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Abstract—Being able to measure deformations precisely in
tissue by magnetic resonance (MR) imaging is very useful for
many medical imaging applications. While a variety of different
algorithms have been formulated for this purpose, few are based
on tracking features in the images. Here, we propose an approach
of automatically extracting feature points and matching them
to measure local deformation as seen in 3D MR volumetric
images. Ccorrelation scores (cs) are given to pairs of high
curvature points in a 3D cubic region to ensure that they are
well matched. Those with scores above a given threshold are
considered as candidate points. The strength of matching of
the candidate points are evaluated using an iterative energy
function, and then the well matched points are used to estimate
the deformation.The approach was very effective when applied
to actual MR volumetric images of a person’s calf.

I. INTRODUCTION

Pre-estimating deformation or motion of biological tissues
is often required for computer-assisted medical applications,
such as clinical diagnosis, surgery simulation, operation plan-
ning, and evaluation of physical characteristics of biological
tissues, which are becoming increasingly more common. Im-
ages can be obtained in three dimensions (3D) using magnetic
resonance (MR), computer tomography(CT), ultrasonic (US)
scans, all of which are non-invasive. Magnetic resonance
imaging (MRI) is particular good for estimating deformation
of tissue because it affords superb anatomic images with
excellent spatial resolution and contrast between soft tissues.

Estimations of deformation from MR volumetric images are
mainly based on elastic deformation models [1]-[3], which
can be classified into either parametric or geometric active
models [4]. In the former, parametric active contours, also
called snakes, were first introduced by Kass et al. in 1987 [5],
and subsequently used by Lang et al. [6], Cho et al. [2] and
Matuszewski et al. [1] to estimate deformation of soft objects.
Its general idea is to try to minimise the designed function
to deform a given initial contour toward the boundary of the
object to obtain the object’s deformation. The geometric active

model was first proposed by Caselles et al. [7], and developed
by Malladi et al. [8], Caselles [9] and Chenoune et al. [4]. In
the geometric active model, propagation of curves and surfaces
are used to detect boundaries and track motion.

Moreover, much work has also been done on MRI tag-
ging technique for measuring deformation. The MRI tagging
method was proposed by Zerhouni [11], and has been sub-
sequently developed: Amini et al. [12] introduced a coupled
B-snake grids and constrained thin-plate splines to analyze 2D
tissue deformations; Wang et al. [14] proposed using subspace
approximation techniques to compute motion fields and intro-
duced a spline technique to reconstruct dense displacement
fields; Chen et al.[28] introduced an approach for tracking
the tags; and Huang et al.[13] introduced an environment to
fit and track volumetric tagged MRI data by a 4D deformable
B-spline model. In all these MRI tagging methods, a set of
radio-frequency (RF) pulses are used to make trackable tags
in thin slices perpendicular to the imaging plane [12].

Although the algorithms used to measure the deformations
have been much improved in recent years, some problems still
remain. The parametric active model cannot handle changes in
the topology of the evolving contours when implementations
of deformation made are performed directly, and special, often
heuristic, topology handling procedures must be used [9].
In the geometric active model, when contrast is poor and
boundaries are not clear or continuous in the images, the
contours tend to leak through the boundary [10]. The tagged
images must have a regular grid pattern in the imaging plane,
and if the number of tagged points is low the accuracy of the
measurements will be poor.

Herein, we propose an approach based on matching point
features to measure local deformation of biological tissues
from MR volumetric images. Briefly, we extract enough points
of high curvature (also called points of interest) automatically
in MR volumetric images taken before and after deformation
of the tissue, which hereafter we refer to as initial and



deformed images, and then compare their relative positions.
We describe the approach in Section 2 and give examples
and preliminary experimental results in Section 3. In the final
section, we present a discussion and conclusions.

II. METHOD

Our approach consists of three steps: registration, point
feature matching and deformation measurement.

