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Abstract - The bond graph approach is used to model 
a hand prosthesis system, which is quite large to 
represent conveniently using either single or 
multibond graphs. This is usually the case with 
modeling biomechanical systems. To facilitate 
compact modeling of this system, the concept of Word 
Bond Graphs is applied to represent component 
subsystems as Objects. Such Word Bond Graph 
Objects (WBGO) are compact representations of 
subsystems, within the overall system, and have a well 
defined structure. They preserve an understanding of 
the physical system while facilitating quick and easy 
programming for numerical simulations due to their 
object oriented structure. WBGO identified and 
analyzed here for the hand prosthesis system include 
rigid finger link dynamics, translational and 
rotational coupling between two consecutive finger 
links, and string-tube mechanics for passive prosthetic 
joint actuation by natural active joints. The bond 
graph details for each WBGO have been presented 
together with a derivation of their system equations. 
The WBGO are then used to integrate a complete 
assembly of the dynamics of the hand prosthesis 
system. 
 

I. INTRODUCTION 

Biomechanical systems, and especially prosthetic 
systems, are usually large with interconnections and are 
applications well suited to bond graph modeling. The 
method of Bond graphs is an attractive and powerful 
technique as it offers a unified framework for modeling 
the mechanism, and, the actuation and control systems 
due to its capability of handling multi-energy domains 
[Karnopp et al., 2000], [Mukherjee and Karmakar, 2000]. 
In this work the bond graph technique is applied to the 
important area of modeling the essential mechanism of a 
human hand with a view to the design and development 
of hand prosthesis. The prostheses considered in this 
work have been proposed earlier by the authors [Vaz and 
Hirai, 2003], and are based on actuation of prosthetic 
fingers by the remaining natural fingers of a partially 
impaired hand. 

However, the dynamics for a hand-prosthesis system, 
using 1-bonds or scalar bonds, would yield a bond graph 
too large to represent and analyze. Vector bond graphs 

(VBG) or multibond graphs (MBG) do help to compact 
the representation to some extent [Bonderson, 1975], 
[Bonderson, 1977], [Breedveld, 1982], [Breedveld 1985]. 
It would be preferable to have more compact 
representation which preserves a clear picture of the 
overall system and can be explored analytically.  

One way to achieve this is to consider the overall system 
model as an integrated assembly of component 
subsystems which can interact with each other. 
Subsystems whose structure appears more than once in a 
system can be identified as a Word Bond Graph Object 
(WBGO). Word Bond Graphs (WBG) have been used 
extensively in literature to represent models of subsystem 
dynamics [Karnopp et al., 2000], [Breedveld 1985], 
[Tiernego and Bos, 1985], [Bos and Tiernego, 1985]. 

WBG have an inherent structure which can be put to 
effective use. The detailed structure of a WBG can be 
modeled using a combination of MBG and scalar bond 
graphs. The structure may or may not be assigned a fixed 
causality. The WBG can be treated as an Object with well 
defined input and output variables, state variables and 
parameters. Inputs and outputs to WBG structure using 
conventional bond graph variables of efforts and flows 
can be made explicit and used as handles for interfacing 
with other Objects or bond graph elements. The resulting 
structure of the WBG has properties of Objects as used in 
Object oriented programming. Code for simulation based 
on WBGO can be developed systematically and rapidly, 
or existing bond graph software can be used to exploit 
this structure. Hence it will be appropriate to distinguish 
them as WBGO. Interaction between these WBGO is 
graphically represented using scalar bonds or multibonds 
as in usual bond graph methodology. Once a WBGO with 
its interface is defined, it can be used as a component in 
the assembly of a complete system. Thus WBGO 
facilitate modeling of large and complex systems, in a 
graphical and intuitive manner. 

Applying this concept to the modeling of a hand 
prosthesis system requires an identification of the 
possible subsystems which can be represented using 
WBGO. Modeling of the hand prosthesis can be initiated 
from its fingers. These may be considered to be made up 
of almost rigid links (bones called phalanges). The joints 
between links are generally revolute, though not in a strict 
kinematic sense. The joints are roughly spherical in the 



kinematic sense but have a prominent revolute motion 
about an axis. The rigid constraints at joints are relaxed 
due to the presence of soft tissue and fluid [Chao et al., 
1989]. We can therefore consider a finger joint as 
connecting two links and permitting their revolute motion 
about its axis. The model of the dynamics of the hand and 
prosthesis system can be obtained by assembling WBGO 
for the following subsystems: (1) dynamics of each rigid 
finger link, (2) the translational and rotational couplings 
between two consecutive finger links, and, (3) the string-
tube mechanism which transmits motion from an active 
natural joint to a passive prosthetic joint.  

