

3D/4D Printing of Soft Materials

that creates a new world of soft-matter robotics

Hidemitsu Furukawa

Soft & Wet matter Engineering Lab (SWEL) Department of Mechanical Systems Engineering Yamagata University

"YAWARAKA 3D" Soft 3D Co-Creation Consortium

Twitter @gelmitsu

https://docs.google.com/document/d/10ah4ep8CbEe5J-LiUHAcHKDcEEIN7mQoCgb6DbFwOqA/edit?usp=sharing

3D Gel Printer (Bathtub Type)

Bathtub contains pre-gel solution of tough hydrogels (water > 90%).
The minute fabrication is made by UV irradiation thru optical fiber.
Free shape fabrication is done by 3-dimentional scanning the fiber.

R. Hidema, K. Sugita, H. Furukwa, *Trans. J. Soc. Mech. Eng. (A)*, 77, 1002-1006 (2011) H. Muroi, J. Gong, H. Furukawa, *J. Solid Mech. Mater. Eng.*, 2013. ²

WHY GELS?

Soft and Wet Human

Human expressed in a water content

Human expressed in the network of gels.

Living bodies are made from soft organisms

except skeletons (bone, teeth, shell, etc.)

Examples: blood vessel, muscle cartilage, tendon, ligament, etc.

The soft organisms contain 50~80% of water. They are soft & wet materials.

Specific functions of soft and wet organs

Joint cartilage

Blood vessel

Penetration O **Lubrication** O

⇒Exchange of materials

Previous artificial organs have been made from <u>Hard &</u> <u>Dry Materials</u>: These functions cannot be worked.

Artificial Joint

Shock absorb \times Lubrication \triangle

 \Rightarrow Limitation of motion

Artificial Vessel

Penetration × Lubrication \triangle

(Blood clot)

⇒Thrombus

DN gels' fracture energy is 1,000 times higher

Water content ~ 90% Compress fracture stress: 10-40MPa (Can compare with cartilage in joint)

Electrolyte (rigid & brittle) Neutral (soft & ductile)

Cannot be explained based on the previous theories

Water Content 90% Breaking Compression 40MPa

J. P. Gong, Y. Katsuyama, T. Kurokawa, Y. Osada, *Adv. Mater.* **15**, 1155 (2003) ⁸

DN gels' fracture energy is 1,000 times higher

Water content ~ 90% Compress fracture stress: 10-40MPa (Can compare with cartilage in joint)

Electrolyte (rigid & brittle) Neutral (soft & ductile)

Cannot be explained based on the previous theories

Figure out: Low frictional Tough gels

BothToughness40MPa~400kgf/cm² andLow Friction $\mu = 10^{-4}$ means...

1cm² of the gel sheets withstatnds 400kg weight and move it by 40g force!

This situation corresponds to that of knee joint cartilage in our body.

Tough Gel Slider in Lab

Biocompatibility of DN Gels

Embedded in subcutaneous tissue of rabbit in 6 weeks: No change in appearance

No inflammation and No degeneration DN gels can be applied for artificial cartilage.

Prof. MD. K. Yasuda (Medical department of Hokkaido Univ.)

Lineup of High-Strength Gels, Invented in Japan

Different approach: To make different structures!

We could not use traditional manufacturing!

3D Gel Printer (Bathtub Type)

Bathtub contains pre-gel solution of tough hydrogels (water > 90%).
The minute fabrication is made by UV irradiation thru optical fiber.
Free shape fabrication is done by 3-dimentional scanning the fiber.

R. Hidema, K. Sugita, H. Furukwa, *Trans. J. Soc. Mech. Eng. (A)*, 77, 1002-1006 (2011) H. Muroi, J. Gong, H. Furukawa, *J. Solid Mech. Mater. Eng.*, 2013. ¹⁵

How to use the Gel Printer

Soft & Wet matter Eng. Lab

1) If we print blood vessel,...

Transparent gel modeling makes head surgery safe and effective!

2) If we print gel foods,...

