
Analysis and Planning of

Manipulation

Using the Theory of

Polyhedral Convex Cones

Shinichi Hirai

March 1991



Abstract

A new approach to the analysis and planning of manipulation using the theory of

polyhedral convex cones is presented. The majority of manipulative tasks, including

assembly and grasps, are performed through mechanical contacts. The constraints

due to the mechanical contacts are non-holonomic, because they are unidirectional

constraints described by a set of inequalities. One of the fundamental di�culties in

the analysis of manipulative tasks is to deal with a number of inequalities resulting

from the unidirectional nature of mechanical constraints. In this paper, we develop

a methodology based on the theory of polyhedral convex cones that allows us to

deal with complex inequalities in an e�cient and systematic manner.

First, the kinematic and static analysis of rigid bodies constrained by contacts is

presented. We derive a general form of linear simultaneous inequalities that result

from the formulation of task models. The inequalities are then represented and

solved by using polyhedral convex cones. Algorithms for fundamental operations on

these cones are developed and implemented on a computer. Second, the analysis

of gross motion of rigid bodies constrained by mechanical contacts is presented.

The process of an assembly operation is analyzed with regard to how workpieces

contact each other. The assembly operation is then described with a contact state

graph, where individual nodes of the graph represent the contact states between

workpieces and the possible transition between two contact states is denoted by

an arc connecting the corresponding nodes. We develop an e�cient algorithm for

automatically generating the graph from the geometric data of workpieces. Third,

A model-based approach to the recognition of assembly process states is presented.

Sensory information acquired in the process is interpreted using state classi�ers in

order to estimate the current state of the assembly process. The classi�ers of the

assembly process state are formulated by using the theory of polyhedral convex

cones. We develop a systematic method for generating the classi�ers automatically

based on geometric models of assembly parts.
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Chapter 1

Introduction

A new approach to the analysis and planning of manipulation using the theory of

polyhedral convex cones is presented. Robots must perform tasks successfully in the

presence of uncertainties, including workpiece tolerances, positioning errors, frictions

and so on. In manipulative tasks such as assembly and grasps, robots contact with

the environment. Robots must adapt themselves to unpredicatable change of the

environment and perform dextrous operations in order to cope with uncertainties.

Force feedback control is a key to the advanced manipulation, where robots interact

with the environment.

In the past decades, a number of theories and techniques have been developed,

including bi-lateral servo [Inoue, 71], generalized spring and damper [Whitney, 77],

hybrid position/force control [Mason, 82] [Raibert and Craig, 81], impedance con-

trol [Hogan, 85] and so on. These provides e�cient means to construct force feedback

control systems, where force information is needed to modify the robot motion in

accordance with predetermined control laws and control schemes. The majority of

manipulative tasks, however, are still out of the range of today's robotics technolo-

gies. These are often so complex and intricate that e�cient strategies cannot be

generated by single control laws and schemes. Real control laws are highly nonlin-

ear and varying depending on the state of the process. A selection matrix in hybrid

control, for example, must be switched if the geometric constraints vary in the pro-

cess. A particular sti�ness matrix, which is valid for a certain range of tasks, will be

inadequate when the task condition varies signi�cantly. The direct feedback of force

signals is thus limited in validity, unless the control law is modi�ed in accordance

with the change in the process state. A higher-level control is therefore necessary to

extend the task range and deal with varying task conditions, which are often uncer-

tain. The objective of this paper is to provide a fundamental technique to construct

the higher-level force controller that allows the robot to recognize the process state

and modify the task strategy depending on the process state.

Figure 1 shows a schematic of the argumented control system that comprises

both the direct feedback of force signals and the higher-level feedback which causes

the change of control strategies. While the former is primarily a signal-level feed-

back, the latter is a symbol-level feedback, where the original sensory informa-

tion is mapped into a process state described at a symbolic-level or signed-level

[Rasmussen, 83]. Note that the latter requires the interpretation of sensory in-

formation to recognize the process state and the modi�cation of task strategies

1
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Figure 1: Symbolic-level feedback
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to cope with unpredicatable change of the process state [Lozano-P�erez et al., 84]

[Donald, 88] [Desai and Volz, 89]. Understanding the mechanism of manipulation

is necessary to construct a higher-level control system. This research provides a

fundamental methodology for analysis and planning of manipulative tasks based on

the theory of polyhedral convex cones.

In chapter 2, the kinematic and static analysis of rigid bodies constrained by

contacts is presented. The majority of manipulative tasks are performed through

mechanical contacts with the environment. The mechanical contacts are unidirec-

tional constraints described by a set of inequalities. We develop a mathematical

tool based on the theory of Polyhedral Convex Cones in order to deal with complex

inequalities in an e�cient and systematic manner. In chapter 3, we analyze the

process of the assembly operation with regard to how the workpieces contact each

other and represent the process by a Contact State Graph. The gross motion of

workpieces can be described by the graph. An algorithm for generating a contact

state graph is derived. In chapter 4, we develop a technique for recognizing the cur-

rent process state from the sensory information. State Classi�ers that discriminate

contact states are formulated by using the polyhedral convex cones, which directly

provide a set of discriminant functions. The classi�ers are simpli�ed to a minimum

set of discriminant functions by using reduction rules of polyhedral convex cones.

Using this technique, it is expected that the robot can identify the process state in

order to perform a higher-level control including the switching of control strategies

and schemes.

1.1 Example

Let us present an overview of this research by taking a simple example shown in

Figure 2. This �gure shows a moving object contacting with a �xed environment.

The moving object is in contact with two facet of the environment, F1 and F2.

Assume that the moving and the �xed objects are rigid bodies. First, let us analyze

the kinematic and static behavior of objects. Let �x = [�x;�y]T be an in�nitesimal

displacement of the moving object. Let ni be the inward normal vector of the i-

th facet Fi. The motion of the moving object is constrained by contacts with the

environment. The condition that a translational displacement �x is geometrically

admissible is then given by an inequality, nT
i �x � 0. Note that constraints are

unidirectional since the objects may separate in one direction. The inequality results

from the unidirectional constraints. An arbitrary admissible displacement of the

moving object must satisfy all of the conditions due to individual contact points.

3
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F

Figure 2: Simple example of planar object and environment

Therefore, a set of geometrically admissible displacements is derived as:

A = f�x j nT
i �x � 0; i = 1; 2g:

Let us derive the range of forces that satisfy static equilibrium condition. A normal

reaction force acting at the contacting point between the moving object and the

i-th facet Fi is described by Ri = �Rini, where Ri denotes the magnitude of the

reaction force. Let f = [fx; fy]
T be a collective force acting on the moving object.

If all the contacting points are frictionless, the equilibrium equation is given by

f +
2X

i=1

(�Rini) = 0:

Note that all the coe�cients Ri are non-negative since the contacts are unidirec-

tional. The range of forces that satisfy the static equilibrium condition is thus

described by

F = f

2X
i=1

Rini j Ri � 0; i = 1; 2g:

As illustrated in the �gure, both A and F are mathematically described by cones,

since all the contacts are unidirectional. In chapter 2, we will provide a more gen-

eralized approach which allows us to treat translational and rotational motion of

three- dimensional objects using the theory of polyhedral convex cones.

Let us analyze a global motion of objects. Assembly is a process of locating

and �xing workpieces together in a desired con�guration. During the operation,

4



the workpieces contact each other at di�erent surfaces as shown in Figure 3. The

contacting pair of surfaces may change as the operation proceeds and the geometric

constraints change during the assembly process. Thus, the assembly process can be

modeled by a successive change of the geometric constraints and can be described

by a contact state graph as illustrated in the �gure. Individual nodes of the graph

represent the assembly process states, that is, how objects contact each other. De-

pending upon whether the moving object is in contact with the i-th facet Fi, there

exist four process states N1 through N4 in this example. Let x0 = [x0; y0]
T be the

position of the moving object and hi(x0) be the distance between the moving ob-

ject and the i-th facet Fi. Note that function hi(x0) is dependent on the position

x0. Individual nodes are then formulated whether each distance function hi(x0) is

positive or equal to zero. For example, an arbitrary position x0 involved in state N3

must satisfy the following condition:

h1(x0) > 0 and h2(x0) = 0:

This shows that a contact state graph describes the global motion of an object under

unidirectional constraints. The possible direct transition between two constraints is

denoted by an arc connecting the corresponding nodes. In this example, a direct

transition from N2 to N3 is not admissible since it is impossible to change the

geometric constraints directly from N2 to N3 without transiting N1 or N4. In chapter

3, we will provide an approach to the analysis of assembly processes using contact

state graphs, which allows us to treat translational and rotational motion of three-

dimensional objects. We will also develop a method for generating a contact state

graph from the geometric model of workpieces.

The robot needs to change its control law or task strategy according to the

process state so that the robot can perform the task successfully. A selection matrix

in hybrid control must be switched if the geometric constraints change signi�cantly.

For example, control mode along y-axis must be switched from position-control

mode to force-control mode when the geometric constraints vary from N1 to N3 as

shown in Figure 3. Therefore, robots need to recognize the process state and modify

the task strategy depending on the process state. In chapter 4, we will develop a

new technique for mapping sensory information into the process state described at a

symbolic-level. State classi�ers are derived automatically from the geometric model

of workpieces using the theory of polyhedral convex cones, which formulates the

kinematics and the statics of manipulation. Then, robots can identify the geometric

constraints from force and displacement information using the state classi�ers.
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1.2 Previous Work

Mechanical contacts between objects have been studied in screw theory, grasp

analysis, assembly analysis and so on. In screw theory, mechanical contacts between

objects have been characterized by repelling and reciprocal screws [Ohwovoriole and

Roth, 81]. In grasp analysis, constraints by �ngers have been addressed in the anal-

ysis of form closure [Lakshminarayana, 78] and force closure [Ohwovoriole and Roth,

81] [Nguyen, 86] [Nguyen, 87]. Contacts between �ngers and objects are analyzed

extensively [Salisbury and Craig, 82] [Kerr and Roth, 86]. Rolling contacts between

�ngers and objects have been analyzed [Cole et al., 88]. Enveloping grasps using

the surface of a hand have been addressed [Trinkle et al., 87]. Squeezing opera-

tions have been studied [Brost, 88]. Contacts with soft �ngers have been modeled

[Akella and Cutkosky, 89]. In �xture analysis, the accessibility and detachability

conditions have been derived [Asada and By, 85]. Assembly tasks such as peg-

into-hole mating have been also analyzed extensively. Static behavior of objects

in peg-into-hole insertions has been analyzed [Nevins et al., 80] [Whitney, 82] and

a hand for �ne insertion tasks has been developed [Whitney and Rourke, 86]. Con-

ditions where jamming or wedging can occur for peg-into-hole insertions have been

derived [Whitney, 82]. Object motion under frictional contacts has been analyzed

[Rajan et al., 87]. Pushing operation with frictions has been studied [Mason, 86].

Object motion in contact has been formulated using instantaneous centers of mo-

tion [Suehiro and Takase, 89]. In collision avoidance, the motion of rigid objects is

analyzed to obtain collision-free paths [Lozano-P�erez and Wesley, 79] [Schwartz and

Sharir, 83] [Schwartz and Sharir, 89] and con�guration space approaches have been

developed [Arnold, 78] [Lozano-P�erez, 81] [Lozano-P�erez, 83].

Robots must execute tasks in the presence of uncertainties. Compliant motion is

an e�ective technique to cope with the uncertainties. In compliant motion, robots

utilize the task constraints which may not be known precisely in order to guide

objects along the constraints and eliminate relative uncertainties. Force feedback

control has been developed for the compliant motion. In a force feedback con-

trol system, force information is needed to modify the robot motion in accordance

with a predetermined control law. Uncertainties can be reduced through sensing

and modifying operations. A number of control schemes have been proposed, in-

cluding bi-lateral servo [Inoue, 71], generalized spring and damper [Whitney, 77],

generalized sti�ness control [Salisbury, 80], hybrid position/force control [Mason, 81]

[Raibert and Craig, 81], impedance control [Hogan, 85] and so on [Mason, 82] [Whit-

ney, 87]. For a certain range of tasks, uncertainties can be reduced without sensing

operations. Sensorless manipulation has been explored [Mason, 85]. Pushing oper-

7



ations without sensing have been studied [Mason, 86] [Brost, 88]. Guarded motion

strategies are alternative techniques to cope with uncertainties. In guarded mo-

tion, robots combine some sensor signals in order to eliminate ambiguities of the

individual signals. Assembly operations using position and force sensing have been

studied [Will and Grossman, 75]. Representation of uncertainties has been stud-

ied. Symbolic constraints among uncertainties have been addressed [Brooks, 82].

Uncertainties in motion commands have been represented using uncertainty cones

[Erdmann, 86]. Uncertainties have been represented using probabilistic relations

[Kamel and Kaufmann, 88].

A number of approaches to the automatic synthesis of robot programs have been

proposed. The motivation of these researches is to reduce human intervention in

robot programming tasks by utilizing workpiece models generated by computer aided

design systems. A �ne-motion planning method using preimages has been addressed

[Lozano-P�erez et al., 84]. Starting a task from a point involved in the preimage of

a goal, robots can preform the task successfully and can recognize the success of

the task. Based on the preimage approach, backprojection techniques have been

developed [Erdmann, 86] [Juan and Paul, 86]. An automatic programming system

based on inductive learning has been addressed [Dufay and Latombe, 84]. This sys-

tem consists of a training phase that produces traces of execution and an inductive

phase that transforms these traces into a robot program. Planning of assembly se-

quences have been studied [Yamada et al., 87]. An approach to the planning and

teaching of compliant motion strategies have been addressed [Buckley, 87]. Teach-

ing for the hybrid position/force control has been developed [Asada and Izumi, 87].

Many manipulative tasks are preformed with multiple step execution, which can be

described by a sequence of process states. Stages in a peg-into-hole insertion have

been considered [Whitney, 82]. Contact formulations have been proposed to describe

and classify mechanical contacts between objects [Desai and Volz, 89]. The pro-

cess states of an assembly operation have been addressed [Lozano-P�erez et al., 84]

[Donald, 88] [Xiao and Volz, 89].

8



Chapter 2

Kinematics and Statics of

Manipulation Using the Theory

of Polyhedral Convex Cones

2.1 Introduction

Kinematics and statics of arm linkages have been studied extensively in past

decades. An arm linkage is a holonomic system consisting of multiple bodies, for

which standard analytic methods have been established. In contrast, process models

of manipulative tasks such as assembly are generally non-holonomic. Objects are

in contact with each other and thereby constrained mechanically, but constraints

are unidirectional since the objects may separate in one direction. The di�erence

between the bidirectional and the unidirectional constraints is critical, since the

latter refers to non-holonomic constraints, to which standard techniques do not

apply.

In screw theory, unidirectional constraints have been characterized by repelling

and reciprocal screws [Ohwovoriole and Roth, 81]. In grasp analysis, the unidi-

rectional nature of constraints by �ngers has been addressed in the analysis of

form closure [Lakshminarayana, 78] and force closure [Ohwovoriole and Roth, 81]

[Nguyen, 86] [Nguyen, 87]. Contacts between �ngers and objects are also analyzed

extensively [Salisbury and Craig, 82] [Kerr and Roth, 86] [Akella and Cutkosky, 89].

In �xture analysis, the accessibility and detachability conditions have been derived

from a non-holonomic model of workpiece positioning [Asada and By, 85]. Assembly

tasks such as peg-into-hole mating are non-holonomic processes with unidirectional

constraints. These assembly processes have been analyzed based on unidirectional

constraint models [Rajan et al., 87] [Suehiro and Takase, 89].

In these papers, the unidirectional constraints are described by a set of inequal-

ities or in some equivalent formulae. In these analyses, the intractable nature of

inequalities creates di�culties; simultaneous inequalities are much harder to solve

explicitly than equalities. Solutions are complex to represent and di�cult to inter-

pret. Unlike the solutions to simultaneous equations, the solutions to simultaneous

inequalities are not given in an explicit, comprehensive, and understandable form,

even if the inequalities are linear. This is a bottleneck in the analysis of manipulative

tasks where objects are subject to unidirectional constraints.
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In this paper, we will develop a mathematical tool for dealing with linear simul-

taneous inequalities in an e�cient and systematic manner. First, a general form of

inequalities representing unidirectional constraints is derived. Applying the inequal-

ity representation to various problems including grasp planning, �xture design, and

the synthesis of hybrid position/force control systems, we will �nd general problems

to solve. The general form of problems is then formulated with use of polyhedral

convex cones, which provide an e�cient approach to dealing with a large number of

inequalities.

