

Soft Robotics

Shinichi Hirai Dept. Robotics, Ritsumeikan Univ. http://www.ritsumei.ac.jp/~hirai/

Schedule & Handouts

https://www.ritsumei.ac.jp/~hirai/edu/2025/soft_robotics/soft_robotics.html

Web lecture 10/3, 10/10, 10/31, 11/7, 11/14, 11/21

Robots vs Creatures

mainly hard materials precise mechanism

hard and soft materials loose mechanism

Soft Robotics

Soft Robotics

Soft robotics is a branch of robotics focused on creating mechanical systems from compliant, flexible materials like silicone, gels, and polymers, which allows them to deform, adapt, and safely interact with their environment, much like biological organisms. Unlike rigid robots, soft robots can operate in unstructured or delicate settings, manipulate fragile objects without damage, and perform complex, adaptive movements inspired by living creatures.

Soft Robot Features

Materials: soft, deformable materials, including elastomers, gels, and fluids.

Inspiration: inspired by biological structures, such as the movement of an octopus or a caterpillar.

Adaptability: conform to irregular shapes, adapt to different obstacles, and change their own shape to perform tasks.

Safety: inherently safer for human interaction and

manipulation of delicate objects due to their compliance and reduced risk of damage.

Motion: complex and varied motions, including bending, twisting, and expanding, which are difficult for rigid machines.

Soft Robot Potential Applications

Medical devices: For surgery, patient rehabilitation, and wearable health solutions.

Manipulation and gripping: Safely picking up delicate or irregularly shaped objects in manufacturing or logistics. Locomotion: Moving through complex environments, like uneven terrain or narrow spaces.

Wearable technology: Creating comfortable and adaptive devices for human use.

Soft Robotics Activities

SIG Soft Robotics

Special Interest Group on Soft Robotics

IEEE Int. Conf. on Soft Robotics

The First RoboSoft, Livorno, Italy, 2018

Circular Soft Robot

Sugiyama and Hirai, Crawling and Jumping by a Deformable Robot, IJRR, 25-5/6, 603-620, 2006

Spherical Soft Robot

Sugiyama and Hirai, Crawling and Jumping by a Deformable Robot, IJRR, 25-5/6, 603-620, 2006

Soft Robot Jumping

Cap (a) Cap shape (a) Cap shap

Soft Robot Jumping

soft robot model

calculation process

Soft Robot Jumping

Soft Bendable Fingers

Soft Bendable Fingers

Wang et al., IEEE RAL, 2017

Manipulating Delicate Objects

Expanding Membrane Hand

Wang, Kanegae, and Hirai, Circular Shell Gripper for Handling Food Products, Soft Robotics, 2020

Application to Agriculture

Aoyama et al., Shell Gripper Inspired by Human Finger Structure for Automatically Packaging Agricultural Product, Humanoids 2022

Application to Agriculture

Simultaneous grasping of multiple cucumbers

Aoyama et al., Shell Gripper Inspired by Human Finger Structure for Automatically Packaging Agricultural Product, Humanoids 2022

Fabric Manipulation

Motivation

https://vn-bizmatch.com/vietnamese-35/

https://www.temjin-tv.com/works/2023/09/27/2561/

Principle

- soft fingertips contacting with a fabric
- large friction between fingertips and the fabric
- fingertips moving along the fabric

Pulling-Driven Soft Hand

Hanamura et al, IEEE/SICE SII 2024

Pulling-Driven Soft Hand

Closing-Approaching Coupling

Hanamura et al, IEEE/SICE SII 2024

cs 2025/9/26

Living Organism Manipulation

https://job.fishermanjapan.com/column/3042/ https://mainichi.jp/articles/20200217/k00/00m/040/024000c

Motivation

Grasping and manipulation of underwater organisms

Electricity in water may cause problems

→ Non-electric hands

Plankton: organisms that drift in water but are unable to actively propel themselves against currents

https://en.wikipedia.org/wiki/Plankton

Benthos: organisms that live on, in, or near the bottom of a sea

https://en.wikipedia.org/wiki/Benthos

Benthos: organisms that live on, in, or near the bottom of a sea

https://en.wikipedia.org/wiki/Benthos

Contact-driven Hand

Grasping of benthos ← Nate et al., IEEE ICRA 2023
Opening/closing via contact force

Structure

Structure

notch

Locking via contact force

Unlocking via contact force

Hand

Experiments

Simplified finger

rigid links connected by bolts and nuts

finger consisting of flexible link and plate

Plankton: organisms that drift in water but are unable to actively propel themselves against currents

https://en.wikipedia.org/wiki/Plankton

Origami-membrane Hand

Nate et al., IEEE/SICE SII 2024

Grasping of plankton near bottom ← Enveloping by origami-membrane

Scooping by ladle

tics 2025/9/26

Origami-membrane Hand

origamimembrane

Origami-membrane

Kresling pattern

polygonal prism

→ flat shape

Fabrication

membrane : fabricated by liquid silicone printer

Membrane deformation

open

closed

Soft Sensors

http://www.ams.eng.osaka-u.ac.jp/user/ishihara/wp-content/uploads/2016/08/sensor_ver1-e1541744713909.jpg

https://news.mynavi.jp/techplus/article/20210422-1876923/images/003.jpg

https://www.dic-global.com/news/news_file/file/ 20190201_%E3%83%93%E3%83%AB%E3%82%BB%E3%83% B3%E3%82%B7%E3%83%B3%E3%82%B0%EF%BC%92.jpg

Sensing for Soft Robots

Fiber Sensor

(b) Density of conductive fibers (blue fiber) increases when tensile

Sensing range ~ 2%

Ho et al., IEEE Sensors J., 13(10), 2013

Double-Covering Structure

Electro-conductive threads

Polyurethane rubber core

Sensing range ~ 20%

Estimation of finger bending

Fabric Sensor

Slip Detection

Wavelet transform Amplitude of highfrequency

Van Ho and Shinichi Hirai Robotics: Science and Systems VII pp.129-136, 2012

Discriminating Surface Textures

Discriminating Surface Textures

Fabric-based Proximity/Contact Sensor

Sensor made of conductive fabric Can detect approaching/contacting objects

Can cover curved surfaces of rigid/soft robots Applicable to safety sensors of robots

Variable Stiffness Link with Fabric Sensor

Variable Stiffness Link with Fabric Sensor

—:Measured—:Reference

Fabric Touch Sensor

Shinichi Hirai and Takahiro Matsuno, Finger Stroke Detection by Fabric Touch Panel with its Application to Stuffed Animal Robot, SICE 2024

Softness is Opportunities

More Details

http://www.ritsumei.ac.jp/~hirai/

hirai@se.ritsumei.ac.jp

