deformation

using a devised phantom. Based on the experimental results,

Some key issues to improve the compression model used

currently in the CAD system[1] were specified in Section

IV.
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(a) (b)

Fig. 8. Inspection results of internal deformation of a phantom with metallic elements inside

Our future work will focus on:

1. Further investigation of the breast deformation under

mammographic compression by increasing the number of the

experiments in-line with ones shown in this paper.

2. Development of more sophisticated compression model

for the CAD system based on the facts obtained from the

experiments above.
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Abstract

A volume-based realistic communication system called
Haptic Communication is described. The system allows
participants to interact in real time with others at remote
locations on the network using haptic perception (sense
of touch) of soft objects in virtual environments. We con-
structed the system so that it provides a sense of touch at re-
mote locations in real time. First, an adaptive volume model
represents virtual soft objects in PCs at remote locations.
Next, the reflection force of the soft object is calculated
rapidly and accurately from the parameters of positions and
forces at contacting points transmitted via network at each
PC. Eventually, the haptic and visual information are ren-
dered by a haptic device (PHANToM) and a volume graphic
software in the PCs. We investigated the efficiency of our
system via experiments on a simulation of needle insertion
with high force feedback rates at two remote locations on
a WAN between Ritsumeikan University, Biwako Kusatsu
Campus and Shiga Medical University. The experiment re-
sults show that the delay due to network traffic is negligible.

1. Introduction

Virtual reality technology has improved as computers
and networks have become faster and more powerful. Some
tele-communication systems that allow users to work at re-
mote locations on the network have been developed, and
medical and educational applications are expected. This
kind of tele-communication we requires visual, auditory
and tactile systems. Video chatting is now common. More-
over, force feedback is a tactile way of interacting with
virtual objects. It is generated by haptic devices such as
PHANToM[10] that can update at 1000 Hz (more than 1000

Hz is generally needed as update rate to achieve a real haptic
sensation[3, 4]). A high-speed network library developed to
transmit force feedback data through a network at 1000 Hz.
Thus, the next generation of tele-communication systems
need to have the sense of touch.

The VizGrid project[1] is a part of the IT-Program, a five
year Japanese national project initiated in 2002. A goal of
the project is to create a real-world oriented remote collab-
oration environment on a grid based on a volume communi-
cation concept. The project has enabled the development of
volume modeling of output data from simulation or experi-
mental results and a volume modeling of images in the real
world by using a multiple-view camera.

Hikichi et al.[7] proposed a haptic collaboration system
without loss of quality of service (QoS). They conducted an
experiment to evaluate their system using a rigid and a sur-
face object, and a delay time, packet loss, and information
loss were measured.

Mortensen et al.[9] presented a study of remote collabo-
ration between people in a shared virtual environment. Two
people, one at University College London (UCL) and the
other at University of North Carolina Chapel Hill (UNC-
CH), met together in shared virtual environment and lifted
a rigid body object together and moved it to another place.

Gunn et al.[6] proposed techniques allowing long-
distance sharing of haptic-enabled, dynamic scenes. At
the CSIRO Virtual Environments Laboratory, They have
successfully used their system to connect prototype of a
surgical-simulation application between participants on op-
posite sides of the world in Sweeden and Australia, over a
standard Internet connection.

However, previous works did not achieve realistic sen-
sations for the representational model or achieve, real-time
performance, and the sense of touch was not well defined.
In this study, we constructed our system as follows. First,
an adaptive volume model represents virtual soft objects in
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the PCs at remote locations. Next, each PC calculates the
reflection force of the soft object is rapidly and accurately
from the parameters of positions and forces at contacting
points transmitted via network. Eventually, the haptic and
visual information are rendered by a haptic device such as
PHANToM and volume graphic software in the PCs. We
tested the efficiency of our system via experiments on sim-
ulating a needle insertion with high haptic rendering rates at
two remote locations on a WAN between Ritsumeikan Uni-
versity, Biwako Kusatsu Campus and Shiga Medical Uni-
versity. The experimental results show that the delay due to
network traffic is negligible. Figure 1 presents an overview
of the volume-based realistic communication.

Figure 1. Overview of volume-based realistic
communication

2. System Overview and Architecture

2.1. System Overview

In conventional haptic communication systems, a server-
client is generally used for the surface model, and all data
sets such as image information and force information are
transmitted[1]. However, transmitting all data sets of vol-
ume models for visualizations is difficult because the vol-
ume model is huge. We performed a deformation simula-
tion, shown in Figure 2, using the same volume model at a
remote location and minimum manipulation parameters to
achieve real-time communication.

2.2. Hardware Architecture

We used a desktop PC on the server side and a laptop PC
on the client side. Table 1 has the specification of both sys-

Figure 2. Architecture of system

tems. PHANToM Omni[10] is a haptic device that is con-
nected to both PCs via the IEEE1394 interface. The haptic
device enables interaction using the sense of touch a virtual
environment with a stylus, which is man-machine interface
shaped like a pen.

Table 1. Specifications of the PCs
OS CPU[GHz] RAM[GB]

Server Windows XP Intel(R)
SP2 Core2 Duo 3.40 2.00

Client Windows XP Intel(R)
SP2 Core2 Duo 2.33 2.98

2.3. Software Architecture

We used OpenHaptics ToolkitTM [11] for the force feed-
back. This application enables software developers to add
haptic and true 3D navigation to a broad range of applica-
tions, from design to games and entertainment to simulation
and visualization.