2.2 Formulation of Unidirectional Constraints

2.2.1 The Admissible Displacement Set

In this paper, we deal with a rigid body consisting of a �nite number of smooth

surfaces, called facet j. Let gj(x) be the distance between facet j and an arbitrary

point in space whose coordinates are x 2 R
3, as shown in Figure 4. The distance

function gj(x) is de�ned to be a signed distance so that it is negative inside the rigid

body. We assume that all of the contacts are formulated by a �nite number of point

contacts. In this section, we formulate unidirectional constraints in order to derive

the range of geometrically admissible displacements.

Let xi be the coordinates of the i-th apex of the moving object. When the i-th

apex of the moving object is on the j-th facet of the �xed object, the following

equation is satis�ed.

gj(xi) = 0 (2-1)

Let �q be an in�nitesimal displacement of the moving object:

�q =

"
�x0

��0

#
(2-2)

where �x0 is an in�nitesimal displacement of the object position and ��0 is that

of the object orientation. When the moving object changes its location slightly, the

signed distance between the i-th apex and j-th facet changes to:

d = gj(xi +�x0 +��0 � xi); (2-3)

where � represents the outer product of vectors. We assume that the function gj is

di�erentiable. Let nij be the inward normal vector of the j-th facet at coordinates

10
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xi. Expanding eq.(2-3) and substituting eq.(2-1) into the expanded function, we

have

d =
@gj

@x

����� x = xi

(�x0 +��0 � xi)

= �(nij)
T�x0 � (xi � nij)

T��0

= �(dij)
T�q (2-4)

where

dij =

"
nij

xi � nij

#
: (2-5)

Since apex i of the moving object lies on or outside the facet j of the �xed object,

the value of eq.(2-4) must be positive or equal to zero. Thus, the following condition

must be satis�ed:

d
T
ij�q � 0: (2-6)

Similarly, we can derive an inequality condition for the case where the i-th apex

of the �xed object contacts the j-th facet of the moving object. By replacing x0 and

�0 by �x0 and ��0, the distance is given by

d = gj(xi ��x0 ���0 � xi): (2-7)

Let nij be the outward normal vector of the j-th facet at coordinates xi. The

distance is then described as:

d = �(dij)
T�q (2-8)

Since apex i lies on or outside the facet j, the value of eq.(2-8) must be positive or

equal to zero. The same condition as eq.(2-6) is thus derived.

Contact conditions for other types of contact pairs can be expressed by an appro-

priate combination of inequalities in the form of eq.(2-6). Let us consider a special

case where an apex is in contact with an edge. An arbitrary edge can be de�ned

as the intersection of two smooth faces. When an apex i contacts a convex edge

de�ned by the intersection of facets j and k, for example, the condition is described

by

d
T
ij�q � 0 or d

T
ik�q � 0:
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When an apex i contacts a concave edge de�ned by the intersection of facets j and

k, the condition is then described by

d
T
ij�q � 0 and d

T
ik�q � 0:

We assume that the moving object is in contact with the �xed object at a �nite

number of contacts. The possible in�nitesimal displacements of the object position

and orientation must satisfy all of the conditions due to individual contact points.

Expanding these conditions, a set of geometrically admissible displacements can be

derived as:

A =
N[
n=1

An (2-9)

where

An = f�q j (hnm)
T�q � 0; 8m 2 [1;Mn]g; (2-10)

and

hnm 2 fdijg; 8n;m: (2-11)

Set A provides a general form of inequalities representing unidirectional constraints

due to mechanical contacts. This set is referred to as Admissible Displacement Set

in this paper.

2.2.2 The Admissible Force Set

In this section, we derive the range of force and moment that satisfy static

equilibrium condition, assuming that all contacts are described by a �nite number

of point contacts. When the i-th apex of the moving object is in contact with the

j-th facet of the �xed object, a normal reaction force acting at the contact point is

described by

Rij = �Rijnij (2-12)

where Rij denotes the magnitude of the reaction force. Similarly, we can derive a

reaction force for the contact between the i-th apex of the �xed object and the j-th

facet of the moving object. The result is the same as the above equation. Let p be

a collective vector of force and moment acting on the object:

p =

"
f

m

#
(2-13)
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where f is a translational force and m is a moment. If all of the contact points are

frictionless, the equilibrium equations are given by

f +
X
i;j

(�Rij)nij = 0 (2-14)

m+
X
i;j

(�Rij)xi � nij = 0 (2-15)

where xi denotes the coordinates of the contact point. By combining the above

equations, we have

p =
X
i;j

Rijdij (2-16)

where vectors dij have been given by eq.(2-5). In screw theory, vector dij is called

a wrench [Ohwovoriole and Roth, 81]. Note that all the coe�cients Rij are non-

negative since the contacts are unidirectional. The range of forces that satisfy the

static equilibrium condition is thus described by

F = f

KX
k=1

rkwk j rk � 0g: (2-17)

where

wk 2 fdijg; 8k: (2-18)

This set is referred to as Admissible Force Set in this paper.

2.3 Manipulation Problems

In this section, we formulate some fundamental problems concerning the plan-

ning and synthesis for grasping, �xturing, and assembly.

(a) Form Closure Grasps by Fingers

Grasp is to constrain an object by means of �ngers that provide unidirectional

constraints. The condition for an object to be totally constrained, regardless of

friction between the �ngertips and the object, has been given by Lakshminarayana

[Lakshminarayana, 78]. This condition requires the �ngers to surround an object so

that no geometrically admissible displacement is allowed for the object. Assuming

that all the contacts are described by a �nite number of point contacts, the condi-

tion for total constraint can be restated by using the admissible displacement set.

14



Namely, the admissible displacement set A must be a set that has no elements other

than 0:

A = f0g (2-19)

If the set A involves a non-zero element, the object is not geometrically constrained

in that particular direction. This total constraint is referred to as Form Closure

Grasp. Thus, the problem of form closure grasp is basically to examine whether or

not the linear simultaneous inequalities in eq.(2-10) have non-zero solutions.

(b) Accessibility and Detachability

In assembly, a workpiece is positioned at a designated location relative to a

�xed object. Fundamental questions are to investigate whether the desired location

is accessible for the workpiece and whether the workpiece is detachable from the

�xture. Asada and By have formulated accessibility and detachability conditions

by considering the local behavior of a workpiece in the vicinity of the designated

location [Asada and By, 85]. Assuming that all the contacts are described by a

�nite number of point contacts, the conditions can be restated with regard to the

admissible displacement set A. Namely, the workpiece is accessible and detachable

in the vicinity of the designated location, if and only if a non-zero displacement �q

is involved in the set A.

9�q 6= 0 s.t. �q 2 A (2-20)

If there exists a geometrically admissible displacement from the designated lo-

cation to a location where the workpiece is not in contact with any part of the

�xture, the workpiece and the �xture are said to be strongly accessible and de-

tachable [Asada and By, 85]. In this case, the workpiece can be detached from the

�xture all at once. If, on the other hand, it is not strongly accessible and detachable

but is merely accessible and detachable, the workpiece motion must conform to a

bidirectional constraint no matter in which direction the workpiece is moved. Since

bidirectional constraints may cause jamming in assembly, the strong condition is

desirable. The condition for strongly accessible and detachable constraints is given

by

9�q 6= 0 s.t. �q 2 Aint (2-21)

where Aint denotes the interior set of A.

(c) Force Closure Grasps
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In grasping an object, a robot applies unidirectional forces upon the object

through its �ngers. A desired condition for the robot is to guarantee that no motion

occurs no matter what disturbance force and moment are imposed on the object.

This condition, referred to as Force Closure Grasp, has been given by Ohwovoriole

[Ohwovoriole and Roth, 81]. Assuming that all contacts are described by a �nite

number of point contacts, the condition can be restated by using the admissible

force set given by eq.(2-17). If a non-zero force p is not involved in F , the force

violates the force equilibrium conditions and causes some motion. Namely, the ad-

missible force set must involve all the forces and moments in the six-dimensional

vector space R6:

F = R
6 (2-22)

Thus, the problem of force closure grasp is basically to investigate whether or not

the set F represented by the linear combination of vectors with non-negative coef-

�cients covers the whole vector space.

(d) Hybrid Position/Force Control

In order to perform a task by using hybrid position/force control, we need to

�nd the position-controlled space and the force-controlled space so that the robot

motion may conform to the geometric constraints of the environment. The position-

controlled space in the hybrid control is equivalent to the space of admissible in-

�nitesimal displacements, while the force-controlled space is the space of forces

that satisfy the static equilibrium condition. Namely, the former is the admissi-

ble displacement set A and the latter is the admissible force set F . Ohwovoriole

and Roth have formulated the relationship between the admissible displacement set

and the admissible force set when all the geometric constraints are unidirectional

[Ohwovoriole and Roth, 81]. Assuming that all of the contact points are frictionless,

the relationship can be restated as

F = fp j p
T�q � 0; 8�q 2 Ag (2-23)

In order to perform a task by the hybrid position/force control, the commanded

displacement �qc must be involved in set A and the commanded force pc must

be involved in set F . An arbitrary pair consisting of a displacement involved

in set A and a force involved in F forms a Reciprocal or a Contrary screw pair

[Ohwovoriole and Roth, 81], since the work done by the force is equal to zero or

negative, as shown in eq.(2-23). According to Ohwovoriole and Roth, a pair of the

actual displacement and the actual force is either a reciprocal or a Repelling pair,

since the work done by the force must be zero or positive [Ohwovoriole and Roth, 81].
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It follows that the pair of the commanded displacement �qc and the commanded

force pc must be a reciprocal pair, that is, pTc �qc = 0 [Mason, 82]. Therefore, we

have to choose a pair consisting of the commanded displacement and the commanded

force from all admissible pairs so that the pair may be reciprocal.

Thus, the above problems concerning assembly, grasps, and hybrid position/force

control are all described with regard to a simultaneous system of linear inequalities.

For these problems given by eqs.(2-19), (2-20), (2-21), (2-22), and (2-23), we will

develop a systematic computation method based on the theory of polyhedral convex

cones.

2.4 Theory of Polyhedral Convex Cones

All the problems discussed in the previous section are represented generally in

the same form, that is, simultaneous inequalities in terms of inner products of two

vectors. Problems associated with di�erential motions, or instantaneous kinematics

and statics, are thus reduced to the problems of solving a simultaneous system

of linear inequalities. From this section, we will develop a systematic method for

solving these problems by applying the theory of polyhedral convex cones attributed

to Goldman and Tucker [Goldman and Tucker, 56].

2.4.1 De�nitions

Let a1 through am be m real vectors. Let us consider a set of real vectors x

given by

A = fx j a
T
i x � 0; 8i 2 [1;m]g: (2-24)

As shown in Figure 5, the set A represents a semi-in�nite region surrounded by hy-

perplanes. The region is referred to as a Polyhedral Convex Cone and is abbreviated

to PCC. Note that a vector ai represents the normal to the i-th hyperplane shown

in the �gure. For the sake of simplicity, the set given by eq.(2-24) is expressed as

A = facefa1;a2; � � � ;amg (2-25)

which is referred to as the Face Form of the polyhedral convex cone. Each vector

involved is called a face vector.

Let uj be a vector along an edge of the polyhedral convex cone, as shown in

Figure 5. An arbitrary vector in the set A is then represented by a linear combination
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of the vectors u1 through uk. Therefore,

A = f

kX
j=1

cjuj j cj � 0; 8j 2 [1; k]g: (2-26)

Note that the coe�cients cj are all non-negative and that in general the vectors

uj are not linearly independent. The above expression provides another form of a

polyhedral convex cone. Since vectors u1 through uk span the cone, we write the

above equation simply by

A = spanfu1;u2; � � � ;ukg: (2-27)

This form is referred to as the Span Form of the polyhedral convex cone, and each

vector involved is called a span vector.

Let X be an arbitrary set of real vectors x. The set de�ned by

X
� = fy j x

T
y � 0; 8x 2 Xg (2-28)

is called the polar of the set X. Let X and Y be two sets of real vectors. The set

de�ned by

X + Y = fx+ y j x 2 X; y 2 Y g (2-29)

is called the convex sum of sets X and Y .

2.4.2 Basic Properties of Polyhedral Convex Cones

Let us consider the relationship between a polyhedral convex cone and its polar.

Figure 6 illustrates a simple example of a two-dimensional polyhedral convex cone

and its polar. The face form of the polyhedral convex cone A is given by A =

facefa1;a2g. The cone A can be described in the span form as A = spanfu1;u2g.

From the �gure, we can �nd that the vectors a1 and a2 span the polar A�. Namely,

A
� = spanfa1;a2g. Thus, we can describe the polar in the face form as A� =

facefu1;u2g. According to Goldman and Tucker, the following theorem is satis�ed

for an arbitrary polyhedral convex cone and its polar [Goldman and Tucker, 56].

Theorem 1 The polar of a polyhedral convex cone A = facefa1;a2; � � � ;amg is

given by a span form:

A
� = spanfa1;a2; � � � ;amg: (2-30)
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Figure 6: Polyhedral convex cone and its polar

The polar of a polyhedral convex cone in span form A = spanfu1;u2; � � � ;ukg is

given by a face form:

A
� = facefu1;u2; � � � ;ukg: (2-31)

From this theorem, it follows that the polar of a polyhedral convex cone is a pol-

yhedral convex cone as well. The polar A� is referred to as the dual polyhedral convex

cone of A. Note that the following property is derived from the above theorem.

(A�)� = A: (2-32)

Let us consider the conversion between face and span forms. The problem is to

derive a set of span vectors from a given set of face vectors, and vise versa. The

conversion from face to span form can be performed by solving linear programming

(LP) problems [Goldman and Tucker, 56]. The conversion from span to face form

can also be performed by solving linear programming problems and using the above

theorem. As illustrated in Figure 7, we �rst convert a polyhedral convex cone A

to its dual polyhedral convex cone, and then solve linear programming problems in

order to derive vectors a1 through am from vectors u1 through uk. Note that we

regard ai as a span vector and uj as a face vector in the dual polyhedral convex
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cone. Thus, the conversion can be performed in both ways by simply solving linear

programming problems.

In addition to the above conversions, polyhedral convex cones possess the follow-

ing properties. The intersection of two polyhedral convex cones is also a polyhedral

convex cone and is given by

facefa1;a2; � � � ;amg \ facefb1; b2; � � � ; bng

= facefa1;a2; � � � ;am; b1; b2; � � � ; bng: (2-33)

The convex sum of two polyhedral convex cones is also a polyhedral convex cone

and is given by

spanfu1;u2; � � � ;ukg+ spanfv1; v2; � � � ; vlg

= spanfu1;u2; � � � ;uk;v1; v2; � � � ;vlg: (2-34)

Applying the theorem to the above intersection and convex sum respectively, we can

derive:

(A \B)� = A
� +B

� (2-35)

(A +B)� = A
�
\B

� (2-36)

Note that the union of two polyhedral convex cones is not always a polyhedral convex

cone. The polar of the union is, however, a polyhedral convex cone. The following

equation is satis�ed for arbitrary polyhedral convex cones, A and B:

(A [ B)� = (A+B)� (2-37)

The proof is shown in Appendix A. The face and the span forms have the following

properties:

facefa1;a2; � � � ;am�1;amg � facefa1;a2; � � � ;am�1g (2-38)

spanfu1;u2; � � � ;uk�1;ukg � spanfu1;u2; � � � ;uk�1g (2-39)

Applying the theorem to the above equations, we can derive:

A � B () A
�
� B

� (2-40)

A = B () A
� = B

� (2-41)
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2.5 Methods for Solving the Inequality Prob-

lems

In this section, we will establish procedures for solving the inequality problems

associated with assembly and grasps as described in Section 2.3 by using the theory

of polyhedral convex cones. From the basic properties of PCC's, we can derive the

following algorithms for the operations of PCC's.

CONVERT(A) = convert the face form of a given PCC denoted

by A to the corresponding span form, and

vise versa.

Solving associated linear programming problems, the two forms can be

exchanged as shown in Figure 7.

DUAL(A) = compute the dual PCC of a given PCC.

Using eqs.(2-30) and (2-31), the dual PCC's can be obtained in both face

and span forms.

INTERSECT(A,B) = compute the intersection of two PCC's,

A and B.

If A and B are given in the span form, the algorithm CONVERT is

�rst applied to the given PCC's in order to get face forms. For the face

form PCC's, the intersection is directly obtained by eq.(2-33).

CONVEXSUM(A,B) = compute the convex sum of two PCC's,

A and B.

If A and B are given in the face form, the algorithm CONVERT is

�rst applied to the given PCC's to obtain span forms. For the span form

PCC's, the convex sum is directly attained by eq.(2-34).

By using the above four algorithms, we can solve the fundamental inequality

problems in a simple manner.

