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Abstract— We observed how a pair of 1-DOF fingers, whose
fingertips are similar to humans in that they have a soft and
hemispherical pad with a buttressing hard back plate, grasped
and manipulated a rigid object. Based on the observations,
we propose and validated a parallel distributed model that
takes into account tangential deformation of the fingertips.
We conclude that the number of degrees of freedom that the
fingertips require to grasp and manipulate rigid objects is one
less than the theoretical number required by rigid fingertips,
and that the control law for the soft fingertips is simpler.

I. INTRODUCTION

It is well known that we can grasp and manipulate
objects with outstanding dexterity thanks to our highly
developed brain, binocular brain, and abundance of motor
and sensory nerves in our hands and fingers. It is also
well known that, not only the anatomy of our hands, but
also that of our fingers are well designed for grasping and
manipulating objects. In addition to allowing us to pick up
small objects, the fingernails are essential for the high level
sensitivity and as a buttress for the pad. Because our fingers
are so good at grasping and manipulating, much research in
the field of robotics has focused on soft-fingered grasping
and manipulation. However, little research has considered
the shape and function of our fingernails.

Here, we examine the mechanics in grasping and ma-
nipulation by a simple robotic hand consisting of a pair
of 1-DOF rotational fingers with hemispherical fingertips
that have a soft pad and a hard back plate, similar to
human fingers. We observe it grasping and manipulating
an object, and show experimentally and theoretically that
such fingers require fewer DOFs than corresponding fingers
with hard fingertips. With the reduction in DOF, the control
law is simpler, and fast sensing and visual monitoring of
the object are not required.

Related work
Finite element (FE) analysis is often used when studying

the deformation of objects, and can be used to describe
deformation of a hemispherical soft fingertip exactly [1],
[2], [3]. However, though FE analysis can be used to sim-
ulate grasping and manipulation numerically but cannot be
applied to theoretical analysis of grasping and manipulation
due to its complex formulation. In other words, FE analysis
yields a procedural deformation model, which allows us to
simulate the deformation of objects but cannot be applied to
theoretical analysis. According to the principle of Occam’s

Fig. 1. A pair of 1-DOF fingers with soft fingertips

razor, we should choose a simple model to analyze and
explain grasping and manipulation by soft fingertips.

The Hertzian contact model provides a simple closed-
form description of the contact between two quadratic
surfaces of elastic objects [4], but because the surfaces
are assumed to be open-ended, it cannot be applied to
a hemispherical elastic fingertip with a rigid back plate.
Arimoto et al. formulated dynamics of pinching by a
pair of soft fingertips [5], and used a radially distributed
deformation model to analyze the mechanics of a soft
fingertip [6]. Based on the concept of stability on a man-
ifold, they showed theoretically that a 2-DOF finger and
a 1-DOF finger can together realize secure grasping and
posture control [7], [8]. Moreover, Arimoto and Doulgeri
formulated rolling contact between a grasped object and
fingers with rigid tips and also showed that a 2-DOF
finger and a 1-DOF finger can together realize secure
grasping and posture control. This implies that rolling
contact between an object and fingertips is the key to
stable grasping and posture control, and that a third DOF
is necessary to balance the moments acting on a grasped
object. However, from our observations below, in addition
to being able to grasp a rigid object, a pair of 1-DOF
fingers with soft hemispherical fingertips can control the
orientation of the object, which calls for a new model.

II. OBSERVATION OF SOFT-FINGERED GRASPING AND
MANIPULATION

A. Object pinching by a pair of 1-DOF fingers

Let us observe the grasping and manipulation of a
rigid object by a pair of soft-fingertipped finger each with
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Fig. 2. Deformation of fingertips when two fingers rotate in opposite directions
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Fig. 3. Motion of object when two fingers rotate in the same direction
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Fig. 4. Rotation of pinched object by external force

a 1-DOF rotational joint driven by an actuator. Figure
1 shows such a pair of fingers, driven by DC motors,
grasping a rectangular rigid object. When the two fingertips
move inward, that is, toward each other, they become
more deformed, suggesting that they are applying a larger
grasping force, as shown in Figure 2. This observation
suggests that the grasping force can be regulated by the two
joint angles, i.e., secure grasping can be achieved by a pair
of 1-DOF fingers with soft fingertips. When one fingertip
moves inward and the other outward, that is, both rotate
in the same direction, the object rotates in the opposite
direction, implying that the orientation of the object can
be regulated by the two joint angles, as shown in Figure 3.
This observation suggests that orientation can be controlled
by a pair of 1-DOF fingers with soft fingertips.