A. Registration

Registration is determination of the absolute orientation of
one data set with respect to another [25]. Its application to
MR images has been well studied [17]- [23]. Registration
is usually applied to non-rigid objects using either a voxel-
based or a feature-based method [23]. In [23]. In the former
method, optimized transformation is performed to maximize
the difference in intensity in regions where the intensity would
otherwise be similar in the initial and deformed images.
The latter method uses information from different identifiable
structures of the object.

In the present study, we use a registration technique to
find the movement of two coordinate systems in initial
and deformed MR volumetric images of a volunteer’s calf
(Figure 1). We select features, considered rigid, around the
bone (Figure 2a) in the initial image and compare them with
their corresponding features in the deformed image to obtain
rotation matrix R and translation vector τ .

Denoting the position vector in the initial and deformed vol-
umetric images as xi and xd, respectively, and consideration
their geometric movement, we have affine transformation

xd = Rxi + τ . (1)

R and τ can be estimated using a set of rigid features. Using
the quaternion q0, qx, qy and qz (Horn [24]) in the rotation
matrix R, we can obtain equation (2) with the constraint q2
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(2)

Let n be the number of selected rigid features, and xik (k =
1, 2, ..., n) be their position vectors in the initial volumetric
image and xdk (k = 1, 2, ..., n) be their corresponding the
position vectors in the deformed volumetric image. Let x̄i

and x̄d represent their centroids in the initial and deformed
images, respectively. We can write

x̄i =
1
n

n∑
k=1

xik, x̄d =
1
n

n∑
k=1

xdk. (3)

To find the rotation, let us denote the new coordinates as

x′
ik = xik − x̄i, x′

dk = xdk − x̄d. (4)

(a)Initial MR slices (b)Final MR slices

Fig. 1. Original MR volumetric image

We then introduce a 3 × 3 matrix M computed by the sums
of cross products of coordinates measured in the initial volu-
metric image and those measured in the deformed volumetric
image.

M =
n∑

k=1

x′
ikx

′
d
T
k (5)

According to Horn [24], the above matrix contains all the
information required to solve the least-squares problem for
rotation.

Note that the 3 × 3 matrix A = M − M
T is skewed

symmetric, implying that multiplying matrix A and a 3-
dimensional vector will give the outer product of vector δ and
the vector. Letting Ai,j be the (i, j) − th element of matrix
A, vector δ is given by

δ = [A2,3 A3,1 A1,2]T (6)

Let us introduce a new 4× 4 real symmetric matrix:

B =
(

trace(M) δT

δ M + M
T − trace(M)E

)
(7)

where trace(M) is the trace of matrix M, and E is a 3 × 3
unit matrix.

It can be shown that the unit quaternion q =
[q0, qx, qy, qz] is the eigenvector corresponding to the largest
positive eigenvalue of matrix B [24][25]. This implies that
rotation matrix R can be estimated. The translation vector τ
is computed as

τ = Rx̄i − x̄d. (8)

Figures 2b and 2c show the results of registering a 2D
and a 3D image, respectively. The blue and orange contours
represent the surfaces in the initial and deformed images,
respectively.

B. Point feature matching

Point feature matching is central to our approach. First, we
compute a correlation score[26][27] between two cubic re-
gions around a feature point in initial and deformed volumetric
images, and then disambiguate matches through a relaxation
labeling technique.



(a) bone region in initial (upper) and final (bottom) MR
slices (b) overlaid result of registered 2D contours

(c) unregistered and (d) registered 3D surface model

Fig. 2. Original MR volumetric image

1) First matching through correlation score: Given a high
curvature point p1 pre-extracted from the initial MR volu-
metric image using a Harris operator [31], we first compute
its projection point p2 in the deformed volumetric image
using equation (1). We then select a match cubic region of
size (2m + 1) × (2n + 1) × (2h + 1) and search the cubic
region of size (2u + 1) × (2v + 1) × (2w + 1) around p1

and p2. The search cube size reflects a pre-estimation of
maximum deformation. The match and search cubic regions
can be described as

Cm = {x = [x y z]T|
x ∈ [−m,m], y ∈ [−n, n], z ∈ [−h, h]}, (9)