The detailed structure of each of these WBGO is worked 
out in subsequent sections so that their integration into a 
complete assembled model is made possible. Although 
the presentation pertains to the modeling of hand 
prosthesis designs proposed by the authors, the 
techniques are quite general and can be applied to other 
prosthetic devices and robotic systems as well. 

Organization of this paper is as follows. The next section 
clarifies the notation adopted in this work. In section II, a 
preview of rigid body mechanics using multibond graphs, 
is presented. WBGO for the hand prosthetic systems are 
systematically developed from the framework of 
multibond graphs in section III. The structure of a WBGO 
from the perspective of bond graphs as well as object-
oriented programming is also explained in this section. 
Here, the complete integration of component subsystems 
with each other is achieved to obtain a compact system 
dynamics model for the hand prosthesis system. Section 
IV offers concluding remarks. 

NOMENCLATURE 

The notation followed here for representation of 
mathematical quantities is based on an adaptation from 
[Craig, 1989] which is well known especially in robotics 
literature. Vectors are shown with a bar above. 0rQ P  
represents the position vector of a point P observed with 
respect to point Q and expressed in the frame 0. Other 
notation is as tabulated below. 

 
iF =Tension force in string i; i = 1, 2;  1∈

0
PF =Force vector acting at point P, expressed in

inertial frame 0;  3∈
0
iC iI⎡⎣ ⎤⎦ =Inertia tensor of link i with respect to its center

of mass, expressed in inertial frame 0; 3 3×∈  
10

iC iI
−

⎡ ⎤⎣ ⎦ =Inverse of inertia tensor ; 0
iC iI⎡ ⎤⎣ ⎦

3 3×∈  

is
K =Stiffness of string-tube i;  i = 1, 2;  1∈

isR =Damping coefficient of string-tube i;  i = 1, 2;
 1∈

1,i iK −⎡⎣ ⎤⎦ =Translational stiffness matrix at joint coupling

between link i and i-1;  3 3×∈
iM =Mass of link i. 

[ ]iM = [ ]iM U ; 3 3×∈ . [ ] 3 3U ×∈  is a unit matrix 

[ ] 1
iM − =Matrix inverse of [ ]iM ;  3 3×∈

1,i iR −⎡ ⎤⎣ ⎦ =Translational damping matrix at joint coupling
between link i and i-1;  3 3×∈

0
C R =Rotation matrix describing orientation of

frame C with respect to inertial frame 0;
3 3×∈  

0
C R =Time derivative of ;  0

C R 3 3×∈
0 T
A R =Transpose of rotation matrix  0

A R
0

ip =Translational momentum of link i observed
and expressed in the inertial frame 0. 

0
iC ip =Angular momentum vector of link i with

respect to its center of mass and expressed in
inertial frame 0. 

iAr =Radius of pulley at active joint on which string
i winds; i = 1, 2. 

iPr =Radius of pulley at passive joint on which
string i winds; i = 1, 2. 

0
i iC Pr =Position vector of point P on link i with

respect to its center of mass and expressed in
the inertial frame 0. 

0
i iC Pr⎡ ⎤×⎣ ⎦ =Skew symmetric cross product matrix

obtained from vector 0
i iC Pr ;  3 3×∈

1

0
i iP Pr −

=Position of point Pi-1, at the joint, on link i-1
with respect to its corresponding position Pi
on link i, expressed in inertial frame 0. 

1

0
i iP Pr −

=Relative velocity of point Pi-1, at the joint, on
link i-1 with respect to point Pi on link i,
expressed in inertial frame 0. 

