Ritsumeikan University Soft Robotics November 17/24, 2023 16:20-17:50

Soft Actuators

Jun Shintake

Department of Mechanical and Intelligent Systems Engineering, The University of Electro-Communications (UEC), Tokyo, Japan.

Running a laboratory as an associate professor at UEC Mainly working in the field of soft robotics

新竹研究室

Shintake Research Group

電気通信大学情報理工学研究科機械知能システム学専攻

Department of Mechanical and Intelligent Systems Engineering,

University of Electro-Communications

お気軽にお問い合わせください。実験室(東9-409、東4-701)でのラボワークも常時受け付けています。

卒研配属に関する資料は<u>こちら</u>です。

卒研配属生向け研究室公開を下記の時間帯で行っています。お気軽に訪問ください。

場所:東9-409 (実験室)

- 11/1 (水) 16:00-18:00
- 11/8 (水) 16:00-18:00
- 11/15 (水) 16:00-18:00
- 11/22(水)16:00-18:00
- 11/26(調布祭)11:00-17:00(新竹は出張のため不在です)

他の実験室(東4-701)や学生部屋(東4-330/331)を見学希望の方は、訪問の際にその旨申し出てください。

希望研究室登録前の配属希望面談*は別途調整しますので連絡ください。

website: https://www.shintakelab.net/

Actuators

- Convert energy into motion that can be used to do work
- Examples:

Muscle (theknowledgepark.blogspot.com)

Soft actuators

- Made of compliant materials
- Materials or compliant structures themselves deform by external stimuli (*stimuli ≈ inputs)
- Simpler than conventional rigid actuators
- Often called as Artificial Muscle
- Examples:

Electrical soft actuator

Fluidic soft actuator

Soft actuators

They rely on stimuli of:

- Electric
- Magnetic
- Thermal
- Light
- Pressure

Under which many subclasses and configurations are being developed.

Aim of the topic "Soft Actuators"

11/17: Detail a single soft actuator technology and describe how it enables various actuator configurations and robotic systems.

11/24: Overview existing soft actuators and discuss their pros and cons, followed by homework.

El-Atab, Nazek, et al. "Soft actuators for soft robotic applications: A review." Advanced Intelligent Systems 2.10 (2020): 2000128.

Detail a single soft actuator technology: Dielectric elastomer actuators (DEAs)

- Actuator principle and configuration
- Materials and fabrication methods
- Evaluation methods
- Soft robotic applications

Dielectric elastomer actuators (DEAs)

Electric field High voltage Ground

+High voltage • Simple

- Soft (elastic modulus is ~1 MPa)
- Fast (can be actuated at ~1 kHz)
- Large actuation strain (~100 % linear stroke)
- High voltage (a few kV)
- Self-sensing

DEA in action

DEAs have been applied to many actuator configurations and robots

[1] R. Kornbluh et al., in Proc. SPIE, San Diego, CA, USA, 2002. [2] Q. Pei et al., in Proc. SPIE, San Diego, CA, USA, 2004.

- [3] Q. Pei et al., Smart Mater. Struct. 2004, 13, N86.
- [4] C. Jordi et al., Bioinspiration Biomim. 2010, 5, 026007.

Movies: Stacked DEA and fish-like airship robot

https://www.youtube.com/watch?v=Ga_IafGRWyE

Jordi, Christa, Silvain Michel, and Erich Fink. "Fish-like propulsion of an airship with planar membrane dielectric elastomer actuators." Bioinspiration & biomimetics 5.2 (2010): 026007.

Movie: A DEA configuration to generate a large deformation

Application of voltage induces a bending deformation towards the flat state.

This is a common configuration of DEA often employed in soft robots.

Araromi, Oluwaseun A., et al. "Rollable multisegment dielectric elastomer minimum energy structures for a deployable microsatellite gripper." *IEEE/ASME Transactions on mechatronics* 20.1 (2014): 438-446.