The above observations suggest that a pair of 1-DOF fin-
gers with soft fingertips can control both grasping force and
object orientation independently, in contrast to a conclusion
by Arimoto et al., in their analysis of the dynamics of soft-
fingered grasping and manipulation, that a pair of 1-DOF
rotational fingers with soft fingertips can control grasping
force but not object orientation. They asserted that both a
1-DOF finger and a 2-DOF finger are required to control
both grasping force and object orientation. Thus, there is a
discrepancy between our observations and their claim, so
their model may not be valid in this case. In their radially
distributed model, Figure 5-(a), the contact force passes
through the center of a soft hemispherical fingertip, and its

magnitude is dependent on the maximum displacement of
the fingertip but not on the relative orientation between the
fingertip and the object. Since two contact forces would
apply a non-zero moment to the object, an additional DOF
is needed to cancel out the moment and to stabilize object
rotation. Therefore, we need another fingertip model that
properly also describes the maximum displacement and the
relative orientation between the fingertip and the object.

B. Rotation of pinched object by external force

When an external force is applied to the rigid object
pinched by the two fingers fixed at given orientations, the
fingertips deform the object may rotate, as shown in Figure
4. When the applied force is relaxed, the object returns to
its initial orientation. The object, therefore, does not slip,
and so there are geometric constraints, which are referred to
as rolling constraints. On giving constant values to both of
the joint angles and solving the two rolling constraints, we
find that the orientation of the grasped object is constant.
This is another discrepancy with the claim by Arimoto et
al, and it is due to the lack of tangential deformation in their
model. In their radially distributed model, any point on the
hemispherical surface of a soft fingertip moves along a line
normal to the surface, which determines the shrinkage of
an elastic element inside the fingertip. That is, each elastic
element deforms normally but not tangentially. Therefore,
it is necessary to introduce tangential deformation into the
fingertip model to describe the rotation of a pinched object



(a) radially distributed model (b) parallel distributed model

Fig. 5. Fingertip models

(a) without tangential deformation (b) with tangential deformation

Fig. 6. Tangential deformation in the parallel distributed model

by an external force.

III. SOFT FINGERTIP MODELS

Let us build a model based on the observations of
soft fingertips described in Section II. Figure 5-(a) shows
the radially distributed model, which has been applied
previously to the analysis of soft-fingered grasping and
manipulation [5], [6]. Let a be the radius of a hemispherical
fingertip in its natural shape and E be Young’s modulus of
the material of the fingertip. Elastic elements are distributed
radially inside the fingertip. As all of the elements have
the same natural length, which is given by the radius a
of the fingertip, they all have the same spring constant
E dS/a, where dS denotes the element’s cross-sectional
area. When the soft fingertips contact the planar surface
of the rigid object, they deform, thereby applying elastic
forces. Let d be the maximum displacement of the soft
fingertip and θp be the relative orientation between the
fingertip and the object. Each elastic element generates
an elastic force according to how much it is deformed.
Integrating all elastic forces gives the resultant contact
force:

Fradial = πEd2. (1)

The force passes through the center of the fingertip, as
illustrated in the figure. Note that the magnitude of the
force depends on the maximum displacement d but is
independent of the relative orientation θp.

Figure 5-(b) shows our proposed parallel distributed
model. We summarize the derivation of the model. See [9]
in detail. The elastic elements are distributed in parallel
inside the soft fingertip. Note that the natural length of
each element is dependent on the element’s position. Let
(x, y) be the position of an elastic element. Then, its natural

length is given by (a2−x2−y2)1/2 and the spring constant
of the element is given by

E dS√
a2 − (x2 + y2)

.