0
0 iCr =Velocity of center of mass of the ith link

observed and expressed in inertial frame 0. 
A
B Cr = { }A

B C
d r
dt

; time derivative of A
B Cr ;  3∈

0 ˆ
iCu =ith column of representing unit vector o0

C R f
frame C with respect to frame 0. . 1,  2,  3i =

Aτ =Torque input to the string-tube mechanism by
the active joint; 1∈  

Pτ =Torque applied by the string-tube mechanism
on the passive joint;  1∈

iAzτ =Torque input to the string-tube mechanism by
the active joint i about its axis;  1∈

1
i

i
zτ

− =Z component of torque input to the active joint
i about its axis, expressed in frame i-1; 1∈  

1
ini

i
zτ

− =Component of torque input by the natural
finger to the active joint i about its axis,
expressed in frame i-1;  1∈

1i
iτ

− =Torque applied on link i expressed in frame i-
1; 3∈  

0
iτ =Torque applied on link i with respect to and

expressed in inertial frame 0;  3∈

Aθ =Active joint angle rate ;  1∈



Pθ =Passive joint angle rate;  1∈
A
B Cω =Angular velocity vector of frame C with

respect to frame B and expressed in frame A;
 3∈

A
B Cω⎡ ×⎣ ⎤⎦ =Skew symmetric cross product matrix

obtained from angular velocity vector A
B Cω ;

 3 3×∈
is∆ =Extension of string i;  i = 1, 2. 

is∆ =Time rate of extension of string i;  i = 1, 2. 

In this work, a scalar and multibond (vector bond) are 
differentiated by their relative thickness as shown in Fig. 
1. A multibond is an ordered collection of three scalar 
bonds. Hence the dimension three is not explicitly 
indicated on the vector bond. This is also to avoid 
congestion in figures. Thus, if the flow vector Cf r=  

then { } { }1 2 3, , , ,    Cx Cy Czf f f v v v=
TT , where { }1 2 3, ,  f f f f=

T  

and { }, ,  C Cx Cy Czr v v v=
T

. Similarly, if the effort vector 

Ce F=  then { } { }1 2 3, , , ,    Cx Cy Cze e e F F F=
TT , where 

{ }1 2 3, ,  e e e e=
T  and { }, ,  C Cx Cy CzF F F F=

T
. 

 

Scalar bond Vector bond 

e  
f  

Power e f= ⋅  

e  
f  

Power T Te f f e= =

 

Fig. 1. Convention used for scalar and vector bonds 

The notation used here is thus slightly different from that 
used by [Breedveld, 1985], [Tiernego and Bos, 1985], 
[Bos and Tiernego, 1985]. Moreover, the solid bond is 
easier to draw than the usual multibond with two parallel 
lines and its bond strength indicated in between them. 

The notation for the modulated transformer is shown in 
Fig. 2. The modulus is detached from the power 
directions of multibonds. A curved arrow is used to 
clarify the relationships between flow and effort vectors. 

 
MTF  
[ ]A  

1e  2e  

1f  2f  [ ]1 2

Te A e=

[ ]2 1f A f=

 

Fig. 2. Notation for the modulated transformer. 

II. BOND GRAPH PREVIEW FOR RIGID BODY MECHANICS 

One of the basic subsystems in the hand prosthesis system 
is the finger link, which is considered as a rigid body. In 
this section, a review of rigid body dynamics is presented. 

This will be used in the development of WBGO 
subsequently. 

A. Translation and rotation 

The fundamental equations of motion for rigid bodies 
[Shames, 1996] can be represented using bond graphs as 
shown. Translation of an unconstrained rigid body B is 
depicted using the multibond graph representation of Fig. 
3.  

 

0
0

1
Cr
 [ ]I: BM  

0
1F

0
nF

0
1

0
F

00
nF

 

Fig. 3.  Multibond graph for the Newton's second law applied to the 
rigid body 

0
0

1
Cr

 is the common flow junction with the velocity of the 

center of mass (CM) C, 0
0 Cr , as the common flow vector 

in all bonds connected to it. Fig. 3 shows that the 
translational momentum of the entire rigid body B can be 
considered to be concentrated at the center of its mass, 
and it changes according to the resultant of the forces 
applied on it. 

