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Abstract— This paper describes the control of indirect
simultaneous positioning of a viscoelastic 2D object without
any physical parameter of the manipulated object. Applying
continua modeling of isotropic viscoelastic deformation, I first
show that the positioning can be performed successfully by
a simple integral control among positioned and manipulated
displacements without physical parameters. Then, I show that
a redundant system, where the number of manipulated dis-
placements exceeds the number of positioned displacements,
performs the positioning successfully.

Index Terms— deformation, positioning, control, continua,
manipulation

I. INTRODUCTION

Many manipulative operations that deal with deformable
objects result in a positioning of multiple points on a
deformable object [1], [2]. In this positioning, multiple
points on a deformable object should be guided to their
desired locations simultaneously. Moreover, it is often
impossible to manipulate the positioned points directly.
For example, one operation called linking is popular in
garment manufacturing. In linking of fabrics, loops at the
end of a fabric must be matched to loops of another fabric
so that the two fabrics can be sewed seamlessly. These
points cannot be manipulated directly since a sewing needle
is guided along the matched loops. Mating of a flexible
part in electric industry also results in the positioning
of mated points on the object. These points cannot be
manipulated directly since the points in a mating part
contact with a mated part. Consequently, we find that
a positioning of multiple points on a deformable object
is one of fundamental operations in the manipulation of
deformable objects. Since the positioned points cannot be
manipulated directly, the guidance of positioned points
must be performed by controlling some points except the
positioned points, as illustrated in Figure 1. This operation
is referred to as indirect simultaneous positioning, which
is abbreviated as ISP.

An iterative control law based on a roughly estimated
physical model of an extensible object has been proposed
[3]. It has experimentally shown that the positioning can
be performed successfully despite of the discrepancy of
physical parameters between an actual object and its model.
Simple PID-control has been successfully applied to the
ISP [4]. The former requires roughly estimated physical
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Fig. 1. Indirect simultaneous positioning of deformable object

parameters of a manipulated object and the latter requires
time-derivatives of sensor signals, which may cause in-
stability of the ISP process. In this paper, I will apply
continua modeling of a viscoelastic object to the indirect
simultaneous positioning and will show that a simple
integral control based on a distance-based mapping among
positioned and manipulated points performs the positioning
successfully without any physical parameter of the object.

II. DESCRIPTION OF INDIRECT SIMULTANEOUS

POSITIONING

Let us describe a deformable object by a set of triangles
or tetrahedra. Then, the object deformation can be repre-
sented by a set of nodal points. Assume that positioned
points and manipulated points are involved in the nodal
points. Let ui = [ui, vi]T be the displacement vector
of nodal point Pi. Some displacements of nodal points
should be guided to their desired values in an ISP. These
displacements are referred to as positioned displacements.
This guidance should be performed by controlling some
displacements except positioned displacements. These dis-
placements are referred to as manipulated displacements.
Displacements except positioned displacements or manipu-
lated displacements are referred to as non-positioned non-
manipulated displacements. Consequently, we can classify
a set of displacements into three subsets; 1) manipulated
displacements, 2) positioned displacements, and 3) non-
positioned non-manipulated displacements. For example,
three points marked as circles should be guided to their de-
sired locations marked as crosses in a positioning illustrated
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Fig. 2. Manipulated, positioned, and non-positioned non-manipulated
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in Figure 2-(a). This guidance is performed by controlling
three points marks as triangles. Thus, a set of positioned
displacements is given by u5, v5, u9, v9, u10, and v10

while a set of manipulated displacements is given by u1,
v1, u12, v12, u15, and v15. The desired values of positioned
displacements can be computed from the initial coordinates
and the desired coordinates of positioned points. In a
positioning illustrated in Figure 2-(b), three points marked
as circles should be aligned on a target line perpendicular
to the x-axis. Note that we must guide the x-coordinate
of the three points to the x-intercept of the line, while we
do not have to control the y-coordinate of the three points.
Thus, a set of positioned displacements in this example is
given by u5, u9, and u10. Displacements v5, v9, and v10 are
involved in non-positioned non-manipulated displacements.
The desired values of positioned displacements can be
computed from the initial x-coordinate of positioned points
and the x-intercept of the target line.