Improved! Make them beautiful

Nice-Step Researchers 2013

2 13 14 15 16 17 1 9 20 21 22 23 24 1 10 27 28 29 30 31 Me, Furukawa

1

Mr. Hakubun SHIMOMURA Minister of Education, Culture, Sports, Science and Technology (MEXT)

High-speed 3D Gel Printer (2017)

3-D Technologies for Gels

3-D Objects Made of Designable Gels

Gel Gear

Category of New Tough Gels

Yamagata University goes with ICN gel technology.

Enjoy! 楽しくやりましょう! Please take a rubber band 輪ゴム を取り上げます。

Try this experiment!

- Touch the rubber band between nose and mouth to feel the worm or cool
- 2. Sudden elongate the band and touch the band on there. How do you feel?
- 3. Sudden relax the band to return it to be its original length. How do you feel?
- 4. Caution: If you elongate the band too much, you sometimes feel pain. Take care of it!

Random \rightarrow High Entropy

Getting heat in

Ordered \rightarrow Low Entropy

Leaving heat off

Estimation of the Young's modulus *E* of a rubber band (ヤング率Eのみつもり)

Exercise

Please calculate E (Pa) in the following situation:

F: force, 100gf
$$\approx$$
 1N
A: area, 2mm² = 2 x 10⁻⁶m²
(1Pa = 1N/m²)
Strain: ε =5

Answer: $E = \frac{\sigma}{10} = \frac{10}{2 \times 10^{-6} \text{ m}^2}{5} = 0.1 \text{MPa}$

Entropy elasticity: Gaussian chain model エントロピー弾性: ガウス鎖モデル

Distribution fn. of a Gaussian chain in λ elongation ratio. 伸張率λの1本のガウス鎖の分布関数:

$$P(\lambda) = \left(\frac{3}{2\pi R_0^2}\right)^{3/2} \exp\left[-\frac{3}{2}\left(\lambda_x + \lambda_y + \lambda_z\right)^2\right]$$

Free energy of the Gaussian chain: 1本のガウス鎖の自由エネルギー:

$$F(\lambda) = -TS(\lambda) = -k_B T \ln P(\lambda)$$

$$\sigma_x = \frac{1}{\lambda_y \lambda_z} \frac{\partial}{\partial \lambda} F(\lambda) = k_B T \left(\lambda^2 - \frac{1}{\lambda}\right)$$

T(1) T(1) T(1)

$$\lambda_x = \frac{1}{\lambda}, \quad \lambda_y = \lambda_z = \frac{1}{\lambda}$$

$$\sigma_{x} = k_{\rm B}T\left(\lambda^{2} - \frac{1}{\lambda}\right) = k_{\rm B}T\left[\left(1 + \varepsilon\right)^{2} - \frac{1}{\left(1 + \varepsilon\right)}\right] \cong 3k_{\rm B}T \cdot \varepsilon$$

Young's modulus of a Gaussian chain: 1本のガウス鎖のヤング率:

$$E = 3k_{\rm B}T$$

Young's modulus of a Gaussian chain: 1本のガウス鎖のヤング率:

$$E = 3k_{\rm B}T$$

31

Young's modulus of Ideal rubber: $E = 3\nu k_{\rm B}T$ 理想ゴムのヤング率:

v: Chain density per unit volume 単位体積あたりの鎖の密度

If there were a chain in 1nm³, (1nm³当り1本とすると)

$$E = 3 \cdot \frac{1}{\left(10^{-9} \,\mathrm{m}\right)^3} \cdot 1.38 \times 10^{-23} \,\mathrm{J} \cdot \mathrm{K}^{-1} \cdot 300 \,\mathrm{K} \cong 12 \,\mathrm{MPa}$$

Young's modulus of Ideal rubber: $E = 3\nu k_{\rm B}T$ 理想ゴムのヤング率:

v: Chain density per unit volume 単位体積あたりの鎖の密度

If there were <u>a chain in 1nm³</u>, (1nm³当り1本とすると)

$$E = 3 \cdot \frac{1}{\left(10^{-9} \,\mathrm{m}\right)^3} \cdot 1.38 \times 10^{-23} \,\mathrm{J} \cdot \mathrm{K}^{-1} \cdot 300 \,\mathrm{K} \cong 12 \,\mathrm{MPa}$$

$$E = \frac{\sigma}{\varepsilon} = \frac{\frac{1N}{2 \times 10^{-6} \text{ m}^2}}{5} = 0.1 \text{MPa}$$

The rubber band contains <u>about 1 chain per 100nm³</u>.