 0 0
B i

i

d p
dt

= F∑  (1) 

where, { }0
0B Bp M r= 0

C  is the translational momentum 

vector of the rigid body, and BM  is its mass. The 
momentum is expressed in the inertial frame 0. 
[ ] [ ]B BM M U=  , where [ ]U  is a 3  unit matrix. 3×

Rotational motion of the body, with frame B fixed on it, 
is given by the bond graph of Fig. 4. It clearly represents 
the cause-effect relationship between torque acting on the 
unconstrained rigid body and the angular momentum 
about its center of mass (CM) C. The total torque acting 
on the rigid body about C causes a change in its angular 
momentum about C. The effect is the rotation of the body 
with angular velocity 0

0 Bω , and is decided by the inertial 
properties of the rigid body.  

 



 

The equation for rotation of the rigid body, due to forces 
and torques acting on it, as represented in the bond graph 
can be written as 

 0 0 0
C B C i i j

i j

d p r F
dt

0τ= × +⎡ ⎤⎣ ⎦∑ ∑  (2) 

where, { }0 0 0
0C B C B Bp I ω= ⎡ ⎤⎣ ⎦  is the angular momentum of 

the body B about its CM C, and is expressed in the 
inertial frame 0. 0

C BI⎡⎣ ⎤⎦  is the inertia tensor of the body B 

expressed in the frame 0. 0
C ir ×⎡⎣ ⎤⎦  is the skew symmetric 

matrix obtained from vector { }0 0 0 0 T

C i C i C i C ir x y z=  as, 

 

0 0

0 0 0

0 0

0
0

0

C i C i

C i C i C i

C i C i

z y
r z

y x

−
x

⎡ ⎤
⎢ ⎥× = −⎡ ⎤⎣ ⎦ ⎢ ⎥
⎢ ⎥−⎣ ⎦

 (3)  

0
0

1
Bω
 

MTF  

MTF  

0 :IC BI⎡ ⎤⎣ ⎦  

0 T

C nr⎡ ⎤×⎣ ⎦  

0
1

T

C r⎡ ⎤×⎣ ⎦  0
1τ  0

1F

0
nF

0
1C r

0
C nr

00
nF

0
1

0
F

Fig. 4.  Multibond graph for rotational motion of the rigid body. 

From above, both translation and rotation for the rigid 
body can be combined in one bond graph as shown in 
Fig. 5. It may be noted that the initial structure of this 
model is based on the kinematic relations given by 

 0 0 0 0
0 0 0 , 1,..,     

T

i C C i Br r r i nω= + × =⎡ ⎤⎣ ⎦ .  (4) 

It may be noted that the Bond graph for the unconstrained 
rigid body can be integrally causalled.  

Since the elements of the inertia tensor 0
C BI⎡ ⎤⎣ ⎦  are 

expressed in the frame 0 they change due to rotation of 

the body with respect to frame 0. We know that the 
elements of the inertia tensor are constant for the rigid 
body if expressed in a frame fixed on the body itself. The 
inertia tensor expressed in frame 0 can be related to that 
in frame B as 

 

0
0

1
Cr

[ ]I: BM  

0
1

0
F

00
nF

0
0

1
Bω
 

MTF

MTF

0 :IC BI⎡ ⎤⎣ ⎦  

0 T

C nr⎡ ⎤×⎣ ⎦

0
1

T

C r⎡ ⎤×⎣ ⎦0
1τ

0
1C r

0
C nr

0
0 1r

0
0 nr

Fig. 5.  Multibond graph representing translation and rotation of an unconstrained rigid body. 

 0 0 0B T
C B B C B BI R I R=⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  (5) 

An alternative representation to (2) can be expressed in 
the body frame B as, 

 

0
0

1
Cr
 

0
1B

Cr
[ ]I: BM  

1
0 B F

0 B
nF

0
1B

Bω
 

MTF  

MTF  

:IB
C BI⎡ ⎤⎣ ⎦  

TB
C nr ×⎡ ⎤⎣ ⎦

1

TB
C r ×⎡ ⎤⎣ ⎦

1
Bτ  

1
B
C r

B
C nr

0 1
Br

0
B

nr

MTF

0
B R

B
nF

1
BF

EJSGR:

Fig. 6.  Multibond graph model of an unconstrained rigid body. The rotational motion is expressed in the body frame B, while translational 
motion is expressed in the inertial frame 0. 