The actuation of DEAs results from electrostatic pressure (Maxwell stress)

Lager actuation pefromance can be

- Relative permittivity is high
- Voltage is high
- Thickness of membrane is small
- Dielectric strength is high
- Young's modulus is low

 $(s_x+1) (s_y+1) (s_z+1) = 1$ thickness direction Young's modulus of 3 membrane

Representative ways to improve the actuation performance of DEAs

Detail a single soft actuator technology: Dielectric elastomer actuators (DEAs)

- Actuator principle and configuration
- Materials and fabrication methods
- Evaluation methods
- Soft robotic applications

Material of DEA membrane

Acrylic and silicone type materials are the two mainstreams.

Acrylic type : Large output but slow (due to viscoelasticity) Silicone type : Small output but fast

Parameter	Acrylic type	Silicone type
Maximum actuation strain (%)	380	120
Maximum stress (MPa)	8.2	3.0
Frequency response (Hz)	~10	>1,000
Maximum electric field (MV/m)	440	350
Relative permittivity	4.5-4.8	2.5-3.0
Durability (number of actuation cycles)	>106	>106

Brochu P, Pei Q. Advances in dielectric elastomers for actuators and artificial muscles. Macromol Rapid Commun. 2010 Jan 4;31(1):10-36. doi: 10.1002/marc.200900425. Epub 2009 Oct 27. PMID: 21590834.

Membrane materials

Heat and light (UV) curable materials are widely used.

Representative products:

Silicone typeSilicone typeSylgard 184 (Dow Corning)Ecoflex (Smooth-On)

Silicone type Elastosil Film 2030 (Wacker)

Acrylic type VHB4905 (3M)

• Those provided in liquid form (Sylgard and Ecoflex)

Shape forming is required according to the desired shape (curing time: 1~2 hours)

• Those provided in film form (Elastosil and VHB) Convenient for use as it is, but film thickness is fixed

Electrode materials

Characteristics required for electrode materials

Soft, thin, high conductivity, easy to prepare and pattern, safe

• Nanoparticles (left)

Carbon black, carbon nanotubes, graphene, silver nanowires, silver, gold, titanium, etc.

- Liquid metal, ionized gel, grease (center) Gallium-indium alloy, NaCl-containing gel
- Conductive membrane (mixing conductive particles) (right)

Elastomer membrane

Rosset, Samuel, and Herbert R. Shea. "Flexible and stretchable electrodes for dielectric elastomer actuators." *Applied Physics A* 110.2 (2013): 281-307.

- Direct patterning of
 nanoparticles or grease is easy,
 but the electrodes can come off
 and contaminate the
 surroundings. A bit unsafe.
- Conductive elastomers need careful preparation, but are stable with high adhesion. Actuation is slightly smaller.

Method to fabricate membranes and pattern electrodes

Membrane

- Electrode
 - Blade casting

• Spin coating

Elastomer membrane

• Spin coating

• Blade casting

- Pad printing
- Ink jet (incl. 3D printing)

- Pad printing
- Ink jet (incl. 3D printing)
- Spray coating
- Hand painting

Hand painting

Easiest method: hand-paint electrodes on commercial membranes Example of fabrication using acrylic membrane (VHB4910, 3M) and carbon black

Open Soft Machines http://opensoftmachines.com/2018/04/dea/?lang=ja

Blade casting

Film applicator

Zehntner, ZAA2300

(1

Rosset, Samuel, et al. "Fabrication process of silicone-based dielectric elastomer actuators." *JoVE (Journal of Visualized Experiments)* 108 (2016): e53423. https://www.jove.com/video/53423/fabrication-process-of-silicone-based-dielectric-elastomer-actuators

Gap applicator

Zehntner, ZUA2000

- Desired membrane thickness can be obtained.
- Large area ($\sim 20 \text{ cm} \times 30 \text{ cm}$)
- Conductive membrane can also be fabricated.

Blade casting

Example of a device fabricated by blade casting:

Membrane and electrode layer made by blade casting are bonded by oxygen plasma. The electrode is engraved with a CO2 laser.