The rubber band contains 1 chain per 10nm³.

Exercise

Density of the rubber: 0.68 g/cm³ Estimate the molecular weight of the chain in the rubber band:

$$M_W = 10 \text{ nm}^3 \times 6 \times 10^{23} / \text{mol} \times 0.68 \text{g/cm}^3$$

= 10 × 10⁻²⁷ m³ × 6 × 10²³ / mol × 0.7 g/10⁻⁶ m³

– 4200g/mol

Exercise

Molecular weight of isoprene (C_5H_8) \approx 68 g/mol Estimate the polymerization degree of the rubber band:

$$N = \frac{4200 \text{g/mol}}{68 \text{g/mol}} \approx 60$$

Size of Chain in solution: Random Walk model

Radius of the ideal chain based on the random walk model

R: Radius of chain, N: Polymerization degree, a: segment size

IDEAL CHAIN

R: Radius of chain,*N*: Polymerization degree,*a*: segment size

Estimate the radius of the chain in the rubber band swollen in toluene based on the ideal chain model, where N=100 and segment size a=0.3nm.

Answer:
$$R = \sqrt{100} \times (0.3 \text{ nm}) = 3 \text{ nm}$$

The real chain expands in solution lager than the ideal chain.

$$R_{\rm F} = a N^{3/5}$$

 $R_{\rm F}$: the radius of the real chain \rightarrow Flory's radius N: Polymerization degree a: segment size

P. J. Flory, (1910-1985)

State of Chain	Quality of Solvent
Real chain (実在鎖) <i>R∝N</i> ^{3/5}	Good solvent (良溶媒)
Ideal chain (理想鎖=ガウス鎖) R∝N ^{1/2}	Theta solvent (Θ溶媒)
Globule chain, Collapsed chain (収縮鎖) $R \propto N^{1/3}$ (:: $V \propto N$)	Poor solvent (貧溶媒)

REAL CHAIN

R: Radius of chain,*N*: Polymerization degree,*a*: segment size

Estimate the radius of the chain in the rubber band swollen in toluene based on the *real* chain model, where N=100 and segmeng size a=0.3nm.

Answer:
$$R = 100^{0.6} \times (0.3 \text{ nm}) = 4.75 \text{ nm}$$

1.5 times larger than the ideal chain.³⁹

Polyelectrolyte gels extends larger than the real chain.

$$R_{\rm F} = a N^{3/5}$$

EXTENDED CHAIN
$$R_{\rm E} = a N^{\nu_{\rm E}}$$

$$\frac{3}{5} \le v_{\rm E} \le 1$$

Exercise

Estimate the radius of the charged chain in fully swollen state in solution based on the *extended* chain model, where we assume N=100, segment size a=0.3nm, and the exponent $v_{\rm E}=1$. Answer: $R = 100^1 \times (0.3$ nm) = 30nm

10 times larger than the ideal chain.

Inter-Crosslinking Network (ICN) structure

ensile test of the ICN dels

98% water content

Why the ICN gels can be elongated so long?₄₃

Gauss Model of polymer gels

Young's Modulus of a chain:

$$E = 3k_{\rm B}T$$

Young's Modulus of gel:

$$E = 3\nu k_{\rm B}T$$

v: Chain density

Chain density definitions in gels v

Sample name	<i>d</i> (nm)	ν _s (1/m³)	ν _w (1/m³)	ν _ε (1/m³)
ICN Gel No.1	13.1	4.45×10^{23}	5.01×10^{23}	8.73×10^{23}
ICN Gel No.2	16.4	2.27 × 10 ²³	3.19×10^{23}	3.87×10^{23}
PDMAAm Gel	8.08	19.0 × 10 ²³	1.66×10^{23}	10.8×10^{23}

Scanning Microscopic Light Scattering (SMILS)* - A new apparatus for characterizing gels -

Network structure is easily characterized and quantified with mesh size d.