0
B B B B B B
C B C Bi B C i i

i j

d p p r F
dt jω τ= × + × +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∑ ∑  (6) 

3

0 ˆBu  

2

0 ˆBu
1

0 ˆBu

1

0 ˆBu

∫ MTF  

3

0 ˆ
T

Bu⎡ ⎤×⎣ ⎦

2

0 ˆ
T

Bu⎡ ⎤×⎣ ⎦  

0
0 Bω  

0
0

1
Bω
 MTF

1

0 ˆ
T

Bu⎡ ⎤×⎣ ⎦

MTF  

2

0 ˆBu

3

0 ˆBu  

∫

∫  

Fig. 7.  Obtaining columns of the orientation matrix . 0
B R

The corresponding multibond graph is shown in Fig. 6. In 
(6), { }0C B C B Bp IB B Bω= ⎡ ⎤⎣ ⎦  is the angular momentum of the 

body B about its CM C, and is expressed in the body 
frame B. B ×⎡ ⎤⎦C Bip⎣  is the skew symmetric matrix obtained 

from vector B p
B

C B , as shown in (3). The elements of the 

inertia tensor C BI⎡ ⎤⎦

B

⎣  are constants. When the body frame 

B is chosen to coincide with the principal axes of inertia, 

C BI⎡ ⎤⎦⎣  becomes diagonal. The first term on the right hand 

side of (6) has the operator B p ×⎡ ⎤⎦C Bi⎣  which when operated 

on the flow vector 0
B

Bω  provides the gyroscopic term 
corresponding to the Euler junction structure (EJS) 
[Karnopp et al., 2000] represented by the gyristor 
multiport element GR [Tiernego and Bos, 1985], [Bos 
and Tiernego, 1985]. On account of the cross product 
terms occurring in the modulated transformers due to 
kinematics, in bond graph models of Fig. 5 and Fig. 6, 
these cannot be considered as entirely acausal [Favre and 
Scavarda, 1998]. 

The designer has the option to choose any one of the two 
frames, frame 0 or frame B, for expression of rotational 
motion. From the computational viewpoint, both the 
options require the same number of scalar multiplications, 
with the former option requiring marginally lesser 
number of additions. Hence we choose to use 
representation in the inertial frame 0. Other options may 
exist depending on the configuration of the mechanism 
modeled. Considerations for the choice of representation 
frames from the viewpoint of kinematic loops have been 
discussed by [Favre and Scavarda, 1998].  

The orientation matrix  is necessary in either of the 
two viewpoints mentioned above, and is discussed in the 
next subsection. 

0
B R

B. Orientation 

The orientation of frame B with respect to frame 0, given 
by the rotation matrix , is obtained by the integration 
of the matrix differential equation 

0RB

 0 0 0
0B BR ω= ×⎡ ⎤⎣ ⎦ B R

t 0 ( )R t t

(

 (7) 

This means that if the orientation of the rigid body at time 
 is given as , the orientation at time  can be 

obtained as 
0 0B

)0R tB  from integration of (7). Information 

about 0
0 Bω  is necessary. There are well known 

dependencies among the elements of  due to its 
orthonormality. The columns of  are unit vectors of 
frame B along its coordinate axes expressed in the frame 
0. Due to the angular velocity 

0R
0R

B

B

0
0 Bω  of the body, these unit 

vectors undergo a change of orientation, at time , with 
respect to frame 0. The columns are obtained from 
integration of 

t

 0 0 0
0ˆ ˆ , 1, 2,       

i i

T

B B Bu u iω⎡ ⎤= × =⎣ ⎦ 3

B

 (8) 

where, 
1 2 3

0 0 0 0ˆ ˆ ˆB B BR u u u⎡ ⎤= ⎣ ⎦ . In terms of Bond graphs, 

this relationship is shown in Fig. 7. Thus the orientation 
matrix  can be constructed again. This approach has 
redundancy in it, caused by the orthonormal nature of 

. The third column vector of  can be obtained from 

the previous two columns by vector cross multiplication. 

0R

0R 0R

0R

B

B B

 

0X  

0Y

1iY −  

1iX −  

iY

iX

1iC −  

iC  

link 1i −  
0

iτ  

0O

link i
joint i  

Fig. 8.  A finger joint connecting two links. 

The relative orientation between two links, say A and B, 
can be obtained from (9) once their orientations  and 

, with respect to frame 0, are known. 