We also used the Haptic Communication Toolkit
(HCT)[5] for real-time haptic communication. The HCT
is a developer’s kit for communication control and also a
network library that is developed for communication be-
tween two or more haptic devices. However, the HCT can
only transmit to 256 bytes to achieve the haptic rate (more
than 1000 Hz). To go beyond the limitation is difficult
because we need a communication band that is faster and
proportional to the size of the transmit data. In this study,
we achieved real-time haptic tele-communication using the
minimum manipulation parameters.
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2.4. Network Architecture

A server-client type is used in our system. The commu-
nication band is 1 giga bit per second on the LAN, and the
communication protocol is TCP/IP.

3. Deformation Simulation Model

3.1. Mass-Spring-Damper Model

The mass-spring-damper (MSD) models called the Voigt
model comprising mass node, springs and dampers for rep-
resenting deformation are widely applied because of the ef-
fectiveness in computation and the simplicity in implemen-
tation. Figure 3 shows one of an element in the Voigt model.
A tetrahedron consists of the six elements and a set of tetra-
hedron represents a volume model.

Figure 3. Voigt model

Given a current length lij , a initial length Lij , and a di-
rectional vector of an edge for ith node, the force value Fi

is given as follows:

Fi = −Σj(k(lij − Lij) + clij)eij (1)

where k is the stiffness value and c is the damping co-
efficient. Given a mass of the ith node, a position of the
node, and an external force, equations of motion is given as
follows:

MiP̈i = Fi + F ext
i (2)

3.2. Collision Detection

An algorithm to detect a collision between a stylus of
a haptic device and a node is required for manipulation of
a visco-elastic model using the PHANToM on virtual en-
vironment. Let ~OA = (a1, a2, a3), ~OB = (b1, b2, b3),
~OC = (c1, c2, c3) be vectors comprising a tetrahedron

(Figure 4), A volume of the tetrahedron is given as follows:

V =
1
6
|a1b2c3 + a2b3c1 + a3b1c2

−a1b3c2 − a3b2c1 − a2b1c3| (3)

Figure 4. Tetrahedron

As shown Figure 5, a position Pi of the stylus newly
generate four tetrahedrons. The volume of generated tetra-
hedron is let by Equation 3. If a sum of all generated tetra-
hedron equals to the volume of initial tetrahedron, the colli-
sion is detected.

Figure 5. Devided tetrahedrons

4. Adaptive Volume Modelling

In our previous work[12], we developed a deformation
simulation of a visco-elastic object using the mass-spring
dumper model. An input mesh model such as an organ is
represented using a binary tree of a set of tetrahedrons with-
out any cracks forming. The model is based on a tetrahedral
adaptive mesh for parallel hierarchical tetrahedralization of
volume data (Figure 6).

The interaction with the virtual object, coordinate, ve-
locity, acceleration, and mass were set to all nodes of
the tetrahedral adaptive mesh to simulate the deformation.
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(a) Tetrahedral adaptive mesh (b) Cross-sectional view

Figure 6. Tetrahedral adaptive mesh ( Volume
model of tooth )

The visco-elastic parameters, elastic parameters and initial
length of the edge were set to the edge, consisting of two
nodes.

Figure 7. Dynamic tetrahedral adaptive grids
of volume data

Furthermore, we used the dynamic tetrahedral adap-
tive grid of volume data[13] to simulate deformation of
the visco-elastic object rapidly. This algorithm can refine
above tetrahedral adaptive mesh interactively. The tetrahe-
dral adaptive mesh is locally subdivided based on the ex-
pansion and contraction rate at each edge. The object is
constantly represented by specified approximate precision.
Figure 7 shows the dynamic tetrahedral adaptive grids of
volume data and how they progress. This paper features an
extension of this model for manipulation using the haptic
device.

5. Haptic Communication

5.1. Send/Receive Packet

The manipulation parameters for haptic communication
using the deformation simulation are as follows.

• 3D position of a tip of the stylus in virtual space
(8[byte] × 3 = 24[byte])

• Tetrahedron ID held by users (8[byte])

• Node ID manipulated by users (8[byte])

• 3D position of node manipulated by users (8[byte] ×
3 = 24[byte])

The manipulation parameters are 64 bytes less than the
limitation of the HCT, 256 bytes.

5.2. Process Flow

Figure 8. Process flow

As shown Figure 8, our system has two threads. One
is a OpenGL thread and the other is a Haptic thread. the
OpenGL thread consists of four processes, a deformation
by manipulation, a deformation calculation, a reaction force
calculation, and a drawing. An update rate of the OpenGL
thread depends on a resolution of the volume model. In this
study, a cube of initial level 3 (a number of initial node is
24) is used. This level changes to level 9 ( a number of node
is 729) by deformation. Thus, the update rate ranges from
50 Hz to 1000 Hz with changing resolution of the volume
model. The update rate of the drawing process is controlled
as 30 Hz.

The haptic thread also consists of four processes, an ac-
quisition of the stylus position, a communication, an acqui-
sition of the reaction force, and a device output. The update
rate of the haptic thread is 1000 Hz.
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6. Experiment

The previous haptic tele-communication system experi-
enced, time delays caused by network traffic and reduced
accuracy of force feedback [8]. We performed an experi-
ment on a WAN to evaluate the time delay and force feed-
back accuracy in our system.