[1] The problem to examine whether a polyhedral convex cone A involves

non-zero elements

If a polyhedral convex cone A is described in a face form, we apply algorithm

CONVERT in order to describe it in the span form:

A = spanfu1;u2; � � � ;ukg
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An arbitrary non-zero elements x involved in A is described by a linear combination

of span vectors. It implies that no non-zero elements are involved in A if k = 0.

Thus, the polyhedral convex cone A involves non-zero elements, if and only if there

exists span vectors of the polyhedral convex cone A:

A 6= f0g () k 6= 0 (2-42)

The above method for examining whether a polyhedral convex cone involves non-

zero elements is referred to as procedure NONZERO in this paper. Procedure

NONZERO(A) returns a value of TRUE if a polyhedral convex cone A has non-

zero elements and a value of FALSE otherwise.

[2] The problem to examine whether a vector r is involved in a

polyhedral convex cone A

If a polyhedral convex cone A is described in a span form, we apply algorithm

CONVERT in order to describe it in the face form:

A = facefa1;a2; � � � ;amg

From the de�nition of face form, eq.(2-24), a vector r is involved in the polyhedral

convex cone A if and only if

a
T
i r � 0; 8i 2 [1; m] (2-43)

is satis�ed.

The above method for investigating whether a vector is involved in a polyhe-

dral convex cone is referred to as procedure ELEMENT in this paper. Procedure

ELEMENT(r,A) returns a value of TRUE if a vector r is involved in a polyhedral

convex cone A and a value of FALSE otherwise.

[3] The problem to examine whether a polyhedral convex cone A is a subset

of another polyhedral convex cone B

When a polyhedral convex cone A is described in a face form, we apply algorithm

CONVERT in order to describe it in the span form:

A = spanfu1;u2; � � � ;ukg

The polyhedral convex cone A is a subset of another polyhedral convex cone B if

and only if the following condition is satis�ed:

uj 2 B; 8j 2 [1;m] (2-44)
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The proof of this condition is shown in Appendix B.

Using the procedure ELEMENT, we can �nd whether each vector uj is involved

in the polyhedral convex cone B. Thus, we can examine whether the above con-

dition is satis�ed or not. This method is referred to as procedure SUBSET in this

paper. Procedure SUBSET(A,B) returns a value of TRUE if a polyhedral convex

cone A is a subset of another cone B and a value of FALSE otherwise.

[4] The problem to examine whether the interior set Aint of a polyhedral

convex cone A involves non-zero elements

Applying the algorithm CONVERT in order to obtain both face and span forms

of a polyhedral convex cone A:

A = facefa1;a2; � � � ;amg

A = spanfu1;u2; � � � ;ukg

The interior set Aint involves non-zero elements, if and only if the following condition

is satis�ed:

8i 2 [1;m] 9j 2 [1; k] s.t. a
T
i uj < 0: (2-45)

The proof of this condition is shown in Appendix C.

The above method for examining whether the interior set of a polyhedral convex

cone involves any elements is referred to as procedure INTERIOR in this paper.

Procedure INTERIOR(A) returns a value of TRUE if the interior set Aint has non-

zero elements and a value of FALSE otherwise.

2.6 Solving the Manipulation Problems

In this section, we apply the above methods to the manipulation problems de-

scribed in Section 2.3.

(a) Form Closure Grasp

Using the notation introduced in Section 2.4, the admissible displacement set A

of a grasped object is described by

A =
N[
n=1

An (2-46)

and

An = facefhn1;hn2; � � � ;hnMn
g: (2-47)
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Table 1: Algorithm to examine form closure grasp condition

for n := 1 to N do

begin

An := facefhn1;hn2; � � � ;hnMn
g;

if NONZERO(An) = TRUE then

return(FALSE)

end;

return(TRUE)

The set A1 through AN are polyhedral convex cones. Thus, the admissible displace-

ment set A is a union of polyhedral convex cones.

The condition for form closure grasps has been given eq.(2-19), which is equiva-

lent to

An = f0g; 8n 2 [1; N ]: (2-48)

Using procedure NONZERO developed in the previous section, this condition is

described as follows:

NONZERO(An) = FALSE; 8n 2 [1; N ] (2-49)

The procedure to examine form closure grasps is listed in Table 1. This subroutine

returns a value of TRUE if the form closure condition is met and a value of FALSE

otherwise.

(b) Accessibility and Detachability

The admissible displacement set A of a workpiece at a given �nal con�gura-

tion is the same as eqs.(2-46) and (2-47). Thus, we can examine the accessibil-

ity/detachability condition using the procedure listed in Table 1.

The condition for strongly accessible/detachable constraints has been given by

eq.(2-21). Since zero is not an element of Aint, the problem is to examine whether

A
int is an empty set:

A
int
6= � (2-50)

By decomposing the set A to polyhedral convex cones, the above condition reduces

to

9n 2 [1; N ] s.t. A
int
n 6= �: (2-51)

26



Table 2: Algorithm to examine strongly accessible/detachable condition

for n := 1 to N do

begin

An := facefhn1;hn2; � � � ;hnMn
g;

if INTERIOR(An) = TRUE then

return(TRUE)

end;

return(FALSE)

Using procedure INTERIOR developed in the previous section, this condition is

described by

9n 2 [1; N ] s.t. INTERIOR(An) = TRUE: (2-52)

The procedure to examine the strongly accessible/detachable condition is listed in

Table 2. This procedure returns a value of TRUE if the contact is strongly accessible

and a value of FALSE otherwise.

(c) Force Closure Grasp

Using the notation introduced in section 2.4, the admissible force set F of a

grasped object is described by

F = spanfw1;w2; � � � ;wKg: (2-53)

We �nd that the admissible force set F is a polyhedral convex cone. The condition

for force closure grasps has been given by eq. (2-22). Applying eq.(2-41), we �nd

that this condition is equivalent to

F
� = [R6]� = f0g: (2-54)

Using procedure DUAL and NONZERO developed in the previous section, this

condition is described as follows:

NONZERO(DUAL[F ]) = FALSE (2-55)

We can examine force closure grasps with this equation.

(d) Hybrid Position/Force Control
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Table 3: Procedure to compute admissible force set

A := f0g;

for n := 1 to N

begin

An := facefhn1;hn2; � � � ;hnMn
g;

A := CONVEXSUM(A, An)

end;

F := DUAL(A)

Let A be the admissible displacement set, which is the position-controlled space.

Comparing eqs.(2-23) and (2-28), the admissible force set F is denoted as follows:

F = A
�
: (2-56)

In other words, the admissible force set F is the polar of the admissible displacement

set A.

The admissible displacement set A is a union of polyhedral convex cones A1

through AN , as mentioned in the previous section:

A = A1 [ A2 [ � � � [ AN (2-57)

Applying eq.(2-37) into eq.(2-56), we have

F = [A1 [ A2 [ � � � [ AN ]
�

= [A1 + A2 + � � �+ AN ]
�
: (2-58)

We �nd that the admissible force set F is the dual polyhedral convex cone of the

convex sum of polyhedral convex cones A1 through AN . Using algorithm CON-

VEXSUM, we can compute the convex sum. Next, using algorithm DUAL, we can

compute the polar F of the convex sum. Thus, we can compute the admissible

force set F using the procedure shown in Table 3. The polyhedral convex cone F

computed in this procedure gives the admissible force set.

It should be noted that both the admissible displacement set and the admissible

force set are linear subspaces and orthogonal complements with each other when the

geometric constraints are bidirectional [Mason, 82]. On the other hand, both sets

are not linear subspaces but a union of PCC and its dual PCC when the constraints

are unidirectional.
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2.7 Numerical Example

We demonstrate the computation procedures described in the previous section

by taking a simple example shown in Figure 8. The �xture is modeled by four points

P1 through P4. Point P1 is in contact with surface L1, and points P3 and P4 with

surface L4. Point P2 is in contact with a convex apex de�ned as the intersection of

surfaces L2 and L3. Let xi be the coordinates of the i-th �xed point and nij be the

outward normal vector of the j-th surface at the contact point.

Let us compute the admissible displacement set A. Inequality conditions for

displacement �q to be admissible at individual contact points are derived as:

d
T
11
�q � 0 (2-59)

d
T
22�q � 0 or d

T
23�q � 0 (2-60)

d
T
34�q � 0 (2-61)

d
T
44�q � 0 (2-62)

where

dij =

"
nij

xi � nij

#
: (2-63)

Computing the value of vector dij, we have

d11 = [0; 1; 1]T

d22 = [�1; 1; �2]T

d23 = [�1; �1; 2]T (2-64)

d34 = [0; �1; 0]T

d44 = [0; �1; �2]T

Expanding eqs.(2-59) through (2-62), the admissible displacement set A is described

by

A = A1 [ A2 (2-65)

where

A1 = facefd11;d22;d34;d44g; (2-66)

A2 = facefd11;d23;d34;d44g: (2-67)

(a) Form Closure Grasp
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Figure 8: Simple example of planar object and �xed points

Using the procedure listed in Table 1, we �nd that subset A1 involves a non-zero

element, [1; 0; 0]T . Therefore, this grasp is not form closure.

Adding another �xture P5 as shown in the �gure, the admissible displacement

set A is given by

A = A3 [ A4 (2-68)

where

A3 = facefd11;d22;d34;d44;d55g; (2-69)

A4 = facefd11;d23;d34;d44;d55g: (2-70)

Computing vector d55, we have

d55 = [1; 0; 0]T : (2-71)

Using the same procedure, we �nd that subsets A3 and A4 involve no non-zero ele-

ments. Therefore, the form closure condition is satis�ed by adding the �xture P5.

(b) Accessibility and Detachability

Since the admissible displacement set A involves non-zero elements, the accessi-

ble/detachable condition is satis�ed. Using the procedure listed in Table 2, we �nd
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that the interior sets Aint
1 and Aint

2 are empty sets. Therefore, this example is not

strongly accessible/detachable.

Removing �xture P1, the admissible displacement set A is given by

A = A5 [ A6 (2-72)

where

A5 = facefd22;d34;d44g; (2-73)

A6 = facefd23;d34;d44g: (2-74)

Using the same procedure, we �nd that the interior set Aint
5 involves a non-zero el-

ement, [2; 1; 0]T . Therefore, the strongly accessible/detachable condition is satis�ed

by removing the �xture P1.

Let us compute the admissible force set F from the admissible displacement set

A = A1 [A2 by using the procedure listed in Table 3. The admissible force set F is

then given by

F = facef[1; 0; 0]Tg: (2-75)

Namely,

F = f[fx; fy;m]T j fx � 0g (2-76)

where fx and fy are translational forces along the x- and y-axes, respectively, and

m is a moment. This equation shows that while the translational force fx is non-

positive, the force acting upon the object by a robot is balanced with reaction forces

against the �xed points P1 through P4 and the object is not accelerated. Describing

the admissible force set in the span form, we have

F = spanfd11;d34;d44; [�1; 0; 0]
T
g (2-77)

Forces d11, d34, and d44 are balanced with reaction forces against the �xed points P1,

P3, and P4, respectively. Force [�1; 0; 0]
T is balanced with a reaction force against

point P2. This example shows a case where a reaction force is generated between

convex apices though no reaction forces act usually at the contact point between

convex apices.

(c) Force Closure Grasp
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Assuming that all of the contact points are frictionless, the admissible force set

F is given by eq.(2-75). Examining the force closure condition eq.(2-55), we �nd

that the polar of the admissible force set F involves a non-zero element, [1; 0; 0]T .

Therefore, this grasp is not force closure.

Let us consider friction between the moving object and the �xed points. Friction

is represented by the friction cone [Erdmann, 86], which speci�es the range of reac-

tion forces. The axis of the cone is parallel to the normal vector of the surface, nij.

Sides of the cone make an angle tan�1 �, where � denotes the coe�cient of friction.

In the planar motion, the friction cone FC is a polyhedral convex cone given by

FC = spanfn
�

ij;n
+

ijg (2-78)

n
�

ij = nij � ��ij (2-79)

n
+

ij = nij + ��ij (2-80)

where �ij is the tangent vector of the surface. The admissible force set is then

derived by replacing span vector dij by the two vectors given by

d
�

ij =

"
n
�

ij

xi � n
�

ij

#
(2-81)

d
+

ij =

"
n
+

ij

xi � n
+

ij

#
(2-82)

Removing point P2, the admissible force set is given by

F = spanfd
�

11
;d

+

11
;d

�

34
;d

+

34
;d

�

44
;d

+

44
g: (2-83)

Examining the force closure condition eq.(2-55), we �nd that the polar of the admis-

sible force set F involves no non-zero elements if coe�cient � is positive. Therefore,

this grasp is a force closure grasp regardless the existence of point P2.

2.8 Converting Forms of Polyhedral Convex Cones

As mentioned in the previous section, algorithm CONVERT is the most funda-

mental procedure in the analysis and planning of manipulation based on the theory

of polyhedral convex cones. In this section, we develop an e�cient algorithm to

convert a polyhedral convex cone from face-form to span-form.
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2.8.1 Solving Linear Simultaneous Inequalities

Span-form of a polyhedral convex cone can be obtained by solving linear simulta-

neous inequalities de�ned by its face vectors. In this section, we develop an e�cient

procedure to solve a set of linear simultaneous inequalities.

Let A be a polyhedral convex cone given by its face-form:

A = facefa1;a2; � � � ;amg (2-84)

Cone A can be divided into 2m subsets depending upon whether inner product aTi x

is negative or equal to zero. Let us describe each subset as follows:

A[I]
4

= fx j a
T
i x < 0 8i 2 I; a

T
i x = 0 8i 62 Ig (2-85)

where I is a subset of indices 1 through m:

I � f1; 2; � � � ; mg (2-86)

Let O[I] and L[I] be subsets de�ned as follows:

O[I]
4

= fx j a
T
i x < 0 8i 2 Ig (2-87)

L[I]
4

= fx j a
T
i x = 0 8i 62 Ig (2-88)

Subset A[I] is then given by an intersection of an open set O[I] and a linear subspace

L[I]:

A[I] = O[I] \ L[I] (2-89)

Note that subset A[�] coincides a linear subspace L[�]. Let d[I] be a dimension of

the linear subspace L[I]:

d[I]
4

= dimL[I] (2-90)

Let d be the dimension of linear subspace A[�]:

d = d[�] = dimA[�] (2-91)

Let I1 through Ik be index sets that satisfy the following conditions:

A[I] 6= � and d[I] = d+ 1 (2-92)
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Let e1 through ed be base vectors of the linear subspace A[�] and f j be an arbitrary

vector involved in set A[Ij]. According to [Goldman and Tucker, 56], the span-form

of A is then described by

A = spanf�e1;�e2; � � � ;�ed; f1;f2; � � � ; fkg: (2-93)

We can �nd linearly independent vectors e1 through ed by solving the simultaneous

equations

a
T
i x = 0; 8i 2 [1;m]: (2-94)

The condition for vector x to be involved in A[I] is represented by

a
T
i x < 0; 8i 2 I (2-95)

a
T
i x = 0; 8i 62 I (2-96)

This condition can be reduced to a feasibility check problem in linear programming.

Thus, we can examine this condition by using the �rst stage of the simplex method

[Dantzig, 63]. The number of sets I is less than 2m. Therefore, we can derive vectors

f 1 through f k by solving at most 2m linear programming problems.

The above procedure to convert face-form to span-form is ine�cient since it

requires to solve at most 2m linear programming problems. Thus, we re�ne the

above procedure so that it can convert face-form to span-form e�ciently. In order

to obtain vector f j, we �rst compute dimension d[I], examine whether the dimension

is equal to d+1, and then �nd an arbitrary vector involved in subset A[I] by solving

a linear programming problem. Dimension d[I] can be computed by solving the

following simultaneous equations:

a
T
i x = 0; 8i 62 I (2-97)

Solving the above equations, we can obtain base vectors of linear subspace L[I] as

well as dimension d[I]. Thus, base vectors b1 through bd+1 can be computed when

dimension d[I] is equal to d+1. Using the following theorem, we can derive a vector

involved in a subset A[I] from the obtained base vectors without solving a linear

programming problem.

Theorem 2 Assume that subset A[I] is not empty and that dimension d[I] is equal

to d+ 1. Let b1 through bd+1 be base vectors of a linear subspace L[I]. Then, there

exists vector bj which satis�es the following condition:

a
T
i bj < 0; 8i 2 I or a

T
i bj > 0; 8i 2 I (2-98)
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The proof is shown in Appendix D. It implies that vector bj is involved in subset

A[I] when inner products aT
i bj are negative for all i 2 I while vector �bj is involved

in the subset when all the inner products are positive. Therefore, we can compute

vectors f 1 through f k by using an algorithm to solve simultaneous equations, which

is necessary to compute vectors e1 through ed as well.