0
A R

B

  (9) 0 0A T
B A BR R R=



III. CONSTRUCTION OF WORD BOND GRAPH OBJECTS FOR 
THE HAND PROSTHESIS SYSTEM 

The above developments are applied to an example of a 
finger with a revolute joint, shown in Fig. 8. 

A.  WBGO for the two-link finger 

The MBG for the system is shown in Fig. 9. The WBGO 
for two consecutive links i and i-1 are outlined in the 
MBG of Fig. 9. P is the point of connection between the 
two links if the translational constraint is rigid. The 
constraint is relaxed by using an elastic coupling. In this 
case the point on link i coinciding with point P is Pi, and 
on link i-1 is Pi-1. The significance of elastic elements in 
relaxing rigid constraints has been explained using scalar 
bond graphs in [Karnopp, 1997] and [Zeid and Overholt, 
1995]. The MBG has integral causality, due to relaxation 
of kinematic constraints. If the constraints were to be 
rigidly imposed, derivative causality would appear at the 
multibonds connected to the translational inertia 
elements. Derivative causality occurs due to the 
imposition of kinematic constraints which result in the 
dependence of the momenta of masses 1M  and 2M  on 
the angular momenta of links 1 and 2 about their 
respective centers of mass. In natural finger systems, the 
presence of soft tissue and fluid relax the joint constraints 
by introducing their own properties of stiffness and 
dissipation. This justifies the introduction of bond graph 
elements representing stiffness and dissipation at 
respective joints. 

Equations governing behavior of the finger joint system 
are derived systematically from the bond graph of Fig. 9 
as follows. 

Step I:  

 
10 0 0

0 ,
i ii C i C iI pω

−
⎡ ⎤= ⎣ ⎦  (10) 

where, 
1 10 0 0 .

i i

i T
C i i C i iI R I R

− −
⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦  

 

1 1

10 0 0
0 1 1 1,i ii C i C iI pω

− −

−

− −⎡ ⎤= ⎣ ⎦ −  (11) 

where, 
1 1

1 10 0 1 0
1 1 1 1 .

i i

i T
C i i C i iI R I R

− −

− −
−

− − − −⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦  

 [ ] 10
0 iC ir M p−

= 0
i  (12) 

 [ ]
1

10
0 1iC ir M p

−

− 0
1i− −=  (13) 

 
1

0 0
1, 1,i i i i 1

0
P i i P P i i P PF K r R r

− −− −= ⎡ ⎤ + ⎡ ⎤⎣ ⎦ ⎣ ⎦  (14) 

Step II: 
 0 0 0 0

i i iC i i C P Pp rτ F⎡ ⎤= + ×⎣ ⎦  (15) 

 { }1 1 1

0 0 0 0
1i i iC i i C P Pp rτ

− − −− ⎡ ⎤= − + × −⎣ ⎦ F  (16) 

 0 0
ip F= P  (17) 

 0 0
1ip − = − PF  (18) 

1 1

1 1 1

0 0 0
0 0

0 0 0 0 0
0 0 1 0

i i i i

i i i i i i

P P P P

C C P i C C P

r r r

r r r r 0
0 iω ω

− −

− − − −

= −

⎡ ⎤ ⎡= − × − + ×⎤⎣ ⎦ ⎣ ⎦
 (19) 
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0
iτ  

0
0 1

1
iω −

 0
0 1

1
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MTF 00
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[ ]1I: iM −  

1 1

0

i i

T

C Pr− −
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00
iτ
 

0
0 1

1
Pir −

0 1

1,C: i iK −⎡ ⎤⎣ ⎦

1,R: i iR −⎡ ⎤⎣ ⎦

0
0

1
Pir

0 :I
iC iI⎡ ⎤⎣ ⎦  

1

0
1 :I

iC iI
− −⎡ ⎤⎣ ⎦  

0
1i iω−  

0

i iC Pr

1 1

0

i iC Pr− −

1

0

i iP Pr −

BGOM for rigid link i

BGOM for rigid link 1i −

BGOM for translational 
 coupling at P

BGOM for rotational coupling

Fig. 9.  Multibond graph for the finger joint system. WBGO are identified and marked. 