^{*}Araromi, Oluwaseun A., Samuel Rosset, and Herbert R. Shea. "High-resolution, large-area fabrication of compliant electrodes via laser ablation for robust, stretchable dielectric elastomer actuators and sensors." *ACS applied materials & interfaces* 7.32 (2015): 18046-18053.

Pad printing

7

Teca-Print

Rosset, Samuel, et al. "Fabrication process of silicone-based dielectric elastomer actuators." *JoVE (Journal of Visualized Experiments)* 108 (2016): e53423. https://www.jove.com/video/53423/fabrication-process-of-silicone-based-dielectric-elastomer-actuators

Teca-Print, TPM101

- Thin electrodes can be easily formed (thickness 1-5 um)
- Electrode area is about $\Phi 100 \text{ mm}$
- Non conductive membrane can also be produced, but with lower precision in thickness

Spin coating

Spin coater

https://www.youtube.com/watch?v=ScGi0O3YTA0

- Desired membrane thickness can be obtained
- High accuracy of membrane thickness
- Conductive membranes can also be produced
- Relatively small area

Example of a stacked DEA

Duduta, Mihai, et al. "Realizing the potential of dielectric elastomer artificial muscles." *Proceedings of the National Academy of Sciences* 116.7 (2019): 2476-2481.

Ink jet (incl. 3D printing)

Schlatter, Samuel, et al. "Inkjet Printing of Complex Soft Machines with Densely Integrated Electrostatic Actuators." *Advanced Intelligent Systems*: 2000136.

• Can be produced DEAs in various shapes with high precision, but the preparation of inks is often difficult and the equipment is complex.

Detail a single soft actuator technology: Dielectric elastomer actuators (DEAs)

- Actuator principle and configuration
- Materials and fabrication methods
- Evaluation methods
- Soft robotic applications

Metrics to evaluate actuation performance of DEAs

In many cases, displacement and force are measured

Displacement (angle, strain): measured by camera or laser displacement sensor Force: measured by a load cell

Shintake, Jun, et al. "Versatile soft grippers with intrinsic electroadhesion based on multifunctional polymer actuators." *Advanced Materials* 28.2 (2016): 231-238.

Equipment to drive DEAs; High-voltage power supplies

• DC/DC converter (Direct use)

Example: XP Power CB101N (10 kV)

• Commercially available high-voltage power supply

Example: Matsusada HEOP-5B6 (5 kV)

Open source high voltage power supply (5 kV)

https://petapicovoltron.com/high-voltage-power-supplies/single-channel-high-voltage-power-supply/

Standard evaluation sample: Circular DEAs

Carpi, Federico, et al. "Standards for dielectric elastomer transducers." *Smart Materials and Structures* 24.10 (2015): 105025.

- Useful for testing new membranes and electrode materials
- Frequency response can also be visualized
- Membrane diameter D should be 3~10 times the electrode diameter 2R0
- Membrane should be pre-stretched

Strain in the thickness direction
$$S_{e,z} = \frac{1}{(S_{e,r}+1)^2} - 1$$
 Strain in the radial direction $S_{e,r} = \frac{R_e}{R_0} - 1$
29

Standard evaluation sample: Circular DEAs

Example of measured result

Kanno, Ryo, Toshiaki Nagai, and Jun Shintake. "Rapid Fabrication Method for Soft Devices Using Off-the-Shelf Conductive and Dielectric Acrylic Elastomers." *Advanced Intelligent Systems*: 2000173.

Standard evaluation sample: Pure-shear DEAs

- Only vertical (x) actuation occurs by constraining horizontal (y) displacement
- Actuator aspect ratio should be 1:5~1:10
- (II) Fixing the displacement yields the actuation stress (force)
- (IV) Actuation strain with respect to the input is obtained by fixing the load

Carpi, Federico, et al. "Standards for dielectric elastomer transducers." *Smart Materials and Structures* 24.10 (2015): 105025.