6.1. Experimental Condition

We performed an experiment using two remote loca-
tions on a WAN between Ritsumeikan University, Biwako-
Kusatsu Campus (RU-BKC), and Shiga Medical University
(SMU). The distance between the universities on a straight
line is about 2 kilometers. We also performed same exper-
iment between RU-BKC and Osaka University, Toyonaka
Campus (OU-TC). The distance between the universities
on a straight line is about 52 kilometers. Furthermore, we
performed an experiment using three remote locations on a
WAN and a LAN. One connection between RU-BKC and
OU-TC was used the WAN, the other connection between
OU-TC and OU-TC was used the LAN. The communica-
tion time was measured based on the following conditions.

• Measure the round trip time between server and client

• Measure the number of frames from 10,000 to 25,000
(only correct frames)

• Calculate average times, maximum times and mini-
mum times

• Repeat five times

• Measure the round trip time between server and client
( not between client and client) in the case of the tele-
communication at three remote locations

6.2. Experimental Results

Two users performed an interaction of soft objects in a
virtual environment. Figure 9 shows a scene of an exper-
iment by two users and Figure 10 shows each displayed
models. Figure 10(a) shows the server side interaction and
Figure 10(b) shows the client side interaction. Figure 10
shows a representation of the deformation that arises by the
interaction.

Table 2, Figure 11 (a) and Figure 11 (b) show the exper-
imental results between RU-BKC and SMU. Table 2 shows
a value of the round trip times of all trials. Figure 11 (a)
shows the round trip time on the 1st trial. Figure 11 (b)
shows the maximum times, minimum times and average
times of all trials.

(a) Server (Location A) (b) Client (Location B)

Figure 9. Haptic telecommunication by two
users (Scene)

(a) Server (b) Client

Figure 10. Haptic telecommunication by two
users (Display)

As shown in Table 2, the average times of all trials are
about 11,000 micro seconds. The maximum time of all the
trials is 30,139 micro seconds.

Table 3, Figure 12 (a) and Figure 12 (b) show the ex-
perimental results between RU-BKC and OU-TC. Table 3
shows a value of the round trip times of all trials. Figure
12 (a) shows the round trip time on the 1st trial. Figure 12
(b) shows the maximum times, minimum times and average
times of all trials.

As shown in Table 3, the average times of all trials are
about 13,000 micro seconds. The maximum time of all the
trials is 268,743 micro seconds.

Table 4, Table 5, Figure 13 (a), Figure 13 (b), Figure
13 (c) and Figure 13 show the experimental results in three
remote communications (RU-BKC, OU-TC Location A and
OU-TC Location B). Table 4 and Table 5 show a value of
the round trip times of all trials. Figure 13 (a) and Figure
13 (c) show the round trip time on the 1st trial. Figure 11
(b) and Figure 13 (d) show the maximum times, minimum
times and average times of all trials. Table 4, Figure 13 (a)
and Figure 13 (b) show the experimental results at OU-TC
Location A. Table 5, Figure 13 (c) and Figure 13 (d) show
the experimental results at OU-TC Location A.
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Table 2. Round trip times of all trials between
RU-BKC and SMU[µsec]

1st 2nd 3rd 4th 5th
Maximums 30,139 19,148 23,024 24,152 17,211
Minimums 9,044 9,798 9,008 8,964 9,025
Averages 11,943 11,178 11,103 11,685 11,116

(a) Round trip times on the 1st trial

(b) Average times, maximum times and minimum times

Figure 11. Experimental results between RU-
BKC and SMU

As shown in Table 4 and Table 5, the average times of
all trials are about 15,000 micro seconds. The maximum
time of all the trials is 998,508 micro seconds and 1,126,960
micro seconds.

Figure 14 (a) and Figure 14 (b) show the round trip time
all days once every hour.

6.3. Disscussions

In any cases, the subjects did not feel any discontinuity
of force feedback during while the experiment. The dif-
ference between the maximum time and the minimum time
was caused by a priority of communications on a WAN. As
shown Figure 11 (b), Figure 12 (b), Figure 13 (b) and Fig-
ure 13 (d), the average times are almost same as the min-
imum times. In other words, the communication is almost

Table 3. Round trip times of all trials between
RU-BKC and OU-TC [µsec]

1st 2nd 3rd 4th 5th
Maximums 53,143 57,166 57,153 268,743 87,133
Minimums 10,893 10,891 10,889 11,020 10,893
Averages 13,110 13,186 13,183 13,574 13,120

(a) Round trip times on the 1st trial

(b) Average times, maximum times and minimum times

Figure 12. Experimental results between RU-
BKC and OU-TC

achieved by the minimum time.
All experiment were performed at 10 a.m. As shown Fig-

ure 14 (a) and Figure 14 (b), the amount of network traffic
at 10 a.m. on each locations is about 13[msec]. This re-
sults give suggestion that the communication performance
depends on the running time.