The original procedure requires to examine eq.(2-92) for all combinations of in-

dices. In order to reduce the computation time, it is e�cient to eliminate unfeasible

combinations. We can reduce the number of combinations using the following the-

orem.

Theorem 3 Let I and ~
I be subsets of indices. Assume that I is a proper subset of

~
I and that dimension d[I] is equal to d[~I]:

I � ~
I;

I 6= ~
I; (2-99)

d[I] = d[~I]

Then, A[ ~I] is an empty set.

The proof is shown in Appendix E. Note that dimension d[I] is more than or equal

to d[ ~I] when I is a subset of ~I. Therefore, set A[ ~I] is empty or dimension d[~I] is

more than d+ 1 if the following condition is satis�ed.

I � ~
I;

I 6= ~
I; (2-100)

d[I] = d+ 1

It implies that set ~
I does not satisfy eq.(2-92). Therefore, we can eliminate all the

supersets ~
I of an index set I if dimension d[I] is equal to d+ 1.

2.8.2 Reduction of Polyhedral Convex Cones

In order to reduce the number of combinations, it is e�cient to eliminate unnec-

essary face vectors. In this section, we develop an algorithm to simplify a polyhedral

convex cone by eliminating unnecessary face vectors or span vectors.

Let us consider a simple example shown in Figure 9. In the case shown in

Figure 9-(a), a polyhedral convex cone A = spanfu1;u2;u3g can be reduced as

A = spanfu1;u2g by eliminating span vector u3. Note that span vector u3 is

described by a convex sum of u1 and u2.

9c1; c2 � 0 s.t. u3 = c1u1 + c2u2
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Figure 9: Simpli�cation of polyhedral convex cones

In the case shown in Figure 9-(b), a polyhedral convex cone A = facefa1;a2;a3g

can be reduced as A = facefa1;a2g by eliminating face vector a3. Note that span

vector a3 is described by a convex sum of a1 and a2.

9c1; c2 � 0 s.t. a3 = c1a1 + c2a2

In general, the following theorem can be proved.

Theorem 4 A polyhedral convex cone

A = spanfu1;u2; � � � ;ukg (2-101)

can be reduced as

A = spanfu1; � � � ;uj�1;uj+1; � � � ;ukg (2-102)

if and only if the following equation is satis�ed.

9c1; � � � ; cj�1; cj+1; � � � ; ck � 0 s.t. uj =
kX

i=1;i 6=j

ciui: (2-103)

A polyhedral convex cone

A = facefa1;a2; � � � ;amg (2-104)

can be reduced as

A = facefa1; � � � ;aj�1;aj+1; � � � ;amg (2-105)
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if and only if the following equation is satis�ed.

9c1; � � � ; cj�1; cj+1; � � � ; cm � 0 s.t. aj =
mX

i=1;i 6=j

ciai: (2-106)

The proof of this theorem is shown in Appendix F. The conditions given by eqs.(2-

103) and (2-106) can be reduced to a feasibility check problem in linear programming,

which can be examined by using the �rst stage of the simplex method [Dantzig, 63].

Iterating this procedure, we can obtain the simplest form of polyhedral convex cones.

This procedure to derive the simplest form of polyhedral convex cones is referred to

as algorithm REDUCTION in this paper. Using algorithm REDUCTION, we can

eliminate unnecessary face vectors before solving simultaneous equations. Therefore,

we can reduce the number of combinations using algorithm REDUCTION.

2.8.3 Finding Bidirectional Constraints

Bidirectional constraints have di�erent properties from those of unidirectional

constraints in many manipulative tasks. For example, the condition for strongly

accessible/detachable constraints depends upon whether the constraints are unidi-

rectional or bidirectional [Asada and By, 85]. In this section, we investigate the

properties of bidirectional constraints and eliminate unfeasible combinations of face

vectors using the properties.

Let us take the example shown in Figure 8. Removing �xture P1 and adding

�xture P5, the admissible displacement set A is given by

A = facefd11;d34;d44;d55g:

The following equations are then satis�ed for an arbitrary displacement �q involved

in A:

(d11)
T�q = 0

(d34)
T�q = 0

(d44)
T�q = 0

These equations imply that the constraint imposed by a set of face vectors d11,

d34, and d44 is bidirectional though individual face vectors represent unidirectional

constraints as mentioned before. Note that the following equation is satis�ed for

these face vectors.

2d11 + d34 + d44 = 0

In general, the following theorem can be proved.
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Theorem 5 Let A be a polyhedral convex cone given by its face-form:

A = facefa1;a2; � � � ;amg (2-107)

The constraint imposed by a set of face vectors a1 through ak is bidirectional, namely

a
T
i r = 0; 8r 2 A 8i 2 [1; k] (2-108)

if

9�1; �2; � � � ; �k > 0 s.t.
kX

i=1

�iai = 0 (2-109)

is satis�ed.

The proof is shown in Appendix G. From this theorem, we can easily show that the

inner product ajr is equal to zero for an arbitrary vector r involved in A, namely

a
T
j r = 0; 8r 2 A (2-110)

if the following condition is satis�ed.

9�1; �2; � � � ; �k � 0; 9j 2 [1; k] s.t. �j = 1;
kX

i=1

�iai = 0 (2-111)

This condition can be reduced to a feasibility check problem in linear programming.

Thus, we can examine this condition by using the �rst stage of the simplex method

[Dantzig, 63]. Therefore, we can derive a set of face vectors which imposes bidirec-

tional constraints. This algorithm to �nd a set of face vectors imposing bidirectional

constraints is referred to as BIDIRECTION in this paper.

Let aj be a face vector that satisfy eq.(2-111). Then, inner product aT
j r is equal

to zero for an arbitrary vector r involved in cone A. It implies that subset A[I]

is empty set if j is involved in index set I. Let B be a set of indices that satisfy

eq.(2-111), which can be derived using algorithm BIDIRECTION. Then, subset A[I]

is empty if index set I involves a member of set B. It implies that we can reduce

the whole set of indices as follows:

I � B
c = f1; 2; � � � ;mg �B (2-112)

where Bc denotes the complement of set B. Therefore, we can reduce the number

of combinations of face vectors using algorithm BIDIRECTION.
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2.9 Concluding Remarks

In this paper, we have presented a new approach to the kinematic and static

analysis of object motion constrained by mechanical contacts. Mechanical contacts

between workpieces are unidirectional constraints, which are described by a set of

homogeneous linear inequalities. Thus, we developed an e�cient mathematical tool

based on the theory of polyhedral convex cones, which allows us to treat fundamental

inequalities in a simple and systematic manner.

We �rst showed that the workpiece motion is described by a set of inequali-

ties. We have also formulated the force equilibrium condition for unidirectional

constraints by an inequality condition. Applying the theory of polyhedral convex

cones, we developed a mathematical tool to solve the inequality conditions in a

straightforward manner. We implemented computation algorithms of the polyhe-

dral convex cones in order to treat the inequalities on a computer and we applied

this method to task planning of grasping and assembly.
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Appendix A Proof of eq.(2-37)

Since union A [B is a subset of convex sum A+B, the polar of the convex sum is

a subset of the polar of the union:

(A [B)� � (A+B)� (A-1)

Let z be an arbitrary vector involved in (A [B)�. From the de�nition of polar, we

have

x
T
z � 0; 8x 2 A; (A-2)

y
T
z � 0; 8y 2 B: (A-3)

They follow that

(x+ y)Tz � 0; 8x 2 A 8y 2 B: (A-4)

Since x + y is involved in convex sum A + B, vector z is involved in the polar of

the convex sum:

z 2 (A+B)� (A-5)

Thus,

(A [B)� � (A+B)�: (A-6)

From eqs.(A-1) and (A-6), we have

(A [B)� = (A+ B)�: (A-7)

Appendix B Proof of eq.(2-44)

Let A and B are polyhedral convex cones given by

A = spanfu1;u2; � � � ;ukg; (B-1)

B = facefa1;a2; � � � ;amg: (B-2)

An arbitrary element x involved in A can be described by

x =
kX

j=1

cjuj ; cj � 0 (B-3)
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Note that the inner product aTi uj is non-positive if all uj is involved in B. Then,

we have

a
T
i x =

kX
j=1

cj(a
T
i uj) � 0; 8i 2 [1;m]: (B-4)

It implies that vector x is involved in B, namely, A � B. The su�cient condition

is thus proved.

Assume that one span vector uj is not involved in B. Note that uj is involved in A.

It implies that A 6� B. Thus, all span vectors uj is involved in B if A is a subset of

B. The necessary condition is thus proved.

Appendix C Proof of eq.(2-45)

Let A be a polyhedral convex cone given by

A = facefa1;a2; � � � ;amg (C-1)

= spanfu1;u2; � � � ;ukg: (C-2)

The interior set Aint is then described as

A
int = fx j a

T
i x < 0; 8i 2 [1; m]g: (C-3)

The necessary condition is obvious since vector uj is involved in set Aint given in

eq.(C-3). Let us prove the su�cient condition. Since Aint is involved in A, an

arbitrary element x involved in Aint can be expressed as

x =
kX

j=1

cjuj; cj � 0: (C-4)

Thus, any element x involved in the interior set Aint must satisfy the following

condition:

a
T
i x =

kX
j=1

cj(a
T
i uj) < 0; 8i 2 [1; m] (C-5)

Since coe�cients cj is non-negative, one of the inner products a
T
i u1 through a

T
i uk

must be negative. Namely,

8i 2 [1;m] 9j 2 [1; k] s.t. a
T
i uj < 0: (C-6)
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Appendix D Proof of theorem 2

Let e1 through ed be base vectors of linear subspace A[�]. Since A[�] is a proper

subset of L[�], there exists bj not involved in A[�]. Let x be a vector involved in

A[I] ( 6= �). Since bj and e1 through ed is a set of base vectors of linear subspace

L[I], vector bmx can be described as

x = �bj +
dX

k=1

�kek: (D-1)

The following equation is then satis�ed for all indices i 2 I:

a
T
i x = �a

T
i bj < 0 (D-2)

Note that � is not equal to zero since x is not involved in A[�]. The following

equation is satis�ed if coe�cient � is positive:

a
T
i bj < 0; 8i 2 I (D-3)

The following equation is satis�ed if � is negative:

a
T
i bj > 0; 8i 2 I (D-4)

Therefore, there exists vector bj which satis�es eq.(2-98).

Appendix E Proof of theorem 3

Let l be an index involved in ~
I� I. Since dimension d[~I] is equal to d[I], face vector

al can be described as a linear combination of face vectors ai(i 2 I).

al =
X
i2I

�iai (E-1)

Let x be an arbitrary vector involved in A[ ~I]. Since I is a subset of ~I, the following

equation is satis�ed:

a
T
i x = 0; 8i 2 I (E-2)

From eqs (E-1) and (E-2), we have

a
T
l x = 0: (E-3)

Since index l is involved in ~
I, we have

a
T
l x < 0: (E-4)

The above equations contradict each other. Therefore, set A[ ~I] is empty.
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Appendix F Proof of theorem 4

Let us �rst consider polyhedral convex cones given by their span-forms. Let A and
~
A be polyhedral convex cones given by

A = spanfu1;u2; � � � ;ukg; (F-1)

~
A = spanfu1; � � � ;uj�1;uj+1; � � � ;ukg: (F-2)

Vector uj is involved in A when cone A coincides ~
A. It implies that vector uj

can be described by a linear combination of span vectors of cone ~
A. The necessary

condition is thus proved.

Let x be an arbitrary vector involved in cone A. Vector x is then described as

x =
kX

i=1

biui: (F-3)

where all the coe�cients bi are positive or equal to zero. From eq.(2-103), we �nd

that vector x is described as

x =
kX

i=1;i6=j

~
biui (F-4)

where

~
bi = bi + bjci: (F-5)

Since all the coe�cients ~bi are positive or equal to zero, vector x is involved in ~
A.

It implies that cone A is a subset of ~
A. From the properties of polyhedral convex

cones, cone ~
A is a subset of A. Therefore, we �nd that cone ~

A coincides A. The

su�cient condition is thus proved.

Let us consider polyhedral convex cones given by their face-forms. Let A and ~
A be

polyhedral convex cones given by

A = facefa1;a2; � � � ;akg;

~
A = facefa1; � � � ;aj�1;aj+1; � � � ;akg: (F-6)

Their dual polyhedral convex cones are then given by

A
� = spanfa1;a2; � � � ;akg;

~
A
� = spanfa1; � � � ;aj�1;aj+1; � � � ;akg: (F-7)

Cone A� coincides ~
A
� if and only if eq.(2-106) is satis�ed. It implies that original

cone A coincides ~
A if and only if eq.(2-106) is satis�ed.
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Appendix G Proof of theorem 5

Let x be an arbitrary vector involved in A. The inner products aT1 x through aTkx

are then negative or equal to zero. From eq.(2-111), we have

kX
i=1

�ia
T
i x = 0: (G-1)

Since coe�cients �1 through �k are positive, all the inner products aT
1
x through

a
T
kx are equal to zero for an arbitrary vector x involved in cone A. Therefore,

eq.(2-108) is satis�ed.
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Chapter 3

Global Representation of

Assembly Processes Using

Contact State Graphs

3.1 Introduction

An arm linkage is a holonomic system, which can be formulated by a single kine-

matic equation. In contrast, process models of manipulative tasks such as assembly

are generally non-holonomic. In assembly tasks, objects contact each other in di�er-

ent ways and as a result the geometric constraints vary signi�cantly as the assembly

operation proceeds. The geometric constraints are described by di�erent equations

depending on the state of contacts between the objects. Kinematic behavior of the

objects strongly depends upon the geometric constraints. Thus, real control laws for

manipulative tasks are varying depending on the geometric constraints. A selection

matrix in hybrid control, for example, must be switched if the geometric constraints

vary in the process. A particular sti�ness matrix, which is valid for a certain range

of tasks, will be inadequate when the task condition varies signi�cantly. Therefore,

it is required to investigate the kinematic behavior of the constrained objects so that

we can develop e�cient task strategies depending on the geometric constraints.

In task planning, the assembly processes of a peg-into-hole mating have been

analyzed extensively and a hand for �ne insertion tasks has been designed [Nevins

et al., 80] [Whitney, 82] [Whitney and Rourke, 86]. The process states of an assem-

bly operation have been introduced for the automatic synthesis of motion strategies

[Lozano-P�erez et al., 84] [Donald, 88] [Desai and Volz, 89] and backprojection tech-

niques have been developed [Erdmann, 86]. In collision avoidance, the motion of

rigid objects is analyzed to obtain collision-free paths [Lozano-P�erez and Wesley, 79]

[Schwartz and Sharir, 83] [Schwartz and Sharir, 89].

In order to develop e�cient task strategies, the global motion of workpieces must

be represented in a simple and su�cient manner. In assembly tasks, workpieces con-

tact each other in di�erent ways and as a result the motion of workpieces is modeled

by di�erent many equations depending on the state of contacts. The analysis of as-

sembly processes is thus complicated, which is a bottleneck in the kinematic analysis

of manipulative tasks.

In this paper, we will develop a symbolic representation of assembly processes.
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The kinematic properties of objects strongly depend upon the geometric constraints,

which are characterized by the states of contacts between workpieces. Thus, we will

�rst analyze the process of an assembly operation with regard to how the workpieces

contact each other, and represent assembly processes with a contact state graph. An

automatic generation of the graph is required in order to develop a planning system

of assembly operations. Thus, we derive an e�cient algorithm for automatically

generating the graph from the geometric data of workpieces.

3.2 Contact State Graphs

3.2.1 Symbolic Representation of Contact States

Assembly is a process of locating and �xing workpieces together in a desired

con�guration. In this assembly process, the robot mates the workpieces by moving

one workpiece along the appropriate surface of the other. During the operation,

the workpieces contact each other at di�erent surfaces. As the operation proceeds,

the contacting pair of surfaces may change as shown in Figure 10. At the begin-

ning, the moving part is not in contact with the �xed part and is therefore free

to move. By contacting di�erent surfaces, the moving part is guided to the de-

sired destination despite uncertainties such as tolerancing errors and sensing errors.

During this process, the workpiece motion is constrained by the contact, and the

geometric constraints vary in accordance with the change of contacting surfaces. As

the constraints change, the robot needs to change its control law accordingly. If

hybrid position/force control is used, for example, the selection matrix along with

the constraints frame must be changed. In impedance control, sti�ness and damping

matrices as well as motion trajectories must be changed so as to be consistent with

the geometric constraints. Therefore, the geometric constraints due to the contacts

are a fundamental characteristic to investigate when control laws and task strategies

are being planned.