Cs = {x = [x y z]T|
x ∈ [−u, u], y ∈ [−v, v], z ∈ [−w,w]}. (10)

Let g(x) and g′(x) be the voxel value of the initial and
deformed volumetric images at point x. The correlation score
between two match cubic regions around voxel p1 in the
initial volumetric image and voxel p2j (high curvature points
within the search cube around p2) in the deformed volumetric
image is defined by

cs(p1,p2j) =

∑
x∈Cm

(g(p1+x) − ḡ(p1))(g′(p1+x) − ḡ′(p2j)
)

|Cm|
√

σ2(gp1)× σ2(gp2j
)

(11)
where

|Cm| = (2m + 1)(2n + 1)(2h + 1),

ḡp1 =
1
|Cm|

∑
x∈Cm

g(p1+x), ḡ′p2j
=

1
|Cm|

∑
x∈Cm

g′(p2j+x).

Here, σ(gp) is the standard derivation of MR volumetric
image g(p) in the neighborhood (2m+1)×(2n+1)×(2h+1)

of point p, given by

σ2(gp) =

∑
x∈Cm

(g(p+x) − ḡp)2

|Cm| (12)

where ḡp is the averaged intensity in the neighborhood of
point p in the MR volumetric image. The correlation score
ranges from −1 when the cubic regions are completely
different to −1 when they are identical.

From the correlation scores, we obtain a set of many-
to-many matches, that is, a point in the initial volumetric
image may be paired with more than one point (candidate
matches) in the deformed image, and vice versa. Obviously,
many candidate matches will be ambiguous, but this problem
can be resolved with relaxation techniques [26].

2) Definition of strength of the match: To iteratively disam-
biguate the matches, we use a function for the strength of the
match (SM). Let p1i and p2j represent candidate matches
in initial and deformed volumetric image respectively, then,
p1i and p2j can be regarded as a pair of potential matched
PM(p1i,p2j) if and only if the SM(p1i,p2j) between p1i

and p2j is the largest among the candidate matches of p1i

and the largest among the candidate matches of p2j .
Suppose that a cubic volumetric image region N (p) rep-

resents the neighborhood of point p, then, we will expect
to see many potential matches within their neighborhoods
N (p1i) and N (p2j) if and only if (p1i,p2j) is a potential
match. Incontrast, we will expect to see only a few or even
no matches. Let (n1k, n2l) be the potential matches within
N (p1i) and N (p2j), respectively, where n1k ∈ N (p1i) and
n2l ∈ N (p2j). More strictly, we define a strength function
of candidate matches p1i and p2j as:

SM(p1i,p2j) = cs(p1i,p2j)+

α

s∑
k,l=1

cs(n1k,n2l) · η(n1k,n2l)
1 + diff(p1i,p2j ;n1k,n2l)

(13)

where s represents the total number of the potential matches
in the neighborhoods N (p1i) and N (p2j) of the candidate
match (p1i,p2j), α is a balancing parameter used to balance
the weight during iteration, and diff(p1i,p2j ;n1k,n2l) is
the relative distance difference given by

diff(p1i,p2j ;n1k,n2l) =
d(p1i,n1k)− d(p2j ,n2l)
dist(p1i,p2j ;n1k,n2l)

(14)
where dist(p1i,p2j ;n1k,n2l) is the average distance be-
tween two pairs (ps, ns). Let us define the Euclidean distance
between the pair of points ps and ns as

d(ps,ns) = ‖ps − ns‖. (15)

We then have

dist(p1i,p2j ;n1k,n2l) =
d(p1i,n1k) + d(p2j ,n2l)

2
.