Detail a single soft actuator technology: Dielectric elastomer actuators (DEAs)

- Actuator principle and configuration
- Materials and fabrication methods
- Evaluation methods
- Soft robotic applications

Soft gripper

Gripper holds objects by electro-adhesion

Materials and fabrication method used for the gripper

Materials

- Structure: Sylgard 184 (Dow Corning)
- Membrane: CF19-2186 (NuSil)
- Electrodes: Ketjenblack EC-300J
 Silbione LSR 4305
 Solvent (iso-octane)

Fabrication method

- Structure: Blade casting
- Electrodes: Pad printing
- Bonding of each part: O2 plasma

Structural composition of the gripper

Fabrication process used for the gripper

- A. CF19-2184 is blade-cast on PET film and cured in an oven at 80 °C (60 um)
- B. Cured CF19-2184 is pre-stretched and held, and electrodes are applied by pad printing (3 um). Electrodes are cured in an oven (80 °C)
- C. Sylgard 184 membranes (100, 75 um) are made by blade casting and bonded by O2 plasma
- D. Make holes in the electrodes to establish connections
- E. Place the sample on an acrylic sheet
- F. Fill the hole with silver epoxy
- G. Apply conductive tape to enable voltage application to the device

The soft gripper has various features

- Capable of grasping objects of various shapes
- High flexibility in shape design
- Lightweight (up to 1.5 g)
- Capable of holding more than 1000 times its own weight

Structural composition of the gripper

- Applications in the manufacturing and food industry
- Vegetable and fruit gathering
- Application to other robots such as drones

Biomimetic underwater robot

DEAs can be used underwater when insulation measures are taken.

Shintake, Jun, et al. "Soft biomimetic fish robot made of dielectric elastomer actuators." Soft robotics 5.4 (2018): 466-474.

Swimming of DEA fish robot

Driving frequency: 0.25 Hz Applied voltage: 5 kV

The swimming speed of the robot can be controlled by the applied voltage and frequency

J. Shintake et al., in IEEE/RSJ International Conference on Intelligent Robots and Systems, Daejeon, Korea, 2016.

Flying robot with foldable actuators

Foldable function enables shape change of robots to improve portability

Wireless input signals are converted to high voltage within the robot to drive the actuators

Each DC/DC converter weighs 4.2 g (0-5000V output)

Examples from other studies

CNT electrode applied on 18 um film and actuated up to 500 Hz at 450 V $\,$

Examples from other studies

Ji, Xiaobin, et al. "Untethered Feel-Through Haptics Using 18-µm Thick Dielectric Elastomer Actuators." *Advanced Functional Materials*: 2006639.

45

Examples from other studies

Device to measure mechanical properties of living cells

Soft lens

Poulin, Alexandre, et al. "An ultra-fast mechanically active cell culture substrate." *Scientific reports* 8.1 (2018): 1-10.

Maffli, Luc, et al. "Ultrafast all-polymer electrically tunable silicone lenses." *Advanced functional materials* 25.11 (2015): 1656-1665.

Dielectric elastomer actuators (DEAs)

Elastomer membrane (silicone rubber)

Cross-section

- Electric field High voltage Ground

 $\circ \circ \circ \circ \circ \circ \circ \circ \circ$

- Simple
 - Soft (elastic modulus is ~1 MPa)
 - Fast (can be actuated at ~1 kHz)
 - Large actuation strain (~100 % linear stroke)
- High voltage (a few kV)

Sensing aspect of DEAs: Wearable sensors capable of detecting strains 500%

J. Shintake et al., Adv. Mater. Technol. 2017, 3, 1700284.

Demonstration of intelligent glove with distributed sensors

J. Shintake et al., Adv. Mater. Technol. 2017, 3, 1700284.

Aim of the topic "Soft Actuators"

11/17: Detail a single soft actuator technology and describe how it enables various actuator configurations and robotic systems.

11/24: Overview existing soft actuators and discuss their pros and cons, followed by homework.

El-Atab, Nazek, et al. "Soft actuators for soft robotic applications: A review." Advanced Intelligent Systems 2.10 (2020): 2000128.