In this paper, we use a process model of assembly based on a symbolic description

of the geometric constraints [Lozano-P�erez et al., 84] [Hirai et al., 88a] [Desai and Volz, 89].

As shown in Figure 10, individual facets and apices of the workpieces are labeled

facet i and apex j, respectively. The contact between facet i and apex j is denoted

as facet i{ apex j. The geometric constraints imposed on the workpieces are deter-

mined by listing all the contacting pairs between the two. For example, contacts

shown in Figure 10-(d) are described by

( facet 2 { apex 1 apex 4 { facet 7 ): (3-1)
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Figure 10: Contact states
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The state of the assembly process described in the list of all the contacting pairs

is referred to as Contact State [Hirai et al., 88a]. Each contact state has di�erent

constraints depending on the geometry of each contacting pair involved.

The contact state is determined by the position and orientation of one workpiece

relative to the other. Without loss of generality, we assume that one workpiece is car-

ried around by the robot and the other is �xed in space. Let us denote the position

and orientation of the moving workpiece by the six-dimensional vector q 2 V 6 with

respect to a coordinate system �xed to the other workpiece. Some con�gurations of

the moving workpiece are prohibited because of the geometric interference between

the two workpieces. The set of possible con�gurations is called Admissible Con�gu-

ration Space and denoted by R [Arnold, 78] [Lozano-P�erez, 81] [Lozano-P�erez, 83].

The admissible con�guration space R is divided into subsets that possess a di�erent

contact state Ni, and the set of workpiece con�guration involved in the state Ni is

denoted by subset Ri � R.

During assembly operations, the contact state may change from one to another.

Let us model the change of contact state by a transition in a graph. As shown in

Figure 11, we represent each contact state by a node of the graph and the pos-

sible transition between two contact states is denoted by the arc connecting the

corresponding nodes. This graph is referred to as Contact State Graph in this pa-

per. Investigating all admissible contact states and all possible transitions among

the contact states, we can generate a contact state graph that provides a symbolic

representation of assembly.

3.2.2 Mathematical Description of Contact States

Each contact pair determines a geometric constraint imposed on the workpieces.

Let us formulate a geometric constraint provided by each contact pair. We assume

that the moving and the �xed objects are rigid and that each object consists of a

�nite set of smooth faces. As shown in Figure 12, coordinate system C � ��� is

�xed to the moving object while O � xyz is �xed to the �xed object. Note that

individual edges and apices can be described by an intersection of faces. Thus, some

contact pairs can be decomposed into basic contact pairs. For example, when apex

j of the moving object is in contact with an edge of the �xed object de�ned by the

intersection of two faces, k and l, the contact pair between the apex and the edge can

be expressed by two contact pairs, apex j { facet k and apex j { facet l. A contact

pair between planar facets can be expressed by a set of apex { facet and facet {

apex contact pairs. Contact pairs between non-planar facets can not be expressed

by these two contact pairs. Excluding this particular case, in this paper we deal

with the case where each contact pair can be expressed by a set of the following
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Figure 11: Graph representation of contact state transitions
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Figure 12: Geometric modeling of assembly process

pairs; apex { facet pairs and facet { apex pairs.

Let us �rst consider the case where an apex of the moving object is in contact

with a facet of the �xed object. Let hk(x) be the distance between the coordinates

x = [x; y; z]T and the k-th smooth face of the �xed object. Let x0 = [x0; y0; z0]
T

and �0 = [�0; �0;  0]
T be the position and the orientation of the moving object,

respectively. The coordinate transformation from � = [�; �; �]T to x is then given

by

x = A(�0)� + x0 (3-2)

where A(�0) is a rotation matrix. Let �j be the coordinates of apex j on the moving

object. Then, the condition for apex j of the moving object to be in contact with

facet k of the �xed object is given by

hk[A(�0)�j + x0] = 0: (3-3)

Similarly, let us consider the case where an apex of the �xed object is in contact

with a smooth facet of the moving object. Let hk(�) be the distance between the
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coordinates � and the k-th smooth face of the moving object and xj be the coordi-

nates of apex j on the �xed object. The coordinate transformation from x to � is

given by

� = A
T (�0)(x � x0) (3-4)

since A(�0) is a orthogonal matrix. The condition for apex j of the �xed object to

be in contact with facet k of the moving object is then given by

hk[A
T (�0)(xj � x0)] = 0: (3-5)

Both eqs.(3-3) and (3-5) are implicit functions of the position and orientation

of the moving object; q = [x0; y0; z0; �0; �0;  0]
T . Thus, in general, the contact

condition of an individual contact pair is given by

Hjk(q) = 0 (3-6)

where j and k denote an apex and a facet, respectively. Function Hjk(q) can be

regarded as the distance between an apex and a facet. This condition is referred to

as a Contact Equation. An arbitrary con�guration involved in Ri must satisfy all

the contact equations that are de�ned by individual contact pairs.

The region Ri is determined primarily by the contact equations. A set of these

equations, however, provides merely necessary condition for a con�guration q to be

involved in the region Ri. Let l and m be a pair of an apex and a facet which is not

involved in the contact state. FunctionHlm(q) must be positive for all con�gurations

involved in Ri since apex l is not in contact with facet m. Con�guration q involved

in region Ri must be admissible. Therefore, region Ri is described as follows:

Ri = f q j Hjk(q) = 0; 8j; k;

Hlm(q) > 0; 8l;m;

q 2 Rg

(3-7)

where j and k be contacting pairs while l and m be non-contacting pairs. Namely,

region Ri is described by the contact equations associated with the contact pairs

involved in the contact state and the inequality conditions associated with the pairs

not involved in the state. Note that contact state Ni is admissible if and only if

region Ri given in eq.(3-7) is not empty. It is thus necessary to compute region Ri

in order to �nd possible contact states.
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3.2.3 Mathematical Description of Contact State Transi-

tions

An arbitrary transition of the contact state can be divided into some minimal

transitions. Consider a transition from N3 to N5 shown in Figure 11. Let q3 and q5
be arbitrary con�gurations involved in contact states N3 and N5, respectively. In

order to move the object from con�guration q3 to q5, it is inevitable to transit state

N1 or N4, as shown in the �gure. It implies that a direct transition from state N3 to

N5 is not possible. The transition from N3 to N5 can be divided into a series of direct

state transitions. For example, it can be divided into two direct state transitions

N3 ! N4 and N4 ! N5. Direct state transitions are the minimal transitions of a

contact state and an arbitrary possible transition can be represented by a series of

the minimal transitions. Thus, we represent a direct transition between two contact

states by an arc connecting the corresponding nodes. An assembly process is then

described by a path of a contact state graph.

An arbitrary motion of the moving object can be represented by a trajectory

in the con�guration space. Let us formulate a direct state transition using the

con�guration trajectory. An arbitrary trajectory can be described by a function

with one parameter t as follows:

q = q(t) t 2 [0; 1] (3-8)

The state transition from Ni to Nj is then represented by a trajectory connecting

con�gurations involved in regions Ri and Rj . Direct transition from state Ni to Nj

is admissible if we can move the object without transiting other contact states but

Ni or Nj. Namely, direct state transition Ni ! Nj is possible when an arbitrary

con�guration along the trajectory is involved in either Ri or Rj. Therefore, direct

state transition Ni ! Nj is possible if and only if the following condition is satis�ed.

9q(t) t 2 [0; 1] s.t. q(0) 2 Ri;

q(1) 2 Rj; (3-9)

q(t) 2 Ri [Rj ; 8t 2 (0; 1)

Let us derive some properties of direct state transitions based on their de�nition

given in the above equation. First, we derive a necessary condition for possible

direct transitions.

Theorem 6 The following condition is satis�ed if direct state transition Ni ! Nj

is possible:

Ni � Nj or Ni � Nj (3-10)
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where Ni � Nj denotes that all contact pairs in state Ni are involved in state Nj .

The proof of this theorem is shown in Appendix A. As de�ned before, regions Ri and

Rj are sets of con�gurations involved in states Ni and Nj, respectively. Assuming

that all contact pairs in state Nj is involved in Ni, we derive the following relation

between regions Ri and Rj .

Theorem 7 Let Ni and Nj be contact states that satisfy

Ni � Nj: (3-11)

The following equation is then satis�ed.

q 62 @Ri; 8q 2 Rj (3-12)

where @Ri is a boundary set of region Ri.

The proof of this theorem is shown in Appendix B. The necessary and su�cient

condition for possible direct transitions can be derived using theorem 7.

Theorem 8 Let Ni and Nj be contact states that satisfy

Ni � Nj: (3-13)

Direct state transition Ni ! Nj is possible if and only if the following condition is

satis�ed:

9q 2 Ri s.t. q 2 @Rj (3-14)

The proof of this theorem is shown in Appendix C.

3.3 Automatic Generation of Contact State Graphs

3.3.1 The Monte Carlo Method

We have to examine whether region Ri is empty in order to �nd all possible

contact states. In this section, we develop an e�cient method based on the Monte

Carlo method in order to obtain the regions Ri.

The regions Ri have been de�ned to be individual regions partitioned in the

con�guration space with respect to contact states. The boundary of each region Ri
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is determined primarily by the contact equations associated with the contact pairs,

as described in Section 3.2.2. These equations, however, provide merely necessary

conditions for a con�guration q to be involved in region Ri. One must include

conditions of inequality in addition to the contact equations given by eqs.(3-3) and

(3-5). As a result, it is very di�cult and ine�cient to attain an analytic, closed form

solution to the problem of �nding the boundary of region Ri.

State Ni is possible if and only if there exists a con�guration involved in the

region Ri. Thus, it is not necessary to obtain a closed form solution in order to

examine whether state Ni is possible. We will use a set of sample points involved

in each Ri in the derivation of possible measurement sets, which will be developed

later. Thus, our goal here is to obtain an approximate set of sample points that

cover the region Ri rather than the derivation of analytic solutions. To this end, we

apply the Monte Carlo method to the generation of sample points.

Using the standard Monte Carlo method, we �rst generate an arbitrary point in

the con�guration space randomly, examine which region the con�guration is involved

in, and then store the point in the corresponding region Ri. The problem with this

method is the following: the entire con�guration space consists of three parts: 1)

the region where the moving object is not in contact with any �xture, free space, 2)

the region where the moving object interferes with the �xed objects, non-admissible

space, and 3) the contact space in which the two objects are in contact at some

points. The contact space is the boundary of the admissible space, and therefore the

dimension of this space is substantially smaller than the other two. In consequence,

it is rare that a randomly generated point impinges on the boundary surface, that is

the contact space. It is therefore ine�cient to use the standard Monte Carlo method

to investigate the regions Ri that are mostly involved in the contact space.

In order to cope with this di�culty, we modify the method so that the test points

may be involved in the contact space. An arbitrary con�guration involved in the

contact space satis�es at least one contact equation. Thus, we select several contact

equations a priori and move the randomly generated points towards the contact

space in which the selected equations are satis�ed. Let H1(q) through Hj(q) be a

set of selected equations. We can �nd a con�guration that satis�es the equations by

minimizing the following function.

E(q) =
jX

i=1

[ Hi(q) ]
2 (3-15)

By applying a minimization algorithm of a nonlinear function [Avriel, 76], we can

�nd the minimum value of function E(q). The con�guration q satis�es the original
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contact equations if and only if the minimum value Emin is equal to zero:

Emin = 0 () 9q s.t. Hi(q) = 0; 8i 2 [1; j] (3-16)

Thus, we can �nd a solution vector of contact equations through a minimization

process of E(q). This minimization process is done for many initial con�gurations

generated at random in order to attain su�cient sample points. Note that we have

no solution that satis�es more than six independent contact equations, since six-

dimensional vector q is a unknown parameter. Therefore, the number of contact

equations given a priori should be less than or equal to six.

The obtained sample points are examined in which region they are involved and

are stored in the corresponding region Ri. Since the points are moved towards the

contact space, it is common that the points are involved in the contact space. It is

therefore e�cient to use the modi�ed Monte Carlo method illustrated in Figure 13.

We can reduce the combination of contact equations selected a priori in the

following way. Assume that two contact pairs em1 { ef1 and em2 { ef2 are involved in

contact state Ni, where e
m
1
and em

2
be apices or facets of the moving object and ef1

and ef2 be those of the �xed object. The distance between em1 and em2 is equal to the

distance between ef1 and e
f
2 since elements em1 and em2 are in contact with ef1 and e

f
2 ,

respectively. Thus, the following condition is satis�ed:

9x1 2 e
m
1
; x2 2 e

m
2

y1 2 e
f
1 ; y2 2 e

f
2 s.t. k x1 � x2 k = k y1 � y2 k (3-17)

It implies that

dist(em1 ; e
m
2 ) \ dist(e

f
1 ; e

f
2) 6= � (3-18)

where

dist(ei; ej)
4

= f k xi � xj k j xi 2 ei; xj 2 ejg: (3-19)

From this discussion, we can derive the necessary condition for a contact state Ni to

be admissible. Let em1 { ef1 and em2 { ef2 be arbitrary contact pairs involved in state

Ni. Contact state Ni is not admissible if the following equation is satis�ed:

dist(em1 ; e
m
2 ) \ dist(e

f
1 ; e

f
2) = � (3-20)

Note that we can compute the distance dist(ei; ej) a priori for the moving and the

�xed objects. Therefore, we can reduce the combination of contact equations by

eliminating contact pairs that satisfy eq.(3-20).
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3.3.2 Finding Admissible State Transitions

In this section, we develop a method to �nd possible direct transitions among

the contact states using the theory of polyhedral convex cones.

From theorem 6, we �nd that neither Ni ! Nj nor Nj ! Ni is admissible if

eq.(3-10) is not satis�ed. Note that transition Nj ! Ni is possible if and only if

transition Ni ! Nj is possible. Thus, we can �nd all possible direct transitions

by examining all transitions connecting two contact states Ni and Nj which satisfy

Ni � Nj . In the following analysis, we assume that two contact states Ni and Nj

satisfy a condition that all contact pairs in Nj is involved in Nj .

Let Ni and Nj be sets of contact pairs given by

Ni = (P1; � � � ; Ps; Ps+1; � � � ; Pm); (3-21)

Nj = (Ps+1; � � � ; Pm) (3-22)

where P1 through Pm represent contact pairs between the moving and the �xed

objects. All contact pairs in Nj is involved in Ni, that is, a condition Ni � Nj

is satis�ed. Let q be an arbitrary con�guration involved in region Ri. A set of

admissible displacement at con�guration q is described by a union of polyhedral

convex cones as mentioned before. First, let us consider the case that the admissible

displacement set at con�guration q is given by a polyhedral convex cone

A(q) = facefa1;a2; � � � ;amg (3-23)

where ar be a face vector associated with a contact pair Pr. From theorem 8, we �nd

that direct transition Ni ! Nj is possible if there exists an admissible displacement

�q that satis�es the following condition:

a
T
r�q < 0; 8r 2 [1; s] (3-24)

a
T
r�q = 0; 8r 2 [s+ 1;m] (3-25)

since contact state Nj consists of contact pairs Ps+1 through Pm. Inner products

a
T
1�q through a

T
s �q must be positive since contact pairs P1 through Ps are not

involved in state Nj . Note that an arbitrary displacement satisfying the above

conditions is involved in a subset A[I] de�ned in the previous chapter. It implies

that direct state transitions can be formulated based on the theory of polyhedral

convex cones. Let us derive a condition for direct state transitions to be admissible

based on the cone theory. We can compute the span-form of the cone given by

eq.(3-23) using algorithm CONVERT developed in the previous chapter.

A(q) = spanfu1;u2; � � � ;ukg (3-26)
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An arbitrary admissible displacement q is then described by a convex sum of span

vectors.

�q =
kX

l=1

clul; cl � 0; l 2 [1; k] (3-27)

Substituting this equation into eqs.(3-24) and (3-25), we �nd that direct transition

Ni ! Nj is possible if the following condition is satis�ed:

8r 2 [1; s]; 9l 2 [1; k]; a
T
r ul < 0; (3-28)

8r 2 [s+ 1;m]; 8l 2 [1; k]; a
T
r ul = 0: (3-29)

In the case that the admissible displacement set is given by a union of polyhedral

convex cones, this condition must be checked for individual cones. A direct transition

is possible if an admissible displacement involved in one of the cones satis�es the

above condition. Therefore, we can investigate whether direct transition Ni ! Nj

is possible by examining eqs.(3-28) and (3-29).