Let rp be a vector consisting of positioned displace-
ments, rm be a vector composed of manipulated displace-
ments, and rn be a vector consisting of non-positioned non-
manipulated displacements. Vectors rp, rm, and rn are
referred to as positioned displacement vector, manipulated
displacement vector, and non-positioned non-manipulated
displacement vector, respectively. Let p, m, and n be
dimension of vector rp, that of vector rm, and that of
vector rn, respectively. For example, in a positioning
shown in Figure 2-(a), we have

rp = [u5, v5, u9, v9, u10, v10]T ,

rm = [u1, v1, u12, v12, u15, v15]T ,

rn = [u0, v0, u2, v2, · · · , u14, v14]T .

Dimensions are given by p = 6, m = 6, and n = 24. In a
positioning shown in Figure 2-(b), we have

rp = [u5, u9, u10]T ,

rm = [u1, v1, u12, v12, u15, v15]T ,

rn = [v5, v9, v10, u0, v0, · · · , u14, v14]T .

Dimensions are given by p = 3, m = 6, and n = 27.
Recall that individual positioned displacements should

be guided to their desired values. This implies that all

elements composing vector rp have their desired values.
Let r∗

p be a vector consisting of the desired values of
the positioned displacements. Then, the goal of indirect
simultaneous positioning is given by an equation; r p = r∗

p.
This goal must be achieved by controlling manipulated
displacements, rm.

III. CONTROL LAW

Assume that a vision system can measure the current
values of positioned displacements. This implies that the
current value of positioned displacement vector r p can
be measured through a vision system. Moreover, recall
that mechanical fingers pinch an extensible object and no
slip between the fingers and the object occurs. Namely,
the current value of manipulated displacement vector r m

can be computed from the motion of mechanical pinching
fingers.

Let us define a mapping from a set of positioned dis-
placements to a set of manipulated displacements. Let ri be
a positioned displacement and r∗

i be its goal displacement.
Determine a manipulated displacement rj corresponding
to each positioned displacement ri. Then, let us apply the
following simple control law:

rj = KI

∫ t

0

(r∗i − ri) dt, (1)

where KI denotes integral gain. This equation computes
the commanded values of manipulated displacements r j .

The above equation provides a continuous control law.
Let us derive a discrete control law. Assume that positioned
displacement ri can be measured at time interval T . Let rk

i

and rk
j be the positioned displacement and the manipulated

displacement at the k-th time interval [kT, (k+1)T ]. Then,
the above continuous control law turns into a discrete
control law as follows:

rk+1
j = rk

j + KI(r∗i − rk
i ). (2)

Namely, the commanded value of manipulated displace-
ment rk+1

j at the next time interval is computed from
the current value of manipulated displacement rk

j and the
current error of positioned displacement r∗

i − rk
i . Note that

the these control laws include no physical parameters of
a positioned object. This implies that no identification of
physical parameters is needed.

IV. SIMULATION

A. Dynamic modeling of 2D viscoelastic deformation

Viscoelastic deformation has been extensively studied in
solid mechanics and finite element analysis. This section
briefly describes the dynamic modeling of two-dimensional
viscoelastic deformation. Note that the deformation mod-
eling is not for the control law of an ISP but for the
simulation of an ISP process.
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Fig. 3. Viscoelastic 2D object for simulation

Let σ be a pseudo stress vector and ε be a pseudo
strain vector. Stress-strain relationship of 2D isotropic
viscoelastic deformation is formulated as follows:

σ = (λIλ + µIµ)ε (3)

where

λ = λela + λvis d
dt

, µ = µela + µvis d
dt

.