Each elastic element generates an elastic force according
to its shrinkage. Integrating all elastic forces gives the
resultant contact force. Displacement d and angle θp deter-
mine the shrinkage of each elastic element. Computing the
integral yields the magnitude of the contact force given by

Fperp =
πEd2

cos θp
. (2)

The force is perpendicular to the planar surface behind the
fingertip, as illustrated in the figure. Note that the force
magnitude depends on both the maximum displacement
d and the relative orientation θp. This dependency is due
to the hemispherical shape of the soft fingertip subtended
by a fixed rigid end, which is similar to a human finger
consisting of a soft fingertip and a hard fingernail. The
parallel distributed model reflects this structure consisting
of a soft fingertip and a hard fingernail. Integrating poten-
tial energies caused by the perpendicular deformation of
individual elastic elements in the parallel distributed model
yields the potential energy of the fingertip as follows:

Uperp(d, θp) =
πEd3

3 cos2 θp
. (3)

Note that the potential energy depends not only on the max-
imum displacement d but also on the relative orientation
θp.

As described in Section II, tangential deformation should
be introduced into the parallel distributed model so that
a pinched object can rotate when an external force is
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Fig. 7. Simulation and experimental results

applied. Figure 6 shows the tangential deformation model.
Assume that the fingertip does not deform tangentially
when in contact with the rigid object, as illustrated in
Figure 6-(a). In the parallel distributed model, point Qk

on the fingertip surface moves to Pk, shrinking the elastic
element of natural length QkRk to PkRk. Assuming that
the rigid object moves tangentially by displacement dt as
shown in Figure 6-(b), the point Pk moves to P′

k, and
PkP′

k determines the tangential deformation of the elastic
element. Given the position and the orientation of an object,
we can calculate the perpendicular deformation QkPk

and tangential deformation PkP′
k of each elastic element.

The tangential deformation determines the tangential force
generated by the element. For the sake of simplicity, we
assume that Young’s modulus E characterizes the linear
relationship between the tangential force and the tangential
deformation. Integrating tangential forces for all elastic
elements gives the resultant tangential force:

Ftangent = 2πEddt. (4)

We should emphasize that perpendicular and lateral compo-
nents of the contact force in the radially distributed model
are given by Fradial cos θp and Fradial sin θp, respectively,
compared with Fperp + Ftangent sin θp and Ftangent cos θp

in the parallel distributed model. Integrating potential
energies caused by tangential deformation of individual
elastic elements in the parallel distributed model yields the
total potential energy caused by tangential deformation as
follows:

Utangent(d, dt, θp) = πE{d2dt tan θp + dd2
t}. (5)

As the perpendicular and tangential displacements are
not orthogonal, the above equation shows the coupling
between them. Consequently, the total potential energy of a
hemispherical soft fingertip in the parallel distributed model
can be formulated as follows:

Uparallel(d, dt, θp) = Uperp(d, θp) +
Utangent(d, dt, θp). (6)

Note that this potential energy is dependent on the max-
imum displacement d, tangential displacement dt, and

relative angle θp.

IV. EXPERIMENTAL VERIFICATION OF FINGERTIP
MODELS

We experimentally verified the parallel distributed model
proposed in Section III. We made a hemispherical silicon
rubber fingertip with a diameter of 40 mm. From a tension
and compression test, Young’s modulus of the silicon
rubber was E = 0.232 MPa. We obtained the resultant
perpendicular force applied by the fingertip by summing
the pressure measured by an array of pressure sensors on
the back of the fingertip. Figure 7 compares the results
of our simulation and experiment. The horizontal and
vertical axes in the graphs denote the relative angle between
the fingertip and an object and the magnitude of the
elastic force, respectively. The maximum displacements are
2.0 mm, 4.0 mm, 6.0 mm, and 7.5 mm. As shown in Figure
7-(a), the magnitude of the contacting force is minimum at
θp = 0 as long as the maximum displacement d remains
constant. The experimental results shown in Figure 7-(b)
also show that the magnitude is minimum at θp = 0.
Consequently, the force model in the parallel distributed
model agrees with the experimental results. Note that in
the radially distributed model, the magnitude of the force
remains constant and the component perpendicular to the
back plate is maximum rather than minimum at θp = 0.
Hence, the radially distributed model does not agree with
the experimental results.