 0 0 0 0 0 0
0 1 0and,       i i i i i iR R Rω − −= × = ×⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦1 1 Rω −  (20) 

Each WBGO for the rigid link, identified by an outline in 
Fig. 9, has a well defined structure as shown in Table I.  

 

 
TABLE I 

Output = WBGO for link i (Input) 
Parameters of the WBGO: 
 [ ]I: iM , 0I:

iC iI⎡ ⎤⎣ ⎦  

Initially required variables: (These are then obtained at every integration 
step from the solver) 
 0

0 iCr , i  0R
Input:  (can be in any or both of the following two forms) 
 0

iτ  or Input torque on link i. More than one torque can 
act on link i at a time. 

 ( 0
PF ,

i i
 ), 

… 

i
C Pr Ordered pair of the force acting on link i at point 

P, with its corresponding position with respect to 
the CM of link i, expressed in frame i. 

Output:  (These are provided as input to the solver at every integration 
step) 
 0

0 iω , 0
0 iCr , 0

0 iPr , … 

The structure of the WBGO for a translational coupling is 
shown in Table II. 

TABLE II 
Output = WBGO for translational coupling between links i and i-1 
(Input) 
Parameters:  

1,C: i iK −⎡ ⎤⎣ ⎦ ,  1,R: i iR −⎡ ⎤⎣ ⎦
Initially required variables:   0

0 iPr , 
1

0
0 iPr −

 

Input:   0
0 iPr , 

1

0
0 iPr −

 

Output:   0
PF  

 

B.  WBGO for string-tube based joint actuation 

The transmission of motion from the active to the passive 
joint of the prosthesis is discussed next. The details of 

actuation from the active to the passive joint have been 
explained in [Vaz and Hirai, 2003]. A brief review is 
provided here. Fig. 10 shows the string-tube based 
mechanism for actuation of a passive prosthetic joint by 
an active natural joint. Each pair of joints is connected by 
two string-tubes. Multi-strand wire is used for the string 
which passes through a steel spring-tube. The tubes are 
flexible but offer very high impedance to compression in 
the axial direction. At a joint, the tube ends are fixed on 
the proximal link, while the string ends are fixed on the 
corresponding distal link. The strings move relative to 
their corresponding tubes when actuated. The strings can 
be set with a desired initial pretension. The sense of 
winding of strings around pulleys at each joint determines 
the configuration of the mechanism. Fig. 10 shows the 
prosthesis joint actuation for the unlike configuration. 
Here the sense of rotation of the passive joint opposes 
that of the active joint, and is commonly employed for 
tasks such as gripping, pinching, holding, etc.  

The mechanics of the string-tube connection between an 
active and a passive joint is shown in the bond graph of 
Fig. 10 [Vaz and Hirai, 2004]. The WBGO for string-tube 
mechanics is outlined in the figure. The two string-tubes 
are represented by the two paths between junctions 1

Aθ
 

and 1
Pθ

. The TF elements relate string tensions to 

corresponding torques applied at the joints. They also 
relate the speeds of string motion at pulleys to 
corresponding joint angle rates. The modulus of each TF 
element is based on the radius of the joint pulley on 
which the corresponding string is wound, and on the 
sense of the winding. The string-tube connecting an 
active and passive joint decides the string tensions and 
hence the torques experienced on the joints based on the 
extension of the string-tubes. This extension is decided by 
the angular motions of the joints connected by the string-
tubes. Multiport elements C : sK :R and sR  are used to 
model elastic and dissipative behavior respectively, for 
each of the string-tubes. Flows Aθ  and Pθ  are input to the 
WBGO and efforts Aτ  and Pτ  are output from it.  

 

Passive joint with 
unlike configuration 

String 2 

Aθ
 

uPθ  
 

Active joint
String 1 

2A
 1A

 

1P  
 2P  

 

tube 2tube 1

Fig. 10.  Joint actuation using string-tube based system in unlike 
configuration. 



 

 

The system equations for the WBGO are, 
 1 1 1 2 2 2;      A A P P A A Ps r r s r r Pθ θ θ∆ = + ∆ = − − θ

2

 (21) 

 
1 1 2 21 1 1 2 2;      s s s sF K s R s F K s R s= ∆ + ∆ = ∆ + ∆  (22) 

 1 1 2 2 1 1 2 2;      A A A P P Pr F r F r F r Fτ τ= − = − +  (23) 

The structure of the WBGO for a joint actuation string-
tube module is as follows. 