(16)



Generally, with better matched pair (n1k,n2l), we expect
more contribution to its center pair (p1i,p2j). Moreover, as
is well known, we can measure the similarity between two
volumetric image regions by minimising the sum of the square
of the residual between the two regions. So, the contribu-
tion η(n1k,n2l) of potentially matched pair (n1k,n2l) in
equation (13) can be defined by the residual as follows. Let
vector xn1k

= (xn1k
, yn1k

, zn1k
) ∈ N (n1k) represent the

coordinate of a voxel in N (n1k), and its corresponding point
n2l be regarded as its estimation in the deformed volumetric
image, then we can use the sum of the square residual of
neighborhoods to substitute for the residual of the point n1k.
Ideally, the residual ζ(n1k,n2l) of n1k can be defined as

ζ(n1k,n2l) =
∑

xn1k
∈N
| gn1k

(xn1k
)− g′n2l

(xn1k
) |2.

Considering the rotation transformation between the initial and
final volumetric images, we can rewrite the above equation as

ζ(n1k,n2l) =
∑

xn1k
∈N
| gn1k

(xn1k
)− g′n2l

(xn1k
,R) |2

(17)
where gn1k

(xn1k
) is the intensity values in the image at

position xn1k
, g

′
n2l

(xn1k
,R) is the intensity value of the

voxel centered at point n2l, and its relative coordinate xn2l
=

(xn2l
, yn2l

, zn2l
) ∈ N (n2l) satisfies

[xn2l
yn2l

zn2l
]T = R[xn1k

yn1k
zn1k

]T

Without losing generality, we define the local contributions of
the pair (n1k, n2l) via the Gibbs distribution in the form

η(n1k,n2l) =
1

Z(n1k,n2l)
· exp−λ·ζ(n1k,n2l) (18)

where the notation Z(n1k,n2l) represents the partition func-
tion (or normalizing constant) of the pair (n1k,n2l). This is
given by

Z(n1k,n2l) =
s∑

k,l=1

exp−λ·ζ(n1k,n2l) (19)

where s has the same meaning as equation (13), the atten-
uation constant λ = 1/T and call T temperature. Here, we
expect to select proper λ so that as λ increases (or T de-
creases), the η(n1k,n2l) of those with large residuals quickly
decreases, and ultimately the contributions is mainly from
those with the smallest residuals. Thus, in our implementation,
we define the attenuation constant λ as

λ =
1
T

= {ζ(n1k,n2l)− ζ̄}2 (20)

where ζ̄ represents the average residuals of potential matches
within the neighborhood of the candidate pair (p1i,p2j).

3) Relaxation labeling: The relaxation technique was first
proposed by Rosenfel et al. [29]. The basic idea is to use
iterated local context updates to achieve a globally consistent
result [30]. To disambiguate the candidate matches, we define
the energy function as the average of the strengths of all
candidate matches:

ε =
1
N

N∑
i,j=1

SM(p1i,p2j) (21)

where N is the total number of matched pairs in a potential
matches set (PMS) at time t.

The matches can be disambiguated by maximizing the
energy function ε, using an iterative procedure. Here, we
note that since the PMS varies dynamically, the strength
function (13) also varies. Therefore, potential matches can
be updated constantly, and the iteration will stop when the
energy decreases. The relaxation process can be described as
follows in pseudo code.
set α← 0
for(i = 0 to total number of points in initial image)
for(j = 0 to total number of candidates of p1i

in final image)
if(max{cs(p1i)} → p2j and max{cs(p2j)} → p1i)

Add pair(p1i,p2j)→ PMS;
iteration
{
for(n = 0 to total number of PM pairs)

Computation the SM(p1n,p2n);
Computation the energy function εt;
if(εt ≥ εt−1)
{

PMS ← 0;
for(i = 0 to total number of points in initial image)
for(j = 0 to total number of candidates of p1i

in final image)
if(max{SM(p1i)} → p2j and

max{SM(p2j)} → p1i)
Add pair(p1i,p2j)→ PMS;

α← α+ � α
}
else

stop iteration;
}

Functions εt and εt−1 are energies at time t and t − 1,
respectively. If SM(p1i,p2j) is the largest among the can-
didate matches for p1i, then max{SM(p1i)} → p2j , and
max{cs(p1i)} → p2j have similar meaning.