3.4 Implementation

We demonstrate the computation procedures of contact state graphs for planar

assembly. Let us assume that all the surfaces of the moving and the �xed objects are

plains. Let x0 = [x0; y0]
T and �0 be the position and the orientation of the moving

object, respectively. The computation process consists of two stages; [1] The Monte

Carlo Method and [2] Finding Admissible State Transitions. Details of the two

stages are described below.

[1] The Monte Carlo Method

Let x1
k and x

2
k be the end points of the k-th facet, and nk = [nkx; n

k
y]
T be the unit

normal vector of the facet. Then, the distance between the coordinate x = [x; y]T

and the k-th facet is given by

hk(x) =

8><
>:

k x� x
1
k k if (x2

k � x
1
k)

T (x� x
1
k) < 0

k x� x
2
k k if (x1

k � x
2
k)

T (x� x
2
k) < 0

j n
T
k (x� x

1
k) j otherwise

(3-30)

The coordinate transformation from � = [�; �]T to x is given by

"
x

y

#
=

"
c0 �s0

s0 c0

# "
�

�

#
+

"
x0

y0

#
(3-31)
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Figure 14: Simple example of planar objects

where c0 = cos �0 and s0 = sin �0. The contact equation given by eq.(3-6) is thus

expressed by an implicit function of four variables, x0, y0, c0, and s0, with one

constraint, c20 + s
2
0 = 1. Let us express the contact conditions as

Hjk(x0; y0; c0; s0) = 0: (3-32)

The function E(q) given by eq.(3-15) is then described as

E(x0; y0; c0; s0) =
X
j;k

Hjk(x0; y0; c0; s0) + �(c20 + s
2

0 � 1) (3-33)

where � is an appropriate constant. A nonlinear function E(q) can be minimized

applying the quasi-Newton method [Avriel, 76]. Using the procedure shown in Fig-

ure 13, we can �nd sample con�gurations, x0, y0, and �0 = tan�1(s0=c0), involved

in region Ri. Note that contact state Ni is admissible if and only if there exists a

con�guration involved in Ri. Therefore, we can �nd all admissible contact states by

examining whether sets of sample con�gurations are empty.

[2] Finding Admissible State Transitions
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Figure 15: Obtained contact states
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Figure 16: Generated contact state graph
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Table 4: Initial contact equations selected a priori

no contact N1

( apex 3 - facet 5 ) N2

( facet 2 - apex 1 ) N3

( apex 4 - facet 7 facet 2 - apex 1 ) N4

( apex 4 - facet 7 ) N5

( apex 3 - facet 5 apex 4 - facet 5 ) N7

( apex 3 - facet 8 apex 4 - facet 8 ) N16

( apex 3 - facet 6 ) N18

( apex 3 - facet 6 facet 4 - apex 2 ) N19

( facet 4 - apex 2 ) N20

( apex 4 - facet 8 ) N21

Let us �rst derive vector djk given in eq.(2-5) for planar assembly. Vector djk,

corresponding to a contact pair apex j { facet k, is given by

djk =

2
64

n
k
x

n
k
y

(c0�j � s0�j)n
k
y � (s0�j + c0�j)n

k
x

3
75 (3-34)

where nk = [nkx; n
k
y ]
T be the inward normal vector of the k-th facet. Vector djk,

corresponding to a contact pair facet j { apex k, is derived as

djk =

2
64

c0n
k
x � s0n

k
y

s0n
k
x + c0n

k
y

(c0[xj � x0] + s0[yj � y0])n
k
y + (s0[xj � x0]� c0[yj � y0])n

k
x

3
75 (3-35)

where nk = [nkx; n
k
y]
T be the outward normal vector of the k-th facet.

Note that vector djk depends on the position [x0; y0] and the orientation �0 of the

moving object. The admissible displacement set at a con�guration is described by

these vectors using eqs.(2-9) and (2-10). Examining whether eqs.(3-28) and (3-29)

are satis�ed, we can �nd all admissible direct transitions of the contact state.

We have implemented the procedure to generate contact state graphs for pla-

nar assembly on a SUN 3/260 workstation in C language. Let us demonstrate the

generation of a contact state graph for simple objects shown in Figure 14. Table

4 shows sets of contact pairs associated with initial contact equations selected a
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priori. Eleven sets of contact equations have chosen to modify initial con�gurations.

Using the modi�ed Monte Carlo method, we can �nd twenty-one contact states il-

lustrated in Figure 15 in addition to the original eleven contact states. Namely, ten

new contact states were found using the modi�ed Monte Carlo method. No sample

con�gurations can be obtained for a set of initial contact equations given by

( apex 3 { facet 5 apex 4 { facet 8 ): (3-36)

Thus, we �nd that this contact state is not admissible. Note that eq.(3-20) is satis�ed

for the two contact pairs given in the above list. The admissible direct transitions

among the contact states are shown in Figure 16.

3.5 Concluding Remarks

In this paper, we have developed a new method for representing assembly pro-

cesses with respect to mechanical contacts. Kinematic properties of workpieces

strongly depend on the state of contacts between workpieces. Thus, we developed

contact state graphs to describe the assembly processes in an understandable man-

ner.

First, contact states between workpieces were de�ned by regarding how work-

pieces contact each other. The process of workpiece assembly was then modeled

as a set of transitions of contact states and represented by a state graph. Contact

states were formulated using distance functions between the workpieces. Contact

state transitions were analyzed to derive conditions to be admissible. An e�cient

method to generate a contact state graph from the geometric data of workpieces has

been developed by using the Monte Carlo method.
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Appendix A Proof of theorem 6

Assume that eq.(3-10) is not satis�ed. Then, there exists a contact pair apex k {

facet l which is involved in Ni but is not involved in Nj. There also exists another

contact pair apex m { facet n which is not involved in Ni but is involved in Nj. Let

q(t) be a trajectory connecting regions Ri and Rj. We assume that con�gurations

q(0) and q(1) are involved in Ri and Rj , respectively. Since a contact pair apex k

{ facet l is involved in Ni while apex m { facet n is not involved in Ni, we have

Hkl[q(0)] = 0; (A-1)

Hmn[q(0)] > 0: (A-2)

Since a contact pair apex k { facet l is not involved in Nj while apex m { facet n is

involved in Nj, we have

Hkl[q(0)] > 0; (A-3)

Hmn[q(0)] = 0: (A-4)

From these equations, we �nd that there exists t1, t2, and � that satisfy the following

equations:

Hkl[q(t)]

(
= 0 t 2 [0; t1]

> 0 t 2 (t1; t1 + �)
(A-5)

Hmn[q(t)]

(
> 0 t 2 [0; t2)

= 0 t = t2

(A-6)

since distance functions Hkl(q) and Hmn(q) are continuous. When t1 is greater than

t2, the following equation is satis�ed at t = t2:

Hkl[q(t)] = 0 (A-7)

Hmn[q(t)] = 0 (A-8)

It implies that there exists another contact state along the trajectory, which involves

both apex k { facet l and apex m { facet n. When t1 is less than or equal to t2, the

following condition is satis�ed at t = t1 + �=2:

Hkl[q(t)] > 0 (A-9)

Hmn[q(t)] > 0 (A-10)

It implies that there exists another contact state along the trajectory, which involves

neither apex k { facet l nor apex m { facet n. In both cases, we �nd that there

exists another contact state along an arbitrary trajectory connecting two states Ni

and Nj. Therefore, direct transition from Ni to Nj is not admissible.
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Appendix B Proof of theorem 7

Assume that eq.(3-12) is not satis�ed. Then, there exists a con�guration q1 2 Rj

that is involved in @Ri. Let q0 be an arbitrary con�guration involved in Ri. Since

q1 is involved in @Ri, there exists a trajectory q(t) that satis�es

q(0) = q0;

q(1) = q1; (B-1)

q(t) 2 Ri; 8t 2 (0; 1)

Namely,

q(t) 2 Ri; 8t 2 [0; 1)

q(1) 2 Rj : (B-2)

Let apex k { facet l be a contact pair that is involved in Ni but is not involved in

Nj. Then, the following condition is satis�ed:

Hkl[q(t)] = 0; 8t 2 [0; 1)

Hkl[q(1)] > 0 (B-3)

From these equations, we �nd that function Hkl[q(t)] is not continuous at t = 1.

It contradicts to the continuity of distance function Hkl(q). Therefore, eq.(3-12) is

satis�ed.

Appendix C Proof of theorem 8

Assume that eq.(3-14) is satis�ed. Then, there exists a con�guration q0 2 Ri in-

volved in the boundary set @Rj. Let q1 be an arbitrary con�guration involved in

Rj. Since q0 is involved in @Rj , there exists a trajectory q(t) that satis�es

q(0) = q0;

q(1) = q1; (C-1)

q(t) 2 Rj; 8t 2 (0; 1)

It implies that the contact state can transit directly from Ni to Nj by moving the

object along the trajectory q(t). The su�cient condition is thus proved.

Assume that eq.(3-14) is not satis�ed. Then, all con�gurations in region Ri are

not involved in the boundary set @Rj. Let q(t) be an arbitrary trajectory that
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satis�es

q(0) 2 Ri;

q(1) 2 Rj; (C-2)

q(t) 2 Ri [Rj; 8t 2 (0; 1)

Let tc be a point where the contact state transits from Ni to Nj. Assume that there

exists tc that satis�es the following condition:

q(t) 2 Ri; 8t 2 [0; tc)

q(t) 2 Rj; t = tc (C-3)

From theorem 7, all con�gurations in region Rj are not involved in the boundary

set @Ri, since all contact pairs of Nj is involved in Ni. Thus, we �nd that the above

equation contradicts to theorem 7. Assume that there exist tc and � that satisfy the

following condition:

q(t) 2 Ri; 8t 2 [0; tc]

q(t) 2 Rj ; 8t 2 (tc; tc + �) (C-4)

Then, we �nd that con�guration q(tc) is involved in @Rj as well as Ri. It contra-

dicts to the assumption that all con�gurations in region Ri are not involved in the

boundary set @Rj . Therefore, there does not exist a trajectory that satisfy eq.(C-

3). Namely, direct state transition from Ni to Nj is not admissible. The necessary

condition is thus proved.
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Chapter 4

A Model-Based Approach to the

Recognition of Assembly Process

States Using the Theory of

Polyhedral Convex Cones

4.1 Introduction

Force feedback control is a key to advanced manipulation, where robots inter-

act with the environment, adapt themselves to unpredicatable change, and perform

dextrous operations. In past decades, a number of theories and techniques have

been developed, including bi-lateral servo [Inoue, 71], generalized spring and damper

[Whitney, 77], hybrid position/force control [Mason, 82] [Raibert and Craig, 81], im-

pedance control [Hogan, 85] and so on [Whitney, 87]. These provide e�cient means

to construct force feedback control systems, where force information is needed to

modify the robot motion in accordance with predetermined control laws and control

schemes.

The majority of manipulative tasks, however, are still out of the range of to-

day's robotics technologies. These are often so complex and intricate that e�cient

strategies cannot be generated by single control laws and schemes. Real control

laws are varying depending on the state of the process. A selection matrix in hy-

brid control, for example, must be switched if the geometric constraints vary in the

process. A particular sti�ness matrix, which is valid for a certain range of tasks,

will be inadequate when the task condition varies signi�cantly. The direct feedback

of force signals is thus limited in validity, unless the control law is modi�ed in ac-

cordance with the change in the process state. A higher level control that allows

the robot to recognize the process state and modify the task strategy depending

on the process state is therefore necessary to extend the task range and deal with

varying task conditions, which are often uncertain. While the direct feedback is pri-

marily a signal-level feedback, the higher level feedback is a symbol-level feedback,

where the original sensory information is mapped into a process state described at a

signed-level [Rasmussen, 83]. Note that the latter requires the interpretation of sen-

sory information to recognize the process state [Lozano-P�erez et al., 84] [Donald, 88]

[Desai and Volz, 89].
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In this paper, we develop a technique for mapping sensory information into

the process state described at a symbol-level. Speci�cally, we deal with assembly

tasks, in which workpieces contact each other in di�erent ways and as a result the

geometric constraints vary signi�cantly as the assembly operation proceeds. We

will �rst analyze the process of the assembly operation with regard to how the

workpieces contact each other, and represent the process with a graph. The main

issue to be tackled is to recognize the current contact state of workpieces by using

sensory information. We will develop a systematic method for mapping the sensory

information into individual contact states so that the robot can recognize which

situation the assembly processes are currently involved in. Based on a geometric

model of workpieces, we will generate a set of discriminant functions that classify a

measured signal pattern into the individual contact states. Using this technique, it is

expected that the robot can fully utilize the sensory information in order to perform

a higher-level control including the switching of control strategies and schemes.

4.2 Symbolic Representation of Assembly Pro-

cesses

Assembly is a process of locating and �xing workpieces together in a desired

con�guration. In this assembly process, the robot mates the workpieces by moving

one workpiece along the appropriate surface of the other. During the operation, the

workpieces contact each other at di�erent surfaces. As the operation proceeds, the

contacting pair of surfaces may change as shown in Figure 10. During this process,

the workpiece motion is constrained by the contact, and the geometric constraints

vary in accordance with the change of contacting surfaces. As the constraints change,

the robot needs to change its control law accordingly. Therefore, the geometric

constraints due to the contacts are a fundamental characteristic to investigate when

control laws and task strategies are being planned.

In this paper, we use a process model of assembly based on a symbolic description

of the geometric constraints [Lozano-P�erez et al., 84] [Hirai et al., 88a] [Desai and Volz, 89].

As shown in Figure 10, individual facets and apices of the workpieces are labeled

facet i and apex j, respectively. The contact between facet i and apex j is denoted

as facet i{ apex j. The geometric constraints imposed on the workpieces are deter-

mined by listing all the contacting pairs between the two. For example, contacts

shown in Figure 10-(d) are described by

( facet 2 { apex 1 apex 4 { facet 7 ): (4-1)
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The state of the assembly process described in the list of all the contacting pairs

is referred to as Contact State [Hirai et al., 88a]. Each contact state has di�erent

constraints depending on the geometry of each contacting pair involved.

The contact state is determined by the position and orientation of one workpiece

relative to the other. Without loss of generality, we assume that one workpiece is

carried around by the robot and the other is �xed in space. Let us denote the posi-

tion and orientation of the moving workpiece by the six-dimensional vector q 2 V
6

with respect to a coordinate system �xed to the other workpiece. Some con�gura-

tions of the moving workpiece are prohibited because of the geometric interference

between the two workpieces. The set of possible con�gurations is called Admissible

Con�guration Space and denoted by R [Lozano-P�erez, 81]. The admissible con�g-

uration space R is divided into subsets that possess a di�erent contact state Ni,

and the set of workpiece con�guration involved in the state Ni is denoted by subset

Ri � R.

During assembly operations, the contact state may change from one to another.

Let us model the change of contact state by a transition in a graph. We represent

each contact state by a node of the graph and the possible transition between two

contact states is denoted by the arc connecting the corresponding nodes. This graph

is referred to as Contact State Graph, which provides a symbolic representation of

assembly processes.

4.3 Kinematic and Static Modeling Using Poly-

hedral Convex Cones

In this section, we formulate kinematic and static relationships of constrained

workpieces at a given con�guration and derive some fundamental properties to

be used for the recognition of contact states. Hirai and Asada have established

an e�cient mathematical tool based on the theory of Polyhedral Convex Cones

[Goldman and Tucker, 56] in order to deal with unidirectional constraints due to

mechanical contacts [Hirai et al., 88b]. This tool provides an e�cient formalization

for treating unidirectional constraints that we need to deal with in assembly. In the

following analysis, we will investigate two quantities at each contact state:

� geometrically admissible displacement �q 2 V 6

� statically admissible force and mement p 2 V
6

The former is the in�nitesimal translational and rotational displacement of a con-

strained workpiece that does not violate the geometric constraints at a given contact
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Figure 17: Geometric constraints

state. The latter is the force and moment acting on the workpiece that satisfy the

static equilibrium condition.

Each contact state is described by a list of contact pairs, as mentioned before.

Each contacting pair provides a geometric constraint that the workpiece motion

must satisfy. Let �q be an in�nitesimal displacement of the moving object. In the

case where apex j is in contact with facet k at a con�guration q, we can derive the

condition for the admissible displacement given by

d
T
jk�q � 0 (4-2)

djk
4

=

"
njk

xj � njk

#
(4-3)

where djk is a six-dimensional vector, njk is the inward unit vector of facet k at

the contacting point with apex j, and xj is the position vector of the contact point,

as shown in Figure 17. Note that the inequality results from the unidirectional

constraints.
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The possible displacement must satisfy the above conditions for every contacting

pair. Thus, a set of geometrically admissible displacements at a con�guration q is

represented by the solution set of the linear simultaneous inequalities. The set of

admissible displacements A is given by eqs.(2-9) and (2-10) as follows:

A =
N[
n=1

An (4-4)

and

An = f�q j hT
nm�q � 0 8m 2 [1;Mn]g

where hnm is a six-dimensional vector:

hnm 2 fdjkg

As mentioned in the previous chapter, set An is expressed by the face form of a

polyhedral convex cone (PCC) [Goldman and Tucker, 56] and is described by

An = facefhnm j m 2 [1;Mn]g (4-5)

where each vector involved is referred to as a face vector. Therefore, the admissible

displacement set is described by a union of PCC's.