Elasticity of the object is specified by two elastic moduli
λela and µela while its viscosity is specified by two viscous
moduli λvis and µvis. Matrices Iλ and Iµ are matrix
representations of isotropic tensors, which are given as
follows in 2D deformation:

Iλ =

⎡
⎣ 1 1 0

1 1 0
0 0 0

⎤
⎦ , Iµ =

⎡
⎣ 2 0 0

0 2 0
0 0 1

⎤
⎦ .

The stress-strain relationship can be converted into a
relationship between a set of forces applied to nodal points
and a set of displacements of the points. Let uN be a set of
displacements of nodal points. Let Jλ and Jµ are connec-
tion matrices, which can be geometrically determined by
object coordinate components of nodal points. Replacing
Iλ by Jλ, Iµ by Jµ, and ε by uN in the stress-strain
relationship (3) of a viscoelastic object yields a set of
viscoelastic forces applied to nodal points as follows:

viscoelastic force = (λJλ + µJµ)uN . (4)

Introducing vN = u̇N , we have

viscoelastic force = KuN + BvN (5)

where

K = λelaJλ + µelaJµ, B = λvisJλ + µvisJµ.

Let M be an inertia matrix and f be a set of external
forces applied to nodal points. Let us describe a set of
geometric constraints imposed on the nodal points by
AT uN = b. The number of columns of matrix A is
equal to the number of geometric constraints. Let λ be
a set of constraint forces corresponding to the geometric
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Fig. 4. Positioned and manipulated displacements in simulations

constraints. A set of dynamic equations of nodal points is
then given by

M v̇N = −KuN − BvN + f + Aλ.

Applying the constraint stabilization method [5] to the
constraints specified by angular velocity ω, system dynamic
equations are described as follows:

u̇N = vN ,

M v̇N − Aλ = −KuN − BvN + f ,

−AT v̇N = 2ωAT vN + ω2AT (uN − b).

Consequently,⎡
⎣ I

M −A
−AT

⎤
⎦

⎡
⎣ u̇N

v̇N

λ

⎤
⎦ =

⎡
⎣ vN

−KuN − BvN + f
2ωAT vN + ω2AT (uN − b)

⎤
⎦ . (6)
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Fig. 5. Motion of positioned points

Note that the above linear equation is solvable since the
matrix is regular, implying that we can sketch uN and vN

using numerical solver such as the Euler method or the
Runge-Kutta method.

B. Dynamic simulation of indirect simultaneous position-
ing

Let us simulate an indirect simultaneous position-
ing by taking a simple example illustrated in Figure
3. Two-dimensional deformation of a viscoelastic ob-
ject is described by nodal points P0 through P15. Let
us guide three points P5, P6, and P10 to their de-
sired location by controlling three points P3, P4, and
P14. Positioned displacement vector is given by rp =
[u5, v5, u6, v6, u10, v10]T and manipulated displacement
vector is rm = [u3, v3, u4, v4, u14, v14]T , as illustrated in
Figure 4-(a). Let us introduce a distance-based mapping
from the positioned displacements to the manipulated dis-
placements. Control law is then formulated as follows:

u3 = KI

∫ t

0

(u∗
6 − u6) dt,

u4 = KI

∫ t

0

(u∗
5 − u5) dt,

u14 = KI

∫ t

0

(u∗
10 − u10) dt.

The corresponding discrete control law is given by[
uk+1

3

vk+1
3

]
=

[
uk

3

vk
3

]
+ KI

[
u∗

6 − uk
6

v∗6 − vk
6

]
,
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Fig. 6. Motion of manipulated points

[
uk+1

4

vk+1
4

]
=

[
uk

4

vk
4

]
+ KI

[
u∗

5 − uk
5

v∗5 − vk
5

]
,

[
uk+1

14

vk+1
14

]
=

[
uk

14

vk
14

]
+ KI

[
u∗

10 − uk
10

v∗10 − vk
10

]
.