V. DYNAMICS OF SOFT-FINGERED GRASPING AND
MANIPULATION

Let us apply the parallel distributed model to the pair of
1-DOF fingers with soft hemispherical fingertips grasping
and manipulating the rigid object in Figure 8. The right
finger rotates around point S and the left finger rotates
around point T, and θ1 and θ2 are the rotational angles of
the right and left fingers which have the same dimensions.
Let L be the length between the center of the hemispherical
fingertip and the finger rotational joint, Wfi be the distance
between the two rotational joints, and dfi be the thickness



of fingers. Let O1 be the center of the right fingertip and
(O1x, O1y) be its position, which is given by

O1x = Wfi − L sin θ1 − dfi cos θ1,

O1y = L cos θ1 − dfi sin θ1.

Let O2 be the center of the left fingertip and (O2x, O2y)
be its position, which is given by

O2x = −Wfi + L sin θ1 + dfi cos θ1,

O2y = L cos θ1 − dfi sin θ1.

The width of the body of width is Wobj. Let (xobj, yobj)
be the positional vector and θobj be the orientation angle
of the object. The relative angle between the object and
the right finger is θ1 − θobj, while the angle between the
object and the left finger is θ2 + θobj.

Let dn1 and dt1 be the maximum and and tangential
displacements of the right fingertip. Let us formulate ge-
ometric constraints imposed by the contact between the
object and the right fingertip. These constraints depend on
the maximum normal and tangential displacements dn1 and
dt1, angle θ1, the object position (xobj, yobj), and the object
orientation θobj. Computing the projection of vector �GO1

along the maximum deformation, we have the following
geometric constraint:

CH
1

�
= −(xobj − O1x)Cobj − (yobj − O1y)Sobj

−(a − dn1) +
Wobj

2
= 0, (7)

where Cobj = cos θobj and Sobj = sin θobj are abbrevia-
tions. The above equation provides a holonomic constraint.
Assume that no slip happens between the object and
fingertip. Note that the projection of vector �GO1 along
the tangential deformation is given by GQ1 = −(xobj −
O1x) sin θobj + (yobj − O1y) cos θobj. Since the tangential
velocity of the fingertip coincides with the tangential ve-
locity of the object at the contacting point, we have the
following equation:

CN
1

�
= ĠQ1 + a(θ̇1 − θ̇obj) + ḋ1t = 0. (8)

This equation provides a nonholonomic constraint. Let dn2

and dt2 be the maximum and tangential displacements of
the left fingertip. We can also formulate two geometric
constraints caused by the contact between the object and
the left fingertip: one holonomic constraint

CH
2

�
= (xobj − O2x)Cobj + (yobj − O2y)Sobj

−(a − dn2) +
Wobj

2
= 0 (9)

and one nonholonomic constraint

CN
2

�
= ĠQ2 + a(θ̇2 + θ̇obj) + ḋ2t = 0, (10)

where GQ2 = −(xobj − O2x) sin θobj + (yobj −
O2y) cos θobj denotes the projection of vector �GO2 along
the tangential deformation.

The process of grasping and manipulation by a pair of 1-
DOF rotational fingers with soft fingertips can be described

Fig. 8. Simulation model

by a set of nine generalized coordinates: object coordinates
xobj and yobj, object orientation θobj, and for the two
fingers respectively, rotational angles θ1 and θ2, maximum
normal deformations dn1 and dn2, and tangential deforma-
tions dt1 and dt2. Recall that two holonomic constraints
(7) and (9) and two nonholonomic constraints (8) and (10)
are imposed during the process.