We can apply the theory of polyhedral convex cones to the static analysis, too.

The range of admissible static forces is derived from the theory in a straightforward

manner. We assume that the workpiece motion is quasi-static and that friction is

negligible. Let p 2 V 6 be the force and moment acting on the workpiece, these being

the resultant force and moment of gravity and the one exerted by the robot. The

range of admissible forces that do not cause movements, that is, statically balanced

forces is given by eq. (2-17):

F = fp j p
T�q � 0; 8�q 2 Ag

In deriving this set of admissible forces, the following theory of polyhedral convex

cones is useful. Let X be a set of real vectors x. Then the set de�ned by eq.(2-28)

is called the polar of the set X [Goldman and Tucker, 56]:

X
� 4= fy j x

T
y � 0; 8x 2 Xg

Comparing eqs.(2-17) and (2-28), we can conclude that the range of admissible force

and moment denoted by set F is given by the polar of the admissible displacement

set A.

F = A
�
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The admissible force set given by the above equation can be computed by applying

a procedure developed by Hirai and Asada and is given by

F = f

LX
l=1

Rlwl j Rl � 0 8l 2 [1; L]g

where wl is a six-dimensional vector. The above equation gives the span form of a

PCC and is expressed by

F = spanfwl j l 2 [1; L]g (4-6)

where each vector involved is referred to as a span vector.

4.4 Contact State Classi�ers

4.4.1 Discriminant Rules

It is a fundamental requirement for robots to recognize the process states in order

to modify the control law and the motion strategy. To recognize contact states, it is

necessary to derive the mapping from the sensory information to the graph nodes.

Let us describe the mapping by using IF{THEN rules, which de�ne the relationships

between sensor signals and the individual nodes.

Let us consider contact state N2 shown in 10. Let fx and fy be reaction forces

acting along x and y axes, respectively. At the state N2, the reaction forces must

be involved in the following set:

S2 = f[fx; fy]
T
j fx = 0; fy � 0g (4-7)

We may conclude that the current state is N2 if the measured reaction forces are in-

volved in set S2. Thus, discriminant rules can be generally described in the following

form:

IF sm 2 Si THEN Ni (4-8)

where sm is a vector consisting of measured sensor data and Si is a set of possible

signal vectors measured at contact state Ni. Set Si is referred to as Measurement

Set at Ni in this paper. The above rule expresses the mapping from the signal level

information to the symbolic or signed level information. Once we know the range of

possible signals at individual process states, we will be able to determine the current

contact state from the measured signals by applying the above rules.
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In the following sections, we will investigate measured force and moment. This

sensory information strongly depends on the geometric characteristics of workpieces.

Thus, the range of possible forces can be computed from the geometric model of the

workpieces. In the next section, we will develop a systematic method for computing

sets of possible signals at each contact state. Each set computed in this manner pro-

vides a set of linear discriminant functions. Therefore, we will be able to obtain the

discriminant functions on a computer from the geometric model of the workpieces.

4.4.2 Measurement Sets at Individual Contact States

In this section, the classi�ers of contact states are obtained on the basis of the

kinematic and static formulation using PCC's. Our objective is to discriminate

contact states by monitoring the force and moment acting on the workpiece.

First, let sm be a six-dimensional vector consisting of the measured force and mo-

ment pm. The measured force must be within the admissible force set F . Therefore,

the set of possible measurements at a con�guration q is given by

S(q)
4

= fsm j sm 2 Fg: (4-9)

Note that set F derived in the previous section is dependent on the con�guration q.

To discriminate the contact states, we need to know the range of measured vectors

sm that can be obtained for an arbitrary con�guration involved in each contact

state. As de�ned before, the set of con�gurations that belong to contact state Ni

is denoted by Ri. Then, the overall range of possible measurements at state Ni is

given by

Si =
[

q 2 Ri

S(q): (4-10)

The admissible force set depends on the con�guration q since the static relation-

ship mentioned in the previous section is derived from the di�erential motion at one

speci�c con�guration. On the other hand, region Ri represents the gross motion of

the workpieces in the con�guration space. In order to obtain measured set Si using

eq.(4-10), we �rst compute the admissible force set F at all con�gurations involved

in the region Ri, derive sets of measured signals S(q), and compute the union of all

the sets of measured signals, S(q). Since it is ine�cient to compute the sets S(q)

at all con�gurations involved in region Ri, we evaluate the set at a �nite number of

representative points involved in the region. Let qi
1
through qiK be a �nite number

of sample con�gurations involved in region Ri. We approximate a union of sets over
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region Ri by a union of sets at a �nite number of sample points. Then, possible

measurement set Si given in eq.(4-10) is approximated by

Si =
K[
k=1

S(qik) (4-11)

where S(qik) are polyhedral convex cones. Therefore, measurement set Si is ex-

pressed by a union of a �nite number of polyhedral convex cones. Note that the

face form of PCC's directly yields a set of linear discriminant functions commonly

used in pattern recognition [Duda and Hart, 73]. Thus, measurement set Si given

in eq.(4-11) can be regarded as a set of discriminant functions.

Let sm be a six-dimensional vector consisting of the measured displacement

�qm. The measured displacement must be within the admissible displacement set

A. Therefore, the set of possible measurements at a con�guration q is given by

S(q)
4

= fsm j sm 2 Ag: (4-12)

Note that set A derived in the previous section is also dependent on the con�gu-

ration q. Possible measurement set Si is then given by eq.(4-10). The admissible

displacement set A is described by a union of polyhedral convex cones. Thus, set

Si is approximated by eq.(4-11) where sets S(qik) are unions of polyhedral convex

cones. Therefore, measurement set Si is represented by a union of �nite number of

polyhedral convex cones. In the following analysis, we assume that the individual

possible measurement sets are given by unions of PCC's.

4.5 Minimum Groups of Contact State Classi-

�ers

4.5.1 Classifying Two Polyhedral Convex Cones

In this section, we will derive a minimum group of discriminant functions using

some reduction rules of polyhedral convex cones. We �rst derive a minimum group

of face vectors to di�erentiate two polyhedral convex cones. Let us consider a case

in which we di�erentiate two states, Ni and Nj. Let us assume that the possible

measurement set Si is merely a polyhedral convex cone given by

Si = facefa
i
1
;a

i
2
; � � � ;a

i
hg (4-13)

where the face vectors are aij 2 V
6. The group of discriminant functions associated

with the face vectors are redundant if they include functions that are unnecessary
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Figure 18: Compact discriminant functions

to evaluate for di�erentiating the two states. As shown in Figure 18, consider the

polyhedral convex cones, Si and Sj, that correspond to contact states Ni and Nj,

respectively. Obviously, the discriminant functions associated with the face vectors

a
i
1, a

i
2, and a

i
3 are irrelevant to the di�erentiation of Ni from Nj. Only a

i
4, a

i
5, and a

i
6

are su�cient to discriminate whether the current contact state is Ni or not. Namely,

the minimum set of discriminant functions at this time is given by facefai
4;a

i
5;a

i
6g.

Let Sj[a
i
k] be a subset of signals involved in Sj that are di�erentiated by face

vector aik. Namely,

Sj[a
i
k] = fsm j sm 2 Sj; (aik)

T
sm > 0g: (4-14)

In the above example, the subset Sj[a
i
3] is involved in subset Sj[a

i
4], as shown in

the �gure. It implies that any signals di�erentiated by the discriminant function

associated with face vector ai3 can be discriminated by another function associated

75



with a
i
4. Thus, we can �nd that face vector aik is irrelevant in discriminating Si

from Sj if the following condition is satis�ed:

9l 6= k s.t Sj [a
i
k] � Sj[a

i
l ]: (4-15)

The minimum group of discriminant functions is given by the face vectors which

satisfy the above condition. In general, the minimum group of discriminant functions

can be formulated by using the polar and the convex sum of polyhedral convex

cones. It can be proved that the non-redundant group of discriminant functions to

di�erentiate state Ni from Nj is given by

D(Si; Sj)
4

= facefa
i
k j a

i
k 62 Si[k]

� + S
�

j g (4-16)

where � represents the polar of a set and + represents the convex sum of sets. Set

Si[k] is a set of face vectors consisting of Si except a
i
k:

Si[k] = facefa
i
1
; � � � ;a

i
k�1;a

i
k+1; � � � ;a

i
hg (4-17)

The proof of eq.(4-16) is shown in Appendix A.

Note that the polar of a polyhedral convex cone and the convex sum of two

polyhedral convex cones are also convex cones. The compact set of discriminant

function D(Si; Sj) consists of the face vectors that are not involved in the polyhedral

convex cone Si[k]
� + S

�

j .

4.5.2 Classifying Two Contact States

As mentioned before, individual possible measurement sets are described by

unions of polyhedral convex cones. In this section, we derive the minimum set of

discriminant functions to di�erentiate two contact states based on the above result.

Let Si and Sj be possible measurement sets given by

Si =
K[
k=1

S
k
i ; (4-18)

Sj =
L[
l=1

S
l
j (4-19)

where sets Sk
i and Sl

j are polyhedral convex cones.

Note that we can di�erentiate a polyhedral convex cone Sk
i from another cone Sl

j

using a minimum set of discriminant functions D(Sk
i ; S

l
j) derived in the previous sec-

tion. Since the measurement set Sj is a union of polyhedral convex cones, S
1
j through
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S
L
j , we need to examine all the sets of discriminant functions;D(Sk

i ; S
l
j); 8l 2 [1; L].

Namely, we have to di�erentiate Sk
i from all of the cones S1

j through S
L
j in order to

conclude that the signal sm is involved in Sk
i :

sm 2 D(S
k
i ; S

l
j); 8l 2 [1; L] (4-20)

Therefore, the minimum set of discriminant functions to di�erentiate Sk
i from Sj is

given by

sm 2

L\
l=1

D(Sk
i ; S

l
j): (4-21)

Note that possible measurement set Si is also a union of polyhedral convex cones

S
1
i through S

K
i . Thus, sensor signal sm is involved in set Si if and only if the

following is satis�ed:

9k 2 [1;K] s.t. sm 2 S
k
i (4-22)

Therefore, the minimum set of discriminant functions to di�erentiate Si from Sj is

given by

sm 2 DS(Si; Sj) (4-23)

where

DS(Si; Sj)
4

=
K[
k=1

L\
l=1

D(Sk
i ; S

l
j): (4-24)

Recall that the intersection of polyhedral convex cones is a convex cone as well.

The compact set of discriminant function DS(Si; Sj) is described by a union of

polyhedral convex cones, each of which consists of face vectors that provide linear

discriminant functions directly.

4.5.3 Classifying Multiple Contact States

In this section, we derive a compact set of discriminant functions to di�erenti-

ate one state among multiple states using a contact state graph representing the

assembly process at a symbolic level.

Let us consider four possible measurement sets, Si, Sj, Sk, and Sl in signal space,

as shown in Figure 19. Suppose that the contact state has been Ni and that direct

transitions from Ni to Nl are not possible. Then, we can determine the contact state
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by examining whether the measured signal sm is involved in Si, Sj, and Sk. We do

not have to check whether vector sm is involved in Sl since a direct transition from

Ni to Nl is not allowed. In order to conclude that the contact state has been changed

from Ni to Nj, we have to di�erentiateNj from both Ni and Nk. Thus, we can detect

a transition from Ni to Nj by use of the two groups of functions; DS(Sj; Si) and

DS(Sj; Sk). Therefore, the minimum group of the discriminant functions is given

by an intersection, DS(Sj ; Si) \DS(Sj; Sk).

We can derive the minimum set of discriminant functions by using a set of nodes

to which direct transitions are allowed. Let T (Ni) be a set of nodes to which the

contact state can transit from node Ni:

Ti = fk j direct transition from Ni to Nk is allowedg (4-25)
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The compact set of discriminant functions given by

DT (Ni; Nj) =
\

k 2 Ti

k 6= j

DS(Sj; Sk) (4-26)

detects a transition from Ni to Nj, whereas possible states to which direct transitions

from Ni are allowed are Ti. If a measured signal sm is involved in DT (Ni; Nj), we

can conclude that the contact state has been changed to Nj among the possible

states Ti. Since the intersection of polyhedral convex cones is also a polyhedral

convex cone, the minimums set of discriminant functions DT (Ni; Nj) is given by a

union of polyhedral convex cones which are described in the face form. Therefore,

we can derive the classi�ers to sort out measured signals sm and determine possible

contact states occurring in the process.

4.6 Computation of Measurement Sets

4.6.1 Interpolation of Polyhedral Convex Cones

In order to obtain measurement set Si corresponding to node Ni using eq.(4-11),

we have to compute a union of polyhedral convex cones over a continuous region Ri.

The set of con�gurations Ri is described by a �nite number of sample con�gurations

as mentioned in the previous section. In this section, we develop a technique to

approximate a union of polyhedral convex cones from a �nite number of sample

con�gurations.

Let P (q) be a polyhedral convex cone at con�guration q 2 Ri given by its span

form.

P (q) = spanfu1(q);u2(q); � � � ;uk(q)g (4-27)

Let q1 and q2 are two con�gurations in Ri neighboring each other. Let T � Ri be a

line segment between q1 and q2, as shown in Figure 20. An arbitrary con�guration

q involved in T is then given by

q = t1q1 + t2q2 (4-28)

where

t1 + t2 = 1; t1; t2 � 0: (4-29)
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Every span vector uj(q) is di�erentiable with respect to con�guration q in region T

since all con�gurations q in T are involved in region Ri, where the contact state is

the same. Span vector at con�guration q is then described by

uj(q) = t1uj(q1) + t2uj(q2) (4-30)

The proof is shown in Appendix B. Let x be an arbitrary vector involved in a

polyhedral convex cone P (q). Vector x is expressed by

x =
kX

j=1

cjuj(q) (4-31)

where all coe�cients cj are non-negative. Substituting eq.(4-30) into eq.(4-31), we

have

x =
kX

j=1

(t1cj)uj(q1) +
kX

j=1

(t2cj)uj(q2): (4-32)

Thus, the vector x is involved in a convex sum of two polyhedral convex cones P (q1)

and P (q2) since coe�cients t1cj and t2cj are all non-negative. Therefore, the union

of polyhedral convex cones P (q) over region T is described by the convex sum given

by

[
q 2 T

P (q) = P (q1) + P (q2): (4-33)

In general, the following theorem can be proved in the same way.

Theorem 9 Let q1 through qm be con�gurations neighboring each other and P (q)

be a polyhedral convex cone whose span vectors are di�erential with respect to con-

�guration q. Let T be a small region de�ned by

T

4

= f

mX
i=1

ciqi j

mX
i=1

ci = 1; ci � 0 8i 2 [1;m]g: (4-34)

The union of polyhedral convex cones P (q) over T is then given by the convex sum

of P (q1) through P (qm):[
q 2 T

P (q) = P (q1) + P (q2) + � � �+ P (qm) (4-35)
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Figure 20: Interpolation of polyhedral convex cones

From this theorem, we �nd that we can interpolate the union of polyhedral convex

cones by convex sums.

Let T be an arbitrary region connected in the con�guration space. Let us divide

the region T into a �nite number of small regions. From the above theorem, the

union of polyhedral convex cones over each small region can be approximated by its

convex sum. The union over T is then given by the union of the obtained convex

sums. Let q1 through qm be sample con�gurations involved in T . The union of

polyhedral convex cones over T is then approximated by[
q 2 T

P (q) '
[

qj � qk

[P (qj) + P (qk)] (4-36)

where qj � qk represents that the distance between qj and qk is smaller than a

small positive value �. Note that a convex sum of polyhedral convex cones is also a

polyhedral convex cone. We �nd that the union of polyhedral convex cones can be

approximated by a �nite number of polyhedral convex cones.

Using eq.(4-36), the measurement set Si in eq.(4-10) is approximated by

Si =
[

qj � qk

[S(qj) + S(qk)]: (4-37)

Recall that the convex sum of polyhedral convex cones is also a polyhedral convex

cone. Therefore, the measurement set is described by a union of �nite number of

polyhedral convex cones:

Si =
L[
l=1

S
l
i (4-38)
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Figure 21: Simpli�cation of union of polyhedral convex cones

where sets S1
i through SL

i are polyhedral convex cones.