Hikichi et al.[7] proposed a haptic collaboration system
without loss of quality of service (QoS). They conducted
an experiment to evaluate their system using a rigid and a
surface object, and a delay time, packet loss, and informa-
tion loss were measured. Their results show a maximum
allowable limit of the delay time is about 80[msec]. In this
study, the experimental results show the round trip time is
totally about 10 to 20[msec] less than 80 [msec]. Of course,
we used a soft object and volume model by different pa-
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(a) Round trip times on the 1st trial
(OU-TC Location A)

(b) Average times, maximum times and minimum times
(OU-TC Location A)

(c) Round trip times on the 1st trial
(OU-TC Location B)

(d) Average times, maximum times and minimum times
(OU-TC Location B)

Figure 13. Experimental results in three re-
mote communications (RU-BKC, OU-TC Lo-
cation A and OU-TC Location B

Table 4. Round trip times of all trials (OU-TC
Location A))[µsec]

1st 2nd 3rd 4th 5th
Maximums 77,266 684,837 998,508 36,133 164,391
Minimums 11,886 11,234 11,022 10,999 11,854
Averages 13,448 16,191 14,667 13,978 14,398

Table 5. Round trip times of all trials (OU-TC
Location B))[µsec]

1st 2nd 3rd 4th 5th
Maximums 83,307 1,126,960 618,546 65,058 65,206
Minimums 10,987 11,016 10,988 10,880 10,857

Average 12,753 14,699 13,595 13,221 13,479

(a) RU-BKC and SMC

(b) RU-BKC and OU-TC

Figure 14. Round trip time all days once every
hour

rameters and different experiment procedures in compari-
son with their experiment. However, in the case of using
the soft object, we don’t need high haptic rate such as 1000
Hz[2].
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7. Conclusions

We described a volume-based haptic communication
system that shares an adaptive volume model between re-
mote locations and provides haptic communication to users.
Furthermore, we investigated the efficiency of our system
via experiments on a simulation of a needle insertion with
high haptic rendering rates at two remote locations on a
WAN between Ritsumeikan University, Biwako Kusatsu
Campus (BKC), and Shiga Medical University and at three
remote locations on a WAN between Ritsumeikan Univer-
sity, BKC, and Osaka University, Toyonaka Campus (TC).
The experimental results show that the delay due to network
traffic is negligible. In future work, we will extend the capa-
bility of our system by using multi core CPUs, by synchro-
nizing visualization between the server and client, and by
developing an interpolation algorithm for force feedback.
We will also perform an experiment by some subjects for
subjective assesment.
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Control of Loosely Coupled Joint by Soft Actuators
via Deformable Cartilage

Mizuho Shibata, Takahiro Yoshimura and Shinichi Hirai

Abstract— We introduce a robotic prototype of an arm with a
loosely coupled joint, modeled on the human joint. A viscoelastic
object functions as cartilage and soft actuators as muscles.
First, we show that although viscoelastic object affords smooth
movement owing to shift in the center of rotation. The prototype
was shown to be highly robust against mechanical disturbance
owing to its good mechanical compliance. We also describe here
a mechanism for controlling angles of a human-like joint using
length sensors in three-dimensional (3D) space. In addition,
we propose an appropriate method of measurement to reduce
errors in measurement due to the length sensors. Using this
method, we found that, for each projecting plane, the errors
were less than 1.0 deg in our 3D prototype.

I. INTRODUCTION

Tasks performed by a human arm with compliant joints
are robust for environmental variations. Humanoid robots
require such robust motions to perform actions similar to
those of humans. Up to now, researches on mechanisms that
realize human joint motion have been studied. Okada et al.
developed a cybernetic shoulder, which imitates the motion
of a human shoulder mechanically [1], [2].

Results obtained with this cybernetic shoulder indicate
the need for humanoid robots to have high, human-like
mobility and sensitive compliance. The movement of the
center of rotation of the cybernetic shoulder yielded the
smooth motions of a human shoulder joint using a closed-
loop link mechanism with 3-DOF joints. In contrast to the
cybernetic shoulder, which consists of rigid links, a human
shoulder consists of rigid bones, soft muscles and a soft
cartilage between the bones. The cartilage is porous, and
the interstitium is filled with fluid. Under stress, fluid moves
in and out of the tissue, and the mechanical properties of
a cartilage change with fluid movement [3], suggesting that
the motion and compliance of a human shoulder joint may
be realized by a mechanism with soft components.

Since elastic joints contribute to improving robustness
for the environment due to the compliance involved, many
studies have analyzed the ability to control a robot with
elastic joints [4], [5], [6]. For example, although the viscous
terms of a viscoelastic joint may affect the static precision
of positioning or the dynamic accuracy of trajectory tracking
tasks, these viscous terms contribute to controlling stability
[7]. By leveraging the mechanical properties of the joint, the
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Rigid link

Rigid socket

Soft actuator

Viscoelastic

        material

Fig. 1. Concept of a loosely coupled mechanism

MarkerRigid link

Rigid socket

SMA coil 2
Viscoelastic

  object

SMA coil 1

Fig. 2. Prototype of a loosely coupled mechanism

joint mechanism can work stably and robustly under simple
control laws.

Researches on the control a link mechanism including
viscoelastic objects have been performed. For example, a
robot that includes a flexible spine [8], [9], consisting of
a series of ball-and-socket joints covered by rubber, can
twist its upper body through the spine. Although controlling
tendon length, tension, and spring can control the spine,
the effect of soft cartilage on robust control of the robot
was not determined, and spine compliance was not verified
experimentally. The human arm, including cartilage, has been
modeled to simulate arm motion, leading to the formulation
of a dynamic equation of the human arm, including soft car-
tilage, by a bond graph simulating arm motion, in which the
cartilage was assumed to have a nonlinear spring component
and a linear damper component [10].