Let mobj be the mass of the object and Iobj be the
moment of inertia of the object around its center of gravity.
Assume that the weight of the two fingers are negligible.
Assume that the object and the two fingers move in a
vertical plane, where gravitational forces act along the y-
axis in its negative direction. The potential energy of the
system is then given by the sum of the elastic potential
energies of the two fingertips and the gravitational energy
of the object as follows:

U = Uparallel(dn1, dt1, θ1 − θobj) +
Uparallel(dn2, dt2, θ2 + θobj) +
mobjg yobj, (11)

Let Ifinger be the moment of inertia of each finger around
its rotational axis. Assuming that mass transfer due to
the deformation of each fingertip is negligible, the kinetic
energy of the system can be formulated as follows:

T =
1
2
mobj(ẋ2

obj + ẏ2
obj) +

1
2
Iobjθ̇

2
obj +

1
2
Ifingerθ̇

2
1 +

1
2
Ifingerθ̇

2
2 . (12)

From eqs.(11) and (12), we can formulate the Lagrange
equations of motion of a pair of fingers pinching a rigid
object. Lagrangean with holonomic constraints is described
by

L = T − U + λH
1 CH

1 + λH
2 CH

2 , (13)

where λH
1 and λH

2 denote Lagrange multipliers correspond-
ing to the two holonomic constraints. Incorporating non-
holonomic constraints, we have nine Lagrange equations of



motion corresponding to the nine generalized coordinates:

d
dt

∂L
∂ẋobj

− ∂L
∂xobj

=
∂

∂ẋobj
{λN

1 CN
1 + λN

2 CN
2 },

d
dt

∂L
∂ẏobj

− ∂L
∂yobj

=
∂

∂ẏobj
{λN

1 CN
1 + λN

2 CN
2 },

d
dt

∂L
∂θ̇obj

− ∂L
∂θobj

=
∂

∂θ̇obj

{λN
1 CN

1 + λN
2 CN

2 },
d
dt

∂L
∂θ̇1

− ∂L
∂θ1

=
∂

∂θ̇1

{λN
1 CN

1 + λN
2 CN

2 },
d
dt

∂L
∂θ̇2

− ∂L
∂θ2

=
∂

∂θ̇2

{λN
1 CN

1 + λN
2 CN

2 },
d
dt

∂L
∂ḋ1

− ∂L
∂dn1

=
∂

∂ḋ1

{λN
1 CN

1 + λN
2 CN

2 },
d
dt

∂L
∂ḋ2

− ∂L
∂dn2

=
∂

∂ḋ2

{λN
1 CN

1 + λN
2 CN

2 },
d
dt

∂L
∂ḋ1t

− ∂L
∂dt1

=
∂

∂ḋ1t

{λN
1 CN

1 + λN
2 CN

2 },
d
dt

∂L
∂ḋ2t

− ∂L
∂dt2

=
∂

∂ḋ2t

{λN
1 CN

1 + λN
2 CN

2 },
(14)

where λN
1 and λN

2 denote Lagrange multipliers correspond-
ing to the two nonholonomic constraints. Let cn and ct be
viscous moduli of a fingertip along the normal and tan-
gential directions. Then, we can formulate viscous terms,
which are incorporated into the above Lagrange equations
of motion.

Consequently, dynamics of grasping and manipulation of
an object by a pair of 1-DOF fingers with soft fingertips is
formulated by a set of Lagrange equations of motion (14)
with four constraints (7), (8), (9), and (10).