Elastic and viscous moduli are λela = 7.0, λvis = 4.0,
µela = 5.0, and µvis = 2.0. Density is given by ρ = 0.2.
Positioned displacements are measured at time interval T =
0.5. Let desired values of the positioned displacements be

u∗
5 =

[ −0.20
0.10

]
, u∗

6 =
[

0.30
−0.10

]
, u∗

10 =
[

0.10
0.30

]
.

Motion of the positioned displacements is plotted in Figure
5. Gain is given by KI = 1.7. Vibration comes from the
viscoelastic nature of the object. Despite of the vibration,
the positioned displacements converge to their desired
values, as shown in the figure. Motion of the manipulated
displacements is plotted in Figure 6. As shown in the figure,
the manipulated displacements are updated at every time
interval. Deformed shapes during the positioning process
are described in Figure 7. Crosses in the figures denote the
desired values of the positioned displacements. As shown
in the figure, the positioned displacements converge to their
desired values.

Let us guide the x-coordinates of P5, P6, and P10 to
their desired values by controlling the x-coordinates of P 3,
P4, and P14. Positioned displacement vector is given by
rp = [u5, u6, u10]T and manipulated displacement vector
is rm = [u3, u4, u14]T , as illustrated in Figure 4-(b). The
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Fig. 7. Process of indirect simultaneous positioning to desired points

discrete control law is then given by

uk+1
3 = uk

3 + KI(u∗
6 − uk

6),
uk+1

4 = uk
4 + KI(u∗

5 − uk
5),

uk+1
14 = uk

14 + KI(u∗
10 − uk

10).

Let desired values of the positioned displacements be

u∗
5 = 0.20, u∗

6 = −0.20, u∗
10 = −0.20.

Deformed shapes during the positioning process are de-
scribed in Figure 8. Dotted lines in the figures denote the
desired values of the positioned displacements. As shown
in the figure, the positioned displacements converge to their
desired values.

Let us guide the x-coordinates of P5, P6, and P10 to
their desired values by controlling the x- and y-coordinates
of P3, P4, and P14. Namely, a set of manipulated displace-
ments is redundant. Positioned displacement vector is given
by rp = [u5, u6, u10]T and manipulated displacement
vector is rm = [u3, v3, u4, v4, u14, v14]T , as illustrated in
Figure 4-(c). Let us introduce the discrete control law given
by

[
uk+1

3

vk+1
3

]
=

[
uk

3

vk
3

]
+ KI

[
α

1 − α

]
(u∗

6 − uk
6),

[
uk+1

4

vk+1
4

]
=

[
uk

4

vk
4

]
+ KI

[
α

1 − α

]
(u∗

5 − uk
5),

[
uk+1

14

vk+1
14

]
=

[
uk

14

vk
14

]
+ KI

[
α

1 − α

]
(u∗

10 − uk
10),

Deformed shapes during the positioning process at α = 0.7
are described in Figure 8. As shown in the figure, the po-
sitioned displacements converge to their desired values. It
turns out that the positioned displacements do not converge
to their desired values unless α ≥ 0.5.

V. CONCLUDING REMARKS

I have applied continua modeling of a viscoelastic
object to the indirect simultaneous positioning and have
simulated the positioning process. I have shown that a
simple I-control based on a distance-based mapping among
positioned and manipulated displacements performs the
positioning successfully without any physical parameter.
Note that an iterative control law proposed in this paper
requires no time-derivatives of sensor signals and works
well with time interval around 0.5, which is larger than
the sampling time in video frame rate. In addition, I have
shown that a redundant system, where the number of ma-
nipulated displacements exceeds the number of positioned
displacements, performs the positioning successfully.

I am going to investigate the stability of the positioning
process based on the continua modeling and its finite
element approximation of viscoelastic deformation. Exper-
imental verification is also a future issue. I will investigate
the positioning of an inelastic object including hysteresis
and rheological deformation.
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