We propose a novel link mechanism to investigate effects
of soft component in control of a human-like joint. Here,
we introduce a robotic prototype of an arm with a loosely
coupled joint modeled on the human arm, with viscoelastic
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material and soft actuators functioning as the cartilage and
muscles of a loosely coupled joint. We also describe the
construction of a robotic hand with high robustness for envi-
ronmental variation using a mechanism with length sensors.
We describe here the control method of a three-dimensional
(3D) loosely coupled mechanism using length sensors. After
summarizing the concept of the loosely coupled mechanism,
we describe the construction of a prototype of this mecha-
nism in two-dimensional (2D) space to confirm motion of the
link using a length sensor. Finally, based on the prototype of
the 2D mechanism, we constructed a 3D loosely coupled
mechanism with length sensors. In addition, we propose
an appropriate method of measurement to reduce errors in
measurement due to the length sensors.

II. LOOSELY COUPLED JOINT

A. Concept

The concept of the loosely coupled joint is depicted in
Figure 1. This mechanism consisted of a revolute joint with
soft actuators driving a rigid link in a rigid socket containing
a viscoelastic object; these correspond to the muscles, bones,
sockets and cartilage of a human arm. The soft actuators and
viscoelastic object make the joint compliant, like a human
joint. Like the muscles, the actuators expand and contract
unidirectionally and work antagonistically as a pair to rotate
the link. Importantly, because of the viscoelastic object, the
center of rotation of the link is not fixed.

B. Specifications and system

The prototype is shown in Figure 2. The actuators are
made from BMX200 shape memory alloy (SMA) coil (TOKI
Corporation, Japan), the link and socket are made from
polyoxymethylene, and the viscoelastic object is an off-the-
shelf sponge, 10 mm in thickness, 0.08 g in weight, and
with a Young’s modulus of about 20 kPa. To prevent slip,
the sponge is fixed to the link and socket. The rigid link and
the socket have a combined weight of 21.7 g, and the link
end and origin of the joint are separated by a distance of
27 mm. The size of the complete joint mechanism is about
that of a human fingertip. The actuators are powered through
a ULN2003AN driver (Texas Instruments, USA). With a
rectangular piece of black paper (9.5 x 19.5 mm2) on the
bottom of the link as a marker, the position and orientation
of the link were calculated from the moments of the first
and second orders, respectively, of images captured using a
1,000 Hz high-speed camera [11].

C. Shift in center of rotation under open-loop control

When the voltage v1
inp applied to the driver for one of

the actuators was set to 5 V while the voltage v2
inp to the

other actuator was 0 V, X, the position of end of the link in
horizontal direction, moved relative to Y, the position of end
of the link in vertical direction, as indicated by the solid line
in Figure 3-(a). In contrast, when a solid object replaced the
viscoelastic object the end of the link moved as indicated
by the broken line, which is an arc of a circle centered at
the origin of the joint. Clearly, the center of rotation of the
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Fig. 3. Experimental results under open-loop control

link is not fixed, similarly to the human joint, particularly in
the presence of the viscoelastic object. Additionally, Figure
3-(b) shows that the link angle increases monotonously as
time advances. Therefore, the link can move smoothly, like
a human joint.

D. Variable compliance

The compliance of the link mechanism was tested experi-
mentally using the setup shown in Figure 4. The 50 g weight
caused the link to move 12 deg when no voltage was applied
to the actuators at any time. The combination of the weight
and v1

inp set to 3.0 V and v2
inp to 2.0 V simultaneously,

caused the link to move 7.5 deg. When the thread connecting
the weight to the link was severed by burning without
changing the voltage applied to the actuators, the angle of the
joint, monitored using a 1,000 Hz CMOS camera, changed as
shown in Figure 5. The results show that the compliance is
higher when a voltage is applied to the actuators and that
in this state, as expected, the actuators and the cartilage
are stiffer. Additionally, the viscous properties of the link
mechanism are little changed when the voltage is applied to
the actuators.
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Fig. 4. Experimental setup for measuring compliance
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Fig. 5. Test results for compliance

III. ANGLE CONTROL USING VISUAL FEEDBACK

A potentiometer would not be much help because the
center of rotation is not fixed. Therefore, we adopted visual
feedback to control the angle of the joint. We used proportion
laws that do not depend on knowledge of the physical
properties of the joint because, in the case of soft materials,
the physical properties, especially the viscosity, are not
accurately known. We did not attempt to control the velocity
of the joint because it would be more data intense.

A. Experimental setup

Figure III shows the visual feedback system. Two personal
computers (PCs) were connected using a 1 Gbps optic fiber
(AVAL DATA, Japan). The time lag between the PCs was
negligible. One PC was used to generate control inputs to
the actuators at a frequency of 10 µs and the other was used
to store and process the visual information captured by the
CCD camera operating at the standard NTSC frame rate of
30 per second. The sampling rate of the sensor was adequate
because SMA actuators have slow responses.

B. P control

We used the following simple proportional (P) control law
for the link:

{
v1

inp = −KP (θ(t) − θd) + voffset,

v2
inp = 0,

(1)

CCD camera

Loosely coupled 

                     joint

DriverD/A

Fig. 6. Control system
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Fig. 7. Experimental results under P control

where θd is the desired angle, to be held constant, KP is the
proportional gain which is a positive constant, and voffset is
the minimum voltage required for the drivers, which was 1.7
V for our drivers. The load on the actuator complicates the
relationship between input voltage and the actuator’s driving
force, hence use of the input voltage to the driver IC as the
control input in Eq.1. Figure 7 shows how the angle changes
with time when the desired angle θd was 20 deg and Kp was
0.05 or 2.0. The angle reaches a steady value, albeit there
is some fluctuation. This steady-state error depends on the
value of KP , increasing with gain. However, even when the
gain Kp to 2.0, the steady-state error is acceptable, being
less than 0.15 deg.