Appendix

• Electrostatic Pressure [37]: V off o V on А A+dA Ζ z-dz ε_0 = permittivity of free space Capacitance: $C = \frac{\varepsilon_0 \varepsilon A}{z}$ (1) ε = relative permittivity Energy: $U_e = \frac{1}{2} \frac{Q^2}{C} = \frac{1}{2} \frac{zQ^2}{\varepsilon_0 \varepsilon A}$ (2)electrical to mechanical change in electrical energy conversion of energy (work) Change in energy: $dU_e = \frac{Q}{C}dQ + U_e\left\{\left(\frac{1}{z}\right)dz - \left(\frac{1}{A}\right)dA\right\} = VdQ + U_e\left\{\left(\frac{1}{z}\right)dz - \left(\frac{1}{A}\right)dA\right\}$ (3)

• Electrostatic Pressure [37 ch. 1]:

Constant volume assumption: $Az = Vol \implies dVol = A dz + z dA = 0$ (4)

Simplifying (3):
$$dU_e = V dQ - 2U_e \left(\frac{1}{A}\right) dA = V dQ + 2U_e \left(\frac{1}{z}\right) dz$$
 (5)

Compressive stress *p* is defined as:

$$-Ap \, \mathrm{d}z = \mathrm{d}W \implies p = \left(\frac{1}{A}\right) \frac{\mathrm{d}U_e}{\mathrm{d}z} \quad \text{(constant charge)} \tag{6}$$

Substituting (5) with dQ=0 into (6) and simplifying:

$$p = \varepsilon_0 \varepsilon \left(\frac{V}{z}\right)^2 = \varepsilon_0 \varepsilon E^2$$
 Electrostatic pressure (7)
(Maxwell stress)

- Strain [37 ch. 1]:
 - Unloaded film with free boundary conditions.

Strain in z:
$$S_z = -\frac{p}{Y} = -\frac{\varepsilon_0 \varepsilon}{Y} E^2 = -\frac{\varepsilon_0 \varepsilon}{Y} \left(\frac{V}{z}\right)^2$$
 (8)
 $Y = Young's modulus$

Where z: $z = z_0 (1 + S_z)$ $z_0 = \text{initial thickness}$ (9) Note, for small strains: $z \approx z_0$

Substituting (8) into (9):
$$S_z^3 + 2S_z^2 + S_z = -\frac{\varepsilon_0 \varepsilon}{Y} \left(\frac{V}{z_0}\right)^2 = m$$
 (10)

The real solution to (10):
$$S_{z} = -\frac{2}{3} + \frac{1}{3} \left(H + \frac{1}{H} \right)$$
(11)
$$H = \left[\frac{1}{2} \left\{ 2 + 27m + \left(-4 + \left(2 + 27m \right)^{2} \right)^{1/2} \right\} \right]^{1/3}$$
(12)

- Strain [37 ch. 1]:
 - Unloaded film with free boundary conditions.

Strain in all directions (constant volume): $(1+S_x)(1+S_y)(1+S_z) = 1$ (13)

If,
$$S_x = S_y = S_a$$
 then, $S_a = (1 + S_z)^{-1/2} - 1$ (14)

and
$$S_z = -\frac{S_a^2 + 2S_a}{S_a^2 + 2S_a + 1}$$
 (15)

Interdigitated electrode geometry generates homogeneous, large adhesion force 10 times higher than the square geometry

10 mm

Interdigitated electrode: adhesion force \propto area, ~2400 mN total Square electrode: adhesion force \propto periphery, ~240 mN total

J. Shintake, S. Rosset, B. Schubert, D. Floreano, H. Shea, *Adv. Mater.* 2015, DOI: 10.1002/adma.201504264.

Newton order electroadhesion force represents high holding force of the gripper

Shear force at 5 kV: 3.5 N for the interdigitated, 1.8 N for the square

- Force difference between the two electrode geometry corresponds to the edge length.
- Larger thickness results in reduced force.
- Normal force shows trend similar to the shear force.

J. Shintake, S. Rosset, B. Schubert, D. Floreano, H. Shea, *Adv. Mater.* 2015, DOI: 10.1002/adma.201504264.

Interdigitated electrode shows only 20 % reduction of the actuator performance compared to the square geometry

- Actuation stroke at 5 kV: 22 $^{\circ}$ for the interdigitated, 29 $^{\circ}$ for the square
- Blocked force at 5 kV: 1 mN for the interdigitated, 1.2 mN for the square
- mN order force enables handling of fragile and sensitive objects in the gripper.