4.6.2 Simpli�cation of Measurement Sets

Measurement set Si obtained by eq.(4-37) is described by a union of many pol-

yhedral convex cones. In order to derive the minimum group of state classi�ers

using the method developed in the previous section, we have to reduce the number

of polyhedral convex cones involved in each individual measurement set. Figure

21 illustrates the conditions for two polyhedral convex cones to be reduced to one

polyhedral convex cone. Let A and B be two polyhedral convex cones in the span

form; A = spanfu1;u2g and B = spanfv1;v2g. Figure 21-(a) shows a case where

the union of two polyhedral convex cones is equal to the convex sum of the cones.

Since the convex sum of polyhedral convex cones is also a polyhedral convex cone

[Hirai et al., 88b], we can reduce the two polyhedral convex cones into one. In this

case, the sum of two span vectors ui and vj is involved in either A or B. On the

other hand, Figure 21-(b) and (c) show the cases where the union of polyhedral con-

vex cones is not equal to the convex sum of the cones. The two polyhedral convex

cones cannot be reduced to one cone. Note that the sum of span vectors u1 and v2
is involved in neither A nor B. In general, the following theorem can be proved.

Theorem 10 Let A and B are polyhedral convex cones given by their span forms:

A = spanfu1;u2; � � � ;ukg (4-39)

B = spanfv1;v2; � � � ;vlg (4-40)

The union of two polyhedral convex cones, A and B, is equal to the convex sum of

the two if and only if

ui + vj 2 A [B; 8i 2 [1; k]; 8j 2 [1; l] (4-41)
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is satis�ed.

The proof is shown in Appendix C. Using this theorem, we can check whether the

union of two polyhedral convex cones A and B is provided by their convex sum.

When the union is equal to the convex sum, two polyhedral convex cones A and B

can be reduced to one polyhedral convex cone, A + B. In this way, we can obtain

the simplest form of measurement set.

4.7 Implementation

The theory of polyhedral convex cones is useful not only for formulating dis-

criminant functions but for the computation and derivation of the functions. In the

previous sections, many steps of computations were needed to derive the compact

discriminant functions. Polars and convex sums of PCC's, for example, must be

computed to obtain D(Si; Sj) in eq.(4-16). Intersections of PCC's must be com-

puted to obtain DT (Ni; Nj) in eq.(4-26). Convex sums of PCC's must be computed

to interpolate PCC's in the computation of measurement sets Si. The authors have

developed e�cient algorithms for the computations of PCC's and implemented the

algorithms on a SUN 3/260 workstation in C language [Hirai et al., 88b]. The fol-

lowing constitute some of the package programs.

� CONVERT = Convert the form of a given PCC:

face form to span form and vise versa

� DUAL = Obtain the polar of a given PCC.

� INTERSECT = Compute the intersection of two PCC.

� CONVEXSUM = Compute the convex sum of two PCC.

� ELEMENT = Examine whether a given vector is involved

in a PCC.
� SUBSET = Investigate whether a given PCC is a subset

of another PCC.
� REDUCE = Eliminate unnecessary face or span vectors

to get a minimum set of face or span vectors

Using this package program, we can derive the minimum set of discriminant functions

from geometric models of workpieces on the computer. Namely, the programs for

processing sensory information to recognize the contact states are generated on a

computer with minimum human intervention.

We demonstrate the computation procedures of state classi�ers by taking a sim-

ple example shown in Figure 14. Let us assume that all the surfaces of the moving
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N1 N2

N3 N4

Figure 22: Simple example of assembly process

and the �xed objects are plains, as shown in the �gure. Let x0 = [x0; y0]
T and �0 be

the position and the orientation of the moving object, respectively. The computa-

tion process consists of three stages; [1] Computation of Sample Con�gurations, [2]

Interpolation of Measurement Sets and [3] Reduction of State Classi�ers. Details

of the three stages are described below.

[1] Computation of Sample Con�gurations

First, we need to compute a set of sample con�gurations involved in state Ni

using the modi�ed Monte Carlo method developed in the previous chapter. For the

sake of simplicity, we deal with four nodes N1 through N4 among the whole contact

states as shown in the Figure 10. Table 5 shows sets of obtained sample con�gura-

tions q = [x0; y0; �0] involved in contact state N1 through N4.
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Table 5: Example of obtained sample con�gurations

no contact ( apex 3 - facet 5 )

-9.87516 -0.00196039 -1.26804 -1.83164 .998921 1.52434

11.114 -3.45393 .897865 -2.77709 .633807 .686465

7.35285 -6.07908 -.459526 -2.89437 0.0569517 0.0569825

6.97559 -9.79556 -.332086 -3.32054 .996523 1.48738

8.3037 1.9007 .238096 -1.88392 .557976 .591945

6.46616 -13.3399 -.138779 -3.59624 .600891 .644615

-11.7016 -4.09544 -.343418 -2.44534 .204418 .205869

2.05756 4.18133 1.15522 -1.85565 .986096 1.40384

-10.1043 -9.48982 -.752848 -1.77021 .997336 1.49779

12.7228 -6.28155 .909368 -1.98365 .225795 .227759

( facet 2 - apex 1 ) ( facet 2 - apex 1 apex 4 - facet 7 )

-.126021 .244488 .94804 .707289 -1.22989 .655554

-.365466 -3.88133 0.0344948 .832624 -.747578 .840117

-.278171 .620316 1.22258 .658549 -1.51076 .570833

-.777667 .695846 .843813 .673465 -1.41493 .597872

-.115079 -1.29941 .262679 .536717 -3.58277 .271824

-.510564 .180663 .287996 .833291 -.745488 .841012

.885466 .944987 1.54763 .743821 -1.06474 .713343

.321822 -2.08112 .349131 .666844 -1.45617 .586007

-.475391 .32081 .676007 .720476 -1.1669 .676891

-.868446 .775385 .896344 .536676 -3.58491 .271671
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Table 6: Measurement sets obtained by interpolation technique

no contact ( apex 3 - facet 5 )

[ 0.000000 0.000000 1.000000 ] [ 1.000000 0.000000 0.000000 ]

[ 0.000000 1.000000 0.000000 ] [ -1.000000 -0.000000 -0.000000 ]

[ 1.000000 0.000000 0.000000 ] [ -0.000000 -0.046440 -1.000000 ]

[ -0.000000 -0.000000 -1.000000 ] [ 0.000000 0.998377 1.000000 ]

[ -0.000000 -1.000000 -0.000000 ]

[ -1.000000 -0.000000 -0.000000 ]

( facet 2 - apex 1 ) ( facet 2 - apex 1 apex 4 - facet 7 )

[ -0.303960 1.000000 -0.068729 ] [ -1.000000 -0.138369 -0.377961 ]

[ 1.000000 0.592024 0.260282 ] [ -1.000000 -0.287817 -0.417221 ]

[ 1.000000 -0.610791 -0.248616 ] [ -0.895973 -1.000000 -0.600460 ]

[ 1.000000 -0.804673 -0.443150 ] [ -1.000000 -0.755479 -0.550071 ]

[ -0.142827 0.102581 -1.000000 ] [ -1.000000 0.674780 -0.195623 ]

[ -1.000000 0.036819 -0.337039 ]

[ -1.000000 -0.012028 -0.348241 ]

[ -0.663462 1.000000 -0.092698 ]

[ -0.319406 -1.000000 -0.428551 ]

[ 0.000000 1.000000 0.000000 ]

[ -1.000000 -0.400926 -0.448018 ]

[ 0.019246 1.000000 0.071721 ]

[2] Interpolation of Measurement Sets

The admissible force set is computed from the admissible displacement set by

using algorithm DUAL and CONVEXSUM. Thus, a set of measured vectors can be

computed at one con�guration.

From the sample con�gurations obtained in the previous stage, we can compute

the measurement set Si. Sets of measured vectors are �rst computed at individual

sample con�gurations by using eq.(4-9). Applying the interpolation technique of

PCC's to the sets of measurements, set Si is computed by the use of eq.(4-37). Set

Si, which consists of many PCC's, is then reduced to a simple form by using the

method developed in Section 4.6.2. Measurement set Si is described by a union of

the face form PCC's. Table 6 shows face vectors of set Si computed from the sample

con�gurations listed in Table 5. We �nd that possible signal set S2 corresponding

to stateN2 = ( apex 3 { facet 5 ) consists of four face vectors, as shown in the table.
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Table 7: Result of computing discriminant functions

1 -> 1 3 -> 3

[ -1.000000 -0.000000 -0.000000 ] [ 1.000000 0.592024 0.260282 ]

[ -0.000000 -1.000000 -0.000000 ] [ 1.000000 -0.610791 -0.248616 ]

1 -> 2 3 -> 4

[ -1.000000 -0.000000 -0.000000 ] [ -1.000000 -0.138369 -0.377961 ]

[ -1.000000 -0.287817 -0.417221 ]

1 -> 3 [ -0.895973 -1.000000 -0.600460 ]

[ 1.000000 -0.804673 -0.443150 ] [ -1.000000 -0.755479 -0.550071 ]

[ -1.000000 0.674780 -0.195623 ]

2 -> 2 [ -1.000000 0.036819 -0.337039 ]

[ -1.000000 -0.000000 -0.000000 ] [ -1.000000 -0.012028 -0.348241 ]

[ -0.663462 1.000000 -0.092698 ]

2 -> 3 [ -0.319406 -1.000000 -0.428551 ]

[ 1.000000 -0.804673 -0.443150 ] [ -1.000000 -0.400926 -0.448018 ]

[ 0.019246 1.000000 0.071721 ]

[3] Reduction of State Classi�ers

From measurement sets Si computed in the previous stage, the minimum set of

contact classi�ers is obtained by using eqs.(4-16), (4-24), and (4-26). For the sake

of simplicity, we deal with four nodes among the whole contact states and seven

arcs among the whole transitions, as shown in the Figure 22. Table 7 shows the

discriminant functions computed for the assembly process shown in the �gure. We

�nd that two linear discriminant functions are needed at most in this example to

recognize the current contact state except a transition N3 ! N4.

4.8 Concluding Remarks

A new method for processing force and displacement information to discriminate

the state of an assembly process has been developed. Contact state classi�ers are

automatically derived from the geometric model of assembly parts using the theory

of polyhedral convex cones. First, the process of workpiece assembly was modeled as

a set of transitions of contact states and represented by a state graph. Kinematic and

static properties were analyzed and formulated by applying the theory of polyhedral

convex cones. The ranges of possible force and displacement signals that can be
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measured at each contact state have been derived and represented by a union of

polyhedral convex cones. The face vectors of the polyhedral convex cones directly

provide the discriminant functions to determine contact states from sensor signals.

An e�cient method to compute the range of sensor signals has been developed based

on the theory of polyhedral convex cones.

The method based on the theory of polyhedral convex cones is thus a systematic

approach to generating state classi�ers for the monitoring of assembly processes.

This is a bridge between sensor signals and symbolic-level state recognition.
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Appendix A Proof of eq.(4-16)

Let ak be a vector that is not involved in D(Si; Sj):

a
i
k 2 Si[k]

� + S
�

j (A-1)

From the above equation, we have

spanfa
i
kg � Si[k]

� + S
�

j : (A-2)

Based on the theory of polyhedral convex cones, we have

facefa
i
kg � Si[k] \ Sj : (A-3)

Let sm be an arbitrary signal vector that satis�es

sm 2 Sj; a
T
k sm > 0: (A-4)

Note that sm is not involved in facefaikg. From eq.(A-3), we have

sm 62 Si[k] \ Sj: (A-5)

Since sm is involved in Sj ,

sm 62 Si[k]: (A-6)

Namely,

9l 6= k s.t. ailsm > 0: (A-7)

This equation directly yields eq.(4-15). Thus, an arbitrary face vector that is not

involved in D(Si; Sj) is redundant for the discrimination.

Let ak be a vector involved in D(Si; Sj). In the same way as before, we have

facefa
i
kg 6� Si[k] \ Sj : (A-8)

From this equation,

9sm s.t. (ai
k)

T
sm > 0; sm 2 Si[k]; sm 2 Sj: (A-9)

This equation directly yields the following:

Sj[a
i
k] 6� Sj[a

i
l] 8l 6= k (A-10)

Thus, an arbitrary face vector involved in D(Si; Sj) is necessary for the discrimi-

nation. Therefore, it is proved that the minimum set of face vectors is given by

eq.(4-16).
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Appendix B Proof of eq.(4-30)

Since t1 + t2 = 1, we have

uj(q) = uj(t1q1 + t2q2)

= uj[q1 + t2(q2 � q1)]: (B-1)

Since q1 and q2 are neighboring each other

uj(q) = uj(q1) + t2

@uj

@q
(q1)[q2 � q1]: (B-2)

Substituting t2 = 1 into the above equation

@uj

@q
(q1)(q2 � q1) = uj(q2)� uj(q1): (B-3)

Substituting eq.(B-3) into eq.(B-2), we have

uj(q) = uj(q1) + t2[uj(q2)� uj(q1)]

= t1uj(q1) + t2uj(q2): (B-4)

Appendix C Proof of theorem 10

The sum of two span vectors ui and vj is involved in union A [B when the union

is equal to the convex sum A+B. The necessary condition is thus proved.

Let us assume that union A [ B is not equal to convex sum A + B. Then, there

exist x 2 A and y 2 B that satisfy x + y 62 A [ B. Let z(t) be a line between x

and y:

z(t) = (1� t)x+ ty (C-1)

From the assumption, we have

z(0) 2 A; z(1=2);z(1) 62 A; (C-2)

z(0);z(1=2) 62 B; z(1) 2 B: (C-3)

Thus, there exist ta and tb that satisfy

z(t) 2 A 8t 2 [0; ta]; z(t) 62 A 8t 2 (ta; 1]; (C-4)

z(t) 62 B 8t 2 [0; tb); z(t) 2 B 8t 2 [tb; 1]: (C-5)
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Note that

ta < 1=2 < tb: (C-6)

From eq.(C-4), we �nd that there exists a face vector ar of polyhedral convex cone

A that satis�es

a
T
r z(ta) = 0; a

T
r z(t) > 0 8t 2 (ta; 1]: (C-7)

Similarly, we �nd that there exists a face vector bs of polyhedral convex cone B that

satis�es

b
T
s z(tb) = 0; b

T
s z(t) > 0 8t 2 [0; tb): (C-8)

Let I be a set of span vectors of A perpendicular to ar:

a
T
r up = 0 8p 2 I (C-9)

Since vector z(ta) is perpendicular to ar, this vector can be expressed as

z(ta) =
X
p2I

cpup; cp � 0: (C-10)

Since ta < tb, we have

bsz(ta) =
X
p2I

cp(b
T
s up) > 0: (C-11)

Since all the coe�cients cp are non-negative, there exists i 2 I that satis�es

b
T
s ui > 0: (C-12)

From eq.(C-9), we directly have

a
T
r ui = 0: (C-13)

Similarly, we �nd that there exists vj that satis�es

a
T
r vj > 0; (C-14)

b
T
s vj = 0: (C-15)

From eqs.(C-12) through (C-15), we have

a
T
r (ui + vj) > 0; (C-16)

b
T
s (ui + vj) > 0: (C-17)

These equations imply that the sum of two span vectors ui and vj is not involved

in either A or B. Therefore, the su�cient condition is proved.
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Chapter 5

Concluding Remarks

A new methodology for analyzing and planning of manipulation using the theory

of polyhedral convex cones has been developed. This paper can be summerized as

follows.

First, a new approach to the kinematic and static analysis of manipulation is pre-

sented. Mechanical contacts between workpieces unidirectional constraints, which

are described by a set of linear inequalities. We developed an e�cient mathemat-

ical tool based on the theory of polyhedral convex cones, which allows us to treat

fundamental inequalities in a simple and systematic manner.

Second, we have developed a method for representing assembly processes with

respect to mechanical contacts. Gross motion of workpieces is analyzed by regarding

how workpieces contact each other and is represented by a contact state graph. An

algorithm for generating the graph from the geometric model of workpieces was

developed.

Third, a new method for processing force and displacement information to dis-

criminate the state of an assembly process has been developed. Contact state clas-

si�ers are automatically derived from the geometric model of workpieces using the

theory of polyhedral convex cones. This is a bridge between sensor signals and

symbolic-level state recognition.

It is required to understand the mechanism of manipulation to construct a higher-

level control system, which extends the task range and deals with varying task

conditions. This research provides a fundamental methodology for analysis and

planning of manipulative tasks based on the theory of polyhedral convex cones.
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