Therefore, we can control the angle of the link, within a
positive range, by one actuator. We can explain these results
by examining position control of the viscoelastic object fixed
on a wall as shown in Figure 8. Let x and fdrive be the
position of a mass point and the driving force acting on the
mass point, respectively. Here, the dynamic equation of the
mass point can be expression as mẍ = −Kx−Bẋ+ fdrive,
where m, K , and B are the mass, stiffness and viscous
coefficients of the mass point, respectively. Let xd repre-
sent the desired position. Applying driving force fdrive =
−KP (x(t) − xd), the mass converges to a certain position
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Fig. 8. Viscoelastic object fixed to a wall
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Fig. 9. Test results for robustness against disturbance

with a steady-state error as the gain increases. This matches
the experimental results obtained above. The viscosity of a
soft material contributes to the stability. Hence, the joint can
be controlled by feedback control without damping. Now,
let KI be an Integral gain and be a positive constant. Using
Integral (I) control law, that is, applying the driving force
fdrive = −KI

∫ t

0
(x(t) − xd) dt, the mass converges to the

desired position correctly. Hence, we think that the joint will
converge to a desired location correctly under I control only.
However, we have not verified it experimentally because the
actuators have a slow response, but we aim so study it in the
future work.

C. Robustness under P control

We experimentally investigate the robustness of the joint
for disturbances. We used one SMA actuator as a distur-
bance, and compare two states. In state 1, we continuously
applied the v1

inp and v2
inp as in Eq. 1. In state 2, we set

v2
inp = 5.0 V from 4.0 s to 6.0 s, making actuator 2

a disturbance for SMA actuator 1. Figure 9 shows how
the angles changed in the two states, with Kp = 2.0 and
θd 5.0 deg. The angle converges to a stable location after
v2

inp breaks contact. We experimentally confirm that the
disturbance by SMA actuator 2 is about 150 g weights. The
weights generate a momentum for the rigid link as much
as the momentum applied by actuator 1, and it is a large
disturbance for the joint. These results imply that P control
of the joint is robust.

MarkerRigid link
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Fig. 10. Joint mechanism without the cartilaginous area
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Fig. 11. Experimental result of joint without the cartilaginous area

D. Comparison with Normal link

As described in the previous section, we made a link
mechanism with a cartilaginous area. In this section, we
investigate the availability of the link mechanism. Figure
10 shows the link mechanism without a cartilaginous area.
The link mechanism has a rotational joint with a bearing.
In addition, the trajectory of the rigid link describes an arc
since the center of rotation is fixed. We arrange a pair of
SMA actuators to rotate the rigid link. The size of the link
mechanism is the almost same as the size of the link with
loosely coupled joint shown in Figure 2. Figure 11 shows an
experimental result of P control in Eq.1. In this control, the
actuator 2 does work instead of a bias spring which generates
a restoring force for shrinkage of a SMA actuator since the
SMA actuators are arranged antagonistically. By comparing
of Figures 7 and 11, it is clear that the viscoelastic object
reduces the oscillation in the angle.

IV. ANGLE CONTROL USING LENGTH SENSORS

As described in the previous section, we used visual
feedback to realize an angle control of the link mecha-
nism. Because the joint has high compliance and damping
characteristic under P control, the motion of the joint was
highly robust against disturbances. The motion of the joint
mechanism, however, was lowly robust when occlusion oc-
curred during visual feedback. Human muscles have spindles,
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Fig. 13. Sensor configuration for a 2D type loosely coupled mechanism

allowing the current length of the muscles to be measured
[12]. Thus, humans can use not only visual information about
an object but length information of their muscles to move
their arms. Length information for angle control improves
robustness, especially, in 3D space. We therefore adopted a
sensor that could measure length directly.

V. ANGLE CONTROL USING A LENGTH SENSOR
IN 2D SPACE

A. Angle measurement

An electric resistance feedback method has been used to
measure a length of SMA actuator [13]; in this method, the
length of the SMA actuator was estimated by the electric re-
sistance variation. Although this scheme has been applied to
controlling an active endoscope, this method requires SMA
actuators in a constant loaded condition. Since the loads on
SMA actuators vary during control using this mechanism, we
used a pulse coder (LEVEX, Japan) as a length sensor. Figure
12 shows a prototype of a 2D loosely coupled mechanism
with one length sensor. This sensor can measure the length
of SUS 304 wire (diameter : 0.2 mm) inserted into a sensor
tube. The sensor is arranged along one side of the socket
(Figure 13). When the angle of the link increases, the wire
pushes into the tube from an offset position; when the angle
decreases, the wire pulls out the tube from an offset position.
To determine the relationship between link angle and sensor
length, we calibrated the link angles by CCD images, and
the orientation of the link was calculated from the second
order momentum of the rectangular black marker (Figure
12). Figure 14 shows the angle identification for the length
sensor. Using an insert of wire d, a link angle theta could be
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Fig. 15. Coordinate system for a 2D type loosely coupled mechanism

calculated using the expression

θ = Ad2 + Bd + C, (2)

in which where the coefficients A, B and C are calibrated as
0.349, -5.525 and 0.753, respectively.