J. Shintake, S. Rosset, B. Schubert, D. Floreano, H. Shea, *Adv. Mater*. 2015, DOI: 10.1002/adma.201504264.

Voltage [V]

J. Shintake et al., *IEEE/ASME Trans. Mechatronics* 2015, 20, 1997. 59

Voltage [V]

Analytical model to calculate the bending angle and the torque

 $U_{\text{tot}} = U_{\text{strain}_a} + U_{\text{strain}_b} + U_{\text{electric}_a} + U_{\text{electric}_b} + U_{\text{hinge}},$

60

The result shows the foldable actuators are useful for robotic applications.

J. Shintake et al., IEEE/ASME Trans. Mechatronics 2015, 20, 1997.

61

Table 4.1 – Design parameter and specifications of the elevon actuator

Table 4.2 – Specifications of the MAV

Design parameter	Value	Specification	Value
Dimensions		Dimensions	
DEA (half part)		Wing span	400 mm
Initial length l_0	14.1 mm	Wing span	150
Initial width w_0	60 mm	wing chord	150 mm
Initial thickness h_0	125 µm	Wing area <i>S</i>	$0.0525 \mathrm{m}^2$
DEA electrode (half part)		Elevon surface area S _e	0.0043 m ²
Initial length <i>l</i> _{e0}	11.3 mm	Elevon aerodynamic force position r_f	10.7 mm
Width $w_{\rm e}$	112 mm	Other	
Frame		Angle of ottook of the wing of	7 5 9
Arm length r	14.5 mm	Angle of attack of the wing α	7.5
Spacer height d^{*1}	1.840 mm (1 DEA)	Maximum elevon angle β	15 °
	2.025 mm (2 DEAs)	Measured mass	130.7 g
Spacer area (length × width)	$4 \text{ mm} \times 120 \text{ mm}$	Estimated flight speed V based on m	6.14 m/s
Elastic hinge		Estimated required torque τ	1780 mN · mm
Length <i>l</i> _h	1.0 mm		
Width $w_{\rm h}$	120 mm		
Thickness $h_{\rm h}$	50 µm		
Silicone adhesive film			
Thickness	40 µm		
Material property			
DEA elastomer			
Relative permittivity $\varepsilon_{\rm r}$	2.8 [233],[244]		
Material constant C_1	0.105 MPa		
Material constant C_2	0.00332 MPa		
Material constant C_3	$1.44 \times 10^{-13} \text{ MPa}$		
Elastic hinge			
Elastic modulus $E_{\rm h}^{-2}$	9.1 GPa		
Other parameter			
Pre-stretch ratio λ_{1p}	2.0		
Permittivity of free space ε_0	$8.85 \times 10^{-12} \text{ F/m}$		
Specifications			
Mass	14.4 g		
Base area (length × width)	24 mm × 130 mm		
Control surface area (length × width)	$40 \text{ mm} \times 120 \text{ mm}$		

Actuation combination of 4 DEAs provides pitch and roll attitude control

One way of using DEA structure as sensor is to detect strain

- Capacitive sensing: linear response, low hysteresis, but low sensitivity
- Sensitivity, gauge factor (GF):

Ratio of relative change in sensor response to the strain In capacitive strain sensors, sensitivity is theoretically **limited to 1**

J. Shintake et al., Adv. Mater. Technol. 2017, 3, 1700284. 66

Capacitive sensing showed high linearity and low hysteresis. Resistive sensing had higher sensitivity.

J. Shintake et al., *Adv. Mater. Technol.* **2017**, DOI: 10.1002/admt.201700284. 67

Capacitive sensing was more stable for different strain speeds

Capacitive sensing mode was more stable also for temperature and multiple cycles.

J. Shintake et al., Adv. Mater. Technol. 2017, DOI: 10.1002/admt.201700284.