Young's Modulus of gel: $E = 3vk_{\rm B}T$

*H. Furukawa et al., *Phys. Rev. E*, **68**, 031406 (2003)

v =

• 4

46

■ 粒子径:高濃度・低濃度試料に幅広く対応できる独自の光学系

~ NEDOの「ナノ粒子プロジェクト」で高精度・高速コリレータを共同開発 ~

Nano-scale fluctuation observed by Dynamic Light Scattering

Gel-Dup Gel CT × 3D Gel Printer

GelPiper[™] "Digital Pipeline of Gel"

Modeling samples

Gel Ear Model

Gel Nose Model

Lattice shaped Gel

Concept of GelPiPer Cloud * Gel Data Gel Art GelPiPer ™ ゲル Food Sample Robot Hand Organ Model

Prototypes

Equipment exhibited at The National Museum of Future Science and Technology

Opening the door

Enlargement of the modeling part

The National Museum of Future Science and Technology in Tokyo Media Lab 21st Exhibition "Perfect-Fit Factory" Exhibition of 3D gel printers and 3D food printers in June-September 2019

GelPiper Program Overview

Open Innovation Community → Soft 3D Co-Creation Consortium Members and University Labs

Users and development teams share experiences, molding methods, data, and ideas with each other. We aim to co-create hardware, software, ink, and content.

About the offer set

Rental period No particular settings. At first, it's about 1-3 months. <u>GelPiper</u>™ Size of the device body Width: 380mm Depth: 355mm Height: 430mm Size of the model (maximum) 150mm×150mm×150mm Molding method: Light curing and bathtub method using low-power laser

63

GelPiper Program Overview

GelPiper[™] "Digital Pipeline of Gels"

A future where everyone can use "soft manufacturing".

This program aims to co-create this realization.

As if water were coming out when I turned on the faucet of the water supply,

GelPiper provides gels at the user's fingertips. What will happen then?

"Oh, gel is like this!" "It's not what I thought!" "It may be convenient"

Like this, a lot of "!" I think that happens.

Share that experience, what happened. From there, I noticed "!" I hope that it will spread.

Companies and university labs in the Soft 3D Co-Creation Consortium will try GelPiper. There are a lot of "!" While enjoying with everyone, we aim to co-create the future where everyone can use soft manufacturing. Thank you for your cooperation.

Case Study of GelPiper's use

Food sample (created with ICN gel)
 → practice of robot for food pick-up
 (Ritsumeikan University)

Gel Octopus Model

Gel Shrimp Model

Example of "!" we noticed: It is better to be hard to grasp with a sly. People wants a variety. It leads to the device how to grasp it so that it does not crack if it is easy to crack.

2) Kidney model (created with P-DN gel) (Jikei Medical University Hospital)

Gel Kidney Model

Example of "!" we noticed: It is good to cut with a scalpel casually. It doesn't matter what size you like. In some cases, it becomes large or deformed. If it is fragile, personal information will not be leaked.

Shape Memory Gels

Gel Bandage

4D printing of Shape Memory Gels

4D printing of Shape Memory Gels

Composition of two layers								
Gel	DMAAm (M)	SA (M)	MBAA (mol%)	α-keto (mol%)	Kemisorp 11S (wt%)			
SMG70-SA30	0.70	0.30	0.05	0.60	0.05			
SMG90-SA10	0.90	0.10	0.05	0.60	0.05			

3D printing of Shape Memory Gels: SMG70-SA30 and SMG90-SA10

SMG70-SA30

SMG90-SA10

MD Nahin Islam Shiblee, Kumkum Ahmed, Masaru Kawakami, Hidemitsu Furukawa, "4D Printing of Shape Memory Hydrogels for Soft-Robotic Functions", Adv. Mater. *Technol.*, **4**, 1900071 (2019)

4D printing of Shape Memory Gels

Bending deformation mechanism of the bilayer composed of 3D printed SMG70-SA30 and SMG90-SA10:

Technol., 4, 1900071 (2019)

Behavior of 3D-Printed Bilayer Gels

Temperature dependent curvature during recovery as a function of time

Recovery process of bilayer in water i) 50 °C ii) 60 °C and iii) 70 °C

MD Nahin Islam Shiblee, Kumkum Ahmed, Masaru Kawakami, <u>Hidemitsu Furukawa</u>, "4D Printing of Shape Memory Hydrogels for Soft-Robotic Functions", *Adv. Mater. Technol.*, **4**, 1900071 (2019)
4D-Printed Gel Gripper

After 15 min at 50°C

After 30 min at 50°C, Gripped condition

Releasing at 70°C

Gripped in water

 \Box

 \Box

MD Nahin Islam Shiblee, et al., Adv. Mater. Technol., 4, 1900071 (2019) 73

share Add to list Like

https://www.ted.com/talks/skylar_tibbits_the_emergence_of_4d_printing

Fig. 2. The differences between 3D printing and 4D printing.