To prevent any slips, the top surface of the cartilage
adheres to the rigid link. Under these conditions, the range
of movement was about ± 20 deg.

B. Control law

A coordinate system was developed for a 2D type loosely
coupled mechanism. The angle theta of the link was regu-
lated using a simple P control law for the link (Figure 15):

v1
inp =

{
−KP (θ(t) − θd) + voffset : when θ(t) < θd

0 : when θ(t) ≥ θd

,

v2
inp =

{
0 : when θ(t) < θd

−KP (θ(t) − θd) + voffset : when θ(t) ≥ θd

.

where θd is the desired angle, to be held constant, KP is the
proportional gain, which was always a positive constant, and
voffset was the minimum voltage required for the drivers, 1.7
V for our drivers. The load on the actuator complicates the
relationship between input voltage and the actuator’s driving
force. Therefore, we used the input voltage to the driver IC as
the control input. Since SMA actuators only contract during
heating, but cannot expand autonomously, this control law
includes conditional sentences. An SMA actuator with no
voltage works as a bias spring in this mechanism.
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Viscoelastic objects have been found to cause the center
of rotation of the link to shift. This can lead to the control of
two degrees of freedom, the angle and position of the link
for the socket using two actuators. Thus, this mechanism has
a redundancy in the control law. We did not control the shift
of the link for the socket. The link position converges to a
local minimum condition of elastic force in the cartilaginous
area [14].

In addition, proportion laws do not depend on knowledge
of the physical properties of the joint mechanism because, in
the case of soft materials, the physical properties, especially
the viscosity, are not accurately known. We did not apply
velocity of the joint because the mechanism has natural
damping components [15].

C. Experimental results

Figure 16 shows typical experimental results, in which the
desired angle θd was set at 0, ±5, and ±15 deg. To confirm
the measurement precision of the length sensor, we compared
these results with angles obtained by CCD images, with the
latter calculated from the momentum of the second order of
the rectangle black marker. Although each link converged
accurately when the desired angle was negative, the angles
calculated by CCD images and length sensors differed when
the desired angles were positive, indicating that measurement
errors occur when the desired angles are positive. Jamming
can occur when the wire is pushed into the tube, which
may cause estimation errors during positive rotation of the
mechanism. The simplest way to decrease measurement
errors is to utilize pairs of sensors that work antagonistically.
We have utilized an arrangement of antagonistic sensors in
a prototype of a 3D loosely coupled mechanism.

VI. ANGLE CONTROL USING LENGTH SENSORS
IN 3D SPACE

A. Angle measurement

Based on the previous 2D joint mechanism, we demon-
strate angle control of a 3D joint mechanism using length
information. Wire pulse coders were applied as in the 2D
joint mechanism, along with two antagonistic pairs of SMA
actuators (four SMA coils) arranged orthogonally (Figure
17). Figure 18 shows a coordinate system for the 3D type
loosely coupled mechanism.

We regulated the projecting angles α and β of the link
for the two reference projection planes, α side and β side,
respectively. The sensors were arranged against each side of
the socket, with SMA coils 1 and 3 and length sensors 1
and 3 were applied on the α side and SMA coils 2 and 4
and length sensors 2 and 4 on the β side (Figure 19). In this
mechanism, both the actuators and sensors had redundancies
for controlling the projecting angles. Although the link can
be represented in roll-pitch-yaw notation, the relationship
between the link angles and measurements obtained by
the sensors is complicated, since the mechanism has a de-
formable cartilaginous area. If projection angles α and β can
be controlled independently without any interferences, the
projecting angles could be controlled simply and viscerally.

SMA coil 3

SMA coil 4

SMA coil 1

SMA coil 2

Socket

Link

Marker 

Marker 

(a) Actuator configurations

Wire sensor 3

SMA coil 3

SMA coil 4SMA coil 1

SMA coil 2

Wire sensor 2

Viscoelastic
material

Wire 2

Wire 3

Wire 4

(b) Sensor configurations

Fig. 17. Loosely coupled mechanism of 3D type with length sensors

+

Link

α

β

+

Fig. 18. Coordinate system for 3D type loosely coupled mechanism

Although the viscoelastic object causes a shift in the center
of rotation of the link to shift, we did not control the shifting
and twisting of the link against the socket.

To determine the relationship between the link angle and
the length sensor, we calibrated the projecting link angles
using CCD images. Figure 20 shows the angle identifications
for the length sensors. Using an insert distance of the i-th
sensor wire di, link angles α and β could be calculated as:

α = A(d3 − d1) + B,
β = C(d4 − d2) + D,

(3)

where the coefficients A, B, C and D were 2.727, 0.323,
2.670 and 0.131, respectively.