TABLE III 
Output = WBGO for joint actuation string-tube (Input) 
Parameters:  

1
C: sK , 

2
C: sK , 

1
R: sR , 

2
R: sR , 1Ar , , 1Pr

2 Ar ,  2 Pr
Initially required 
variables:   

Aθ , Pθ  

Input:   
Aθ , Pθ  

Output:   
1s

F , 
2sF , Aτ , Pτ  based on (21)-(23). 

C.  WBGO for rotational coupling at prosthetic finger 
joints 

The WBGO for the rotational coupling roughly outlined 
in Fig. 9 is elaborated in Fig. 12. The relative angular 
velocity 0

i1i ω−  between links i and i-1, and the torque 0
iτ  

are transformed to 1
i i1
i ω−−  and 1i

iτ
−

0MTF: TR

1

 by the modulated 
multiport . This changes the frame of 
expression from frame 0 to frame i-1. Single bonds have 
been direct summed to obtain the multibond as shown.  

Input torque i

1i−

ini
 

TF  

1
Pθ

TF  
1Ps  

2Pr  

1Pr−  

2 Ps  

1
Aθ
 

TF  
1As  

2 Ar−  

1Ar  

TF  
2 As  2

0F

1
0F

2F  

1F  

2s∆  

1s∆  

2
1 s∆

1
1 s∆

2
C : sK  

2
R : sR  

1
C : sK  

1
R : sR  

String-tube 2 

String-tube 1 

Aτ  Pτ

Fig. 11.  String-tube mechanics. This bond graph is constructed using 
scalar bonds only. 

zτ
−

1

 at the active joint of the prosthesis is 

supplied by the natural joint to which it is connected. 
This results in motion of the active joint, which is 
transmitted to the string-tube subsystem, causing it to 
actuate the passive joint. The causal path clearly depicts 
this functioning. High values of stiffness i

xiKω
−

1i

 and 

yiKω
− 1 with matching values for i

xiRω
− 1R− and i  are 

used to prevent relative angular motion in these 
directions, instead of rigidly imposing constraints. A 
passive joint has a similar WBGO except for the absence 
of the bond supplying additional input torque. 

yiω

D.  Complete model of the hand prosthesis system using 
WBGO 

Using the WBGO for the hand prosthesis system 
developed above, a complete model for the string-tube 
based two-joint prosthetic finger mechanism is assembled 
and depicted in Fig. 13. It is for general three-
dimensional motion of the finger links, and not restricted 
to a planar case only. Four types of WBGO have been 
used in the complete model. Each WBGO has a bond 
graph structure which can be concealed to avoid 
excessive detail and confusion. Each WBGO interfaces 
with other appropriate WBGO using a combination of 
single and multibonds. It may be observed that an 
otherwise large model for the hand prosthesis system is 
now compactly represented. The clear picture of the 
overall system along with its component subsystems and 
their interactions has been preserved. The object oriented 
programming structure of each WBGO for the hand 
prosthesis system is conducive to simplified and rapid 
coding for numerical simulation.  

IV. CONCLUSION 

The hand prosthesis system is modeled using the bond 
graph approach. This system is too large to represent 
conveniently using either single or multibond graphs. To 
facilitate the modeling of this system using compact 
representation, the concept of WBG is applied to 
represent component subsystems as Objects. WBGO are 
compact representations of subsystems, within the overall 
dynamic system considered, with a well defined structure. 
The Object oriented programming structure of each 
WBGO facilitates coding for numerical simulation. The 
advantages of the WBGO have been discussed. WBGO 
are identified and analyzed for the hand prosthesis 
system. These include WBGO for the following 
subsystems: (1) rigid finger link dynamics, (2) 
translational coupling between two consecutive finger 
links, (3) rotational coupling between them, and (4) 
string-tube mechanics for passive joint actuation. The 
bond graph details for each WBGO have been presented 
together with a derivation of their systems equations and 
a tabulated outline of its structure.  
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Fig. 12.  WBGO for an active joint system. 
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Fig. 13.  WBGO used in modeling a string-tube based two-joint actuated finger prosthesis. 
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