F. Momeni, S. M. M. Hassani. N, X. Liu, J. Ni, A review of 4D printing, Materials and Design 122, 42 (2017)

Fig. 50. 4D printing materials.

F. Momeni, S. M. M. Hassani. N, X. Liu, J. Ni, A review of 4D printing, Materials and Design 122, 42 (2017)

Fig. 65. Longitudinal and transverse swelling strains (α_{\parallel} and α_{\perp}), (Gladman et al. [10]).

Fig. 66. Print paths and final shapes (a) positive Gaussian curvature (b) negative Gaussian curvature (c) and varying Gaussian curvature (Gladman et al. [10]).

A. S. Gladman, E. A. Matsumoto, R. G. Nuzzo, L. Mahadevan, J. A. Lewis, Biomimetic 4D printing, Nat. Mater. 15, 413 (2016)

F. Momeni, J. Ni, Laws of 4D Printing, Engineering, 6 1035 (2020)

WARAKA 3D 3D Co-Creation Consortium

Beal, D. N., et al. "Passive propulsion in vortex wakes." Journal of Fluid Mechanics 549 (2006): 385-402.

図2 乱流を起こした流れの中に死ただ、(ばかりの鹿をえれるとまるで生まているかのまうに振舞う。

KAMO Aquarium in Yamagata (Oct. 2, 2019)

Soft 3D Co-Creation Consortium

日本經濟新聞 🏢

 Image: Constraint of the second s

トップ 速報 経済・金融 政治 ビジネス マーケット テクノロジー 国際 オピニオン スポーツ 社会・

有料会員限定 🏭 記事 今月の閲覧本数: 10 本中 2 本

NDソフト、山形大学の技術で医療関連機器

2019/11/21 18:09 日本経済新聞 電子版

🖉 保存 🖂 共有 🚔 印刷 🍓 📋 🈏 🕇 その他 🕶

医療・介護ソフト大手のエヌ・デーソフトウェア(NDソフト、山形県南陽市)は山形大 学の技術を使った医療関連機器を販売する。癒やしを与える人工クラゲ鑑賞装置や脈拍 などを感知するセンサーなど4製品。今後は通信機器メーカーと在宅医療向けの遠隔診療 装置なども開発する。介護現場の人手不足は深刻で、省力化につながる製品を中心にソ フトからモノへ事業領域を広げる。

山形大の古川英光研究室と共同開発した「クラゲロボットシ ステム」は癒やしを与えるとして人気が出ているクラゲの動 きを人工的に再現した。古川教授は柔らかいゲル状の物質を 応用した研究で知られる。NDソフトが同システムを鑑賞装 置として介護施設などに販売していく。

Being Sold in April, 2020

Digital Design and Analysis of Jelly Fish Gel Robot

Gel Fullerene

YAMAGATA, JAPAN

2 Man Blat

END OF TALK

End of Talk

Soft matter Robotics

京 新 暦

チ

公

D

ボ

触

2019年(令和元年)9月6日(金曜日)

障害者や 高齢者、LGBTな どのマイノリティーや、福祉 に対する心の垣根を取り除こう と、「2020年、渋谷。超福祉の日 常を体験しよう展」が、渋谷区の渋谷 ヒカリエ8階を中心に開かれている。展示さ れている、やわらかいハチ公ロボットが来場者の 注目を集めている。9日まで。 (岩岡千景)