Moreover, we should emphasis that the balancing parameter
α increases during the first couple of iterations.

It is worth pointing out the similarities and differences
between our algorithm and those reported in references



in [26] [28]. First, the above algorithm is a combination of
those proposed by Zhang [26] and Chen [28] and, therefore,
they are similar in form. Second, by the potential matches as
substitutes for high curvature points in the neighborhood of
the candidate match (p1i,p2j), the above algorithm can effec-
tively avoid the dissymmetry that may appear in the algorithm
proposed in [26]. Third, in addition to differences in distance,
our SM function considers the contribution ratio of potential
matches of different strength. Normalised Gibbs distribution
of residual of each pair of potential matches reveals that those
pairs that have smaller residual would have larger contribution.

C. Deformation measurement

Well matched pairs of feature points are used to measure
local deformation. Let D be the displacement vector of a
given point of high curvature in the initial MR volumetric
image relative to its corresponding point in the final image, ϕ
represent the angle between the displacement vector and the
xz-plane, and x1 = (x1 y1 z1)T and x2 = (x2 y2 z2)T

represent the coordinate of corresponding points in their
respective coordinate systems. Then, we have

D = ‖x1(R, τ )− x2‖ (22)

and

ϕ = arcsin(
y2 − y

′
1

D ) (23)

where y
′
1 satisfies

[0 y
′
1 0]T = R[0 y1 0]T + τ . (24)

III. EXPERIMENTS AND RESULTS

To evaluate the proposed approach, we performed a prac-
tical experiment using software that we wrote in Visual C++
and ran on Microsoft Windows XP in a Dell PC with a 2.80
GHz Intel� Pentium� D CPU and 1 GB of RAM.

For the experiment, MR volumetric images (Figure 1) of
a volunteer’s calf were taken under different status and at
different times. In both cases, there were 76 slices, FOV was
20 × 20 cm, and the slice gap was 2 mm. In this case, we
selected 20 neighbouring slices from each of the initial and
final MR volume data sets. For both the initial and deformed
images, we performed linear interpolation between two neigh-
boring original slices , which gave discrete volumetric images
of size 256 × 256 × 40 and sufficient resolution along the
z-axis direction.

Figure 3 shows the experiment results. To clarify the extent
of deformation, two slices, one from the initial and the other
from the deformed series, are superimposed using a uniform
coordinate system (Fig.3a). In Figure 3a, the red and blue
contours show the edges of the deformed and initial slices,
respectively. Figure 3b is their 2D projection of the 3D
deformation. Figure 3c shows the 3D mesh model of the final
volumetric image, and Figure 3d shows the local deformation

(a)Deformed slice overlaid on the initial slice (b)The
projection of 3D deformation field on 2D plane

(c)Mesh model (d)3D local deformation field

Fig. 3. Original MR volumetric image

field overlaid on the 3D surface model of the final volumetric
image. The arrow with the blue tail and white head indicates
the direction and magnitude of the local deformation field.

Figure 3 was obtained with a search cube size of 17×17×
7 voxels and a match cube size of 9 × 9 × 5 voxels. The
total number of reference high curvature points in the initial
volumetric images is 500. There were 330 pairs of successful
matches, of which 297 (90%) were good. The time cost was
10 seconds.

IV. CONCLUSION

We proposed a method to measure local deformation in soft
biological tissues from MR volumetric by matching pairs of
feature points. The core idea is to find points in volumetric
images taken before deformation that match points well in
the image taken after deformation. After matching points we
used a relaxation technique to obtain good matches. Our
preliminary experimental results reveal that our approach is
effective. Compared with similar types of algorithms, our
approach has the following advantages:

(1) Independent of the initial contours or boundaries.
(2) Feature points are automatically extracted from volu-

metric images.
(3) Insensitive to noise.
In the future, we intend to
(1) Improve the algorithm so that it is applicable to large

deformations.
(2) Improve the accuracy of feature point matching.
(3) Reduce the number of false matches.
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