For simplicity, the top surface of the cartilage adhered
to the rigid link. Under these conditions, the ranges of
movement against each side were about ± 20 deg.
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Fig. 16. Experimental results of a 2D mechanism using length feedback
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Fig. 20. Relationships between wire sensors and link angles

B. Control law

The projecting angle α was driven by the simple P control
laws:

v1
inp =

{
−KP1(α(t) − αd) + voffset : when α(t) < αd

0 : when α(t) ≥ αd

,

v3
inp =

{
0 : when α(t) < αd

−KP3(α(t) − αd) + voffset : when α(t) ≥ αd

.

whereas the projecting angle β was driven by the simple P
control laws:

v2
inp =

{
−KP2(β(t) − βd) + voffset : when β(t) < βd

0 : when β(t) ≥ βd

,

v4
inp =

{
0 : when β(t) < βd

−KP4(β(t) − βd) + voffset : when β(t) ≥ βd

,

where KPi is a proportional gain for the i-th SMA actuator,
and αd and βd are desired projecting angles. The projecting
angles α(t) and β(t) were calculated from Eq. 3. Although
the mechanism is a multi input-output system, we applied
a set of single input-output as control laws. In general, vis-
coelastic objects have nonlinear physical parameters; hence,
the identification of the parameters is difficult. If a precise
model is constructed, the control laws tend to be complicated.
Based on this scheme, we applied a single input-output set
as a control law; using this set without physical parameters
of the system, we could easily select feedback gains [?].

C. Experimental results

Figure 21 shows typical experimental results. In Figure 21
(a) and (b), the desired angles αd and βd were set to 0 deg
and 0 deg, respectively; in Figure 21 (c) and (d), the desired
angles αd and βd were set to 5 deg and 5 deg, respectively;
and in Figure 21 (e) and (f), the desired angles αd and βd

were set to 10 deg and 10 deg, respectively. We compared
the projecting angles obtained from CCD images to confirm
the measurement precision of length sensors in these figures.
The angles obtained from CCD images were calculated from
the momentum of the second order of the rectangle black
marker for each projecting plane. Positioning precision at the
origin improved in comparison to using one length sensor in
Figure 21 (a), (b), and Figure16 (c). We also found that the
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Fig. 21. Experimental results of a 3D mechanism using length feedback

3D loosely coupled mechanism tended to have measurement
errors between the angle calculated by the length sensors and
the angle measured using a CCD image when the desired
angles were large. There may be interference between two
pairs of antagonistic SMA actuators, or a wire pushing into
a sensor tube may become jammed.

D. Improvement of angle measurement methods

We found that the 3D loosely coupled mechanism tended
to show differences between the angle measured using length
sensors and the angle obtained from a CCD image when the
desired angles are set at large values. To reduce errors in
measured angles we have implemented a scheme to select
appropriate measurement methods. For each projecting plane
on the α and β sides, we measured the values only on the
right side of the length sensor, and those only on the left side
of the length sensor, and determined the differences between
the two length sensors. Figure 22 shows comparisons of the
measurement angle errors using these measurement methods.
Each curve in the figure could be approximated using a
quadratic polynomial. When we applied only one length
sensor, the measurement errors were large due to wire sensor
jamming while pushing into the sensor tube. Based on these
figures, we select the appropriate method to minimize angle
errors. From Figure 22 (a), the measurement errors of angle
α(t) could be reduced using the equations:{

α(t) = A0(d3 − d1) + B0 : when α(t) ≥ αth

α(t) = A1d
2
3 + B1d3 + C1 : when α(t) < αth

, (4)
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Fig. 22. Relationship between measurement error and method

where αth is the threshold value for the angle, and Aj , Bj ,
and Cj (j = 0, 1) are constant values obtained by angle
calibrations. In this case, the threshold αth was −7.46 deg.

From Figure 22 (b), the measurement errors of angle β(t)
could be reduced using the equation:

β(t) = A2(d3 − d1) + B2, (5)

where A2 and B2 are constant values obtained by angle
calibrations. When this estimation method was applied, the
measurement errors were not dependent on individual dif-
ferences of the mechanism. For each projecting plane, the
measurement angle errors were less than 1.0 deg in our 3D
prototype.

VII. SUMMARY

We have proposed a novel link mechanism to investigate
effects of soft component in control of a human-like joint.
This joint mechanism, which uses a viscoelastic object and
soft actuators instead of the cartilage and muscles of the
human arm, is referred to as a loosely coupled mechanism.
We confirmed that the viscoelastic object causes a shift
in the center of rotation of the link, allowing the link to
move smoothly, similar to a human joint. In addition, we
used visual feedback to realize an angle control of the
link mechanism. Because the joint has high compliance and
damping characteristic under proportional (P) control, the
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motion of the joint was highly robust against disturbances.
We also showed that a 3D loosely coupled mechanism could
be controlled using length sensors. We first constructed a
prototype of the mechanism in 2D space to confirm motion
of the link using one length sensor. Based on the prototype
of the 2D mechanism, we constructed a 3D loosely coupled
mechanism with length sensors. Using the 3D prototype,
we were able to control two projecting angles. Finally, we
implemented a scheme to select an appropriate measurement
method to reduce errors measured by the length sensors. For
each projecting plane, the errors were less than 1.0 deg in
our 3D prototype.

Future work should include the construction of a robotic
hand with loosely coupled mechanisms applying length
sensors. This construction will use vast actuators instead of
the muscle bundles of a human arm, both of which yield a
large generative force. We also intend to verify the effects of
slips between the rigid link and the cartilage. In this paper,
in order to prevent any slips, the top surface of the cartilage
adhered to the rigid link. In real human arms, the upper limb
is not adherent to the cartilage, and arm motion includes
smooth slips. In addition to constructing a prototype taking
this property into account, we also intend to construct a
dynamic model and to analyze the stability of the control
laws. Future studies will provide the necessary guidelines
for selecting an appropriate material and mechanism for the
cartilaginous area of the link mechanism.
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