> 同展は、さまざまなアイデアや技術を集 め、展示のほか体験イベントやシンポジ ウムを開催。NPO法人ビープルデザ イン研究所主催、渋谷区共催。

> > 「超福祉体験」展

マか奈雪編ホ戸さて 浅の人福 精曲ル化がる 草

「やわらかロボ! ゲルハチ公」 と名付けられたロボットは、幅35 家、奥行き100家、高さ86家。頭と 前足がやわらかい素材で作られ、頭 部に複数の触覚センサーが、前面に カメラが搭載されている。それらの

情報をもとに人工知能(AI)が感情を解析し、鳴き声を出し たり、振動したり、首回りのライトを光らせたりする。 山形大による展示品で、渋谷ハチ公像の作者が1947年に「試作 品」として作り、JR鶴岡駅に展示されている石こうの「鶴岡ハチ公 像」をモデルにし、約1カ月半をかけて制作したという。 触ると、お菓子のグミのような感触で、山形大工学部の小川純准教授

30)は「強いけど、やわらかい。触られると自分の喜怒哀楽とその強弱の感情を計算して反応する。次のステップは人の感情を読んでコミュニケーションを考えること。対象は病院の外へ出られない人など、子どもからお年寄りまでいろんな人を想定しています」と、説明する。来場者は次々にハチ公を触ったり、携帯で撮影したりしている。

渋ボ振さわ

開催時間は午前11時~午後8時、入場無料。

障害者、高齢者、LGBT 心の垣根取り除

やわらかロボ ! ゲルハチ公 SOFTMATTER ROBOT "GEL HACHI"

94

Japan - The Government of Japan 🥝 April 8, 2020 · 🔇

Today is #HachikoDay, the day dedicated to #Akita dog #Hachiko, who waited for his master every day at #Shibuya st. even after his death. While Hachiko statute is a beloved landmark of Shibuya, a soft robotics research team in Yamagata University created an #AI-equipped replica of the statute #Gel_Hachi with soft-resin material. It communicates with users via LED, voice and vibration, aiming at sparking conversations among staff and patients in healthcare facilities: https://lnky.jp/evdQwVf #Society5_0 #InnovationJapan

@JapanGovJapan government organization

Today is #HachikoDay! Yamagata University's soft robotics research team built a robot #Gel_Hachi modeled on the #Shibuya's landmark statute of #Akita dog #Hachiko w/ communication #AI & soft materials. How it works: lnky.jp/rt3xm2c #InnovationJapan #Society5_0

8:20 PM · Apr 8, 2020 · MarketingSuite

 37 Retweets
 5 Quote Tweets
 125 Likes

 ○
 12
 ○
 ①

 Image: https://twitter.com/JapanGov/status/1
 247846764012384262
 Image: https://twitter.com/status/1

https://www.facebook.com/JapanGov/p osts/2914525455271234

I've heard the story of Hachiko. Dogs are fantastic friends 🙂

Like · Reply · 1

Nese Demirtas

Like · Reply

...

Soft-matter Robot "Gel HACHI" Shibuya Ward, Tokyo November 3-9, 2019.

- 1) Estimate the <u>Young's modulus *E*</u> (Pa) of a rubber band in the following situation. *F*: force, 100gf \approx 1N. *A*: area, 1mm² = 1 x 10⁻⁶m². (1Pa = 1N/m².) Strain: ε =3.
- 2) Estimate the <u>chain density per unit volume ν in the rubber hand of 1), at 300K, where we the rubber band behaves as an ideal rubber. Additionally, estimate the volume of a chain in the rubber band.</u>
- 3) Estimate the molecular weight M_w of the chain in the rubber band of 1), when the density of the rubber is 0.6 g/cm³.
- 4) Estimate the <u>polymerization degree N</u> of the rubber band of 1) made from isoprene, where the molecular weight of isoprene (C_5H_8) \approx 70 g/mol.
- 5) Estimate the <u>radius of the chain R_{Gauss} in the rubber band</u> of 1) swollen in toluene based on the ideal chain (Gauss chain) model, where the segment size *a*=0.3nm.
- 6) Estimate the <u>Flory radius of the chain R_{Flory} in the rubber band of 1) swollen in toluene based on the real chain model, where the segment size a=0.3nm.</u>
- 7) Finally, please write down your impressions of this class. It can be in Japanese. (最後にこの授業の感想を 書いてください。日本語でも良いです。)