VI. SIMULATION OF SOFT-FINGERED GRASPING AND
MANIPULATION

A. Numerical integration of Lagrange equations of motion
under geometric constraints

We can simulate the dynamic process of grasping and
manipulation by a pair of fingers with soft fingertips
by solving a set of Lagrange equations of motions (14)
under geometric constraints (7), (8), (9), and (10). Let us
convert the geometric constraints into differential equations
to incorporate them into the Lagrange equations of mo-
tion through the constraint stabilization method [10]. The
constraint stabilization method converts the two holonomic
constraints (7) and (9) into the following differential equa-
tions:

C̈H
1 + 2αĊH

1 + α2CH
1 = 0,

C̈H
2 + 2αĊH

2 + α2CH
2 = 0, (15)

where parameter α is a sufficiently large constant. Note that
the above equations describe critical damping, implying
that the value of each holonomic constraint converges to
zero even if the constraint is broken due to numerical
integration of the Lagrange equations of motion. The con-
straint stabilization method converts the two nonholonomic

constraints (8) and (10) into the following differential
equations:

αĊN
1 + βCN

1 = 0,

αĊN
2 + βCN

2 = 0, (16)

where parameter β is a sufficiently large constant. Note
that the above equations describe exponential damping,
implying that the value of each nonholonomic constraint
also converges to zero even if the constraint is broken
due to numerical integration of the Lagrange equations of
motion.

A set of Lagrange equations of motion (14) and differ-
ential equations to stabilize geometric constraints (15) and
(16) involve nine generalized coordinates and four multipli-
ers, which are unknown variables. Thus, numerically solv-
ing thirteen differential equations (14), (15), and (16) yields
nine generalized coordinates and four multipliers. Let us
introduce a collective vector consisting of generalized
coordinates q = [xobj, yobj, θobj, θ1, θ2, dn1, dn2, dt1, dt2]T

and a collective vector consisting of generalized velocities
p = [ẋobj, ẏobj, θ̇obj, θ̇1, θ̇2, ḋ1, ḋ2, ḋ1t, ḋ2t]T. Let λH =
[λH

1 , λH
2 ]T be a vector consisting of Lagrange multipli-

ers corresponding to holonomic constraints, and λN =
[λN

1 , λN
2 ]T be a vector consisting of Lagrange multipliers

corresponding to nonholonomic constraints. Let us substi-
tute p = q̇ into differential equations (14), (15), and (16) to
collect terms with a set of time derivatives ṗ and Lagrange
multipliers λH and λN into the left side. The definition
of vector p, a set of Lagrange equations of motion (14),
differential equations to stabilize holonomic constraints
(15), and differential equations to stabilize nonholonomic
constraints (16) can be collectively described by


I O O O
O M −φT

H −φT
N

O −φH O O
O −φN O O







q̇
ṗ

λH

λN


 =




p
f

CH

CN


 ,

where I denotes the nine by nine identity matrix and O
denotes the nine by nine zero matrix. Matrix M is a nine by
nine inertia matrix, which depends on a set of generalized
coordinates q. Matrices φH and φN are nine by nine
matrices, which depend on a set of generalized coordinates
q and a set of generalized velocities p. Vectors f , CH

and CN are nine dimensional vectors, which depend on a
set of generalized coordinates q and a set of generalized
velocities p. The coefficient matrix on the left side of
the above equation is regular, so q̇, ṗ, λH, and λN can
be solved in the above linear equation. We can obtain q
and p by applying a numerical integration of differential
equations to this computation process.

B. Simulation results

Figure 9 shows a simulation, based on the parallel dis-
tributed model, of a pair of the 1-DOF fingers controlling
the orientation of an object. We used the parameters listed
in Table I. Figure 9-(a) shows the initial contact position
between the fingers and the object, in which the fingertip
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Fig. 9. Simulation of fingertips controlling orientation of an object
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Fig. 10. Comparison of simulation and experimental results
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Fig. 11. Comparison of simulation results with and without tangential deformation
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Fig. 12. Simulation of orientation of pinched object by external force
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TABLE I
SIMULATION PARAMETERS

a 20 mm
E 0.232 MPa
cn 300 N/(m/s)
ct 300 N/(m/s)
L 76.2 mm
dfi 4 mm

2Wfi 97 mm
Ifinger 125 kg·mm2

Wobj 49 mm
mobj 0.3 kg
Iobj 125 kg·mm2

α 20000
β 10000

was not deformed, and Figure 9-(b) shows the initial
grasping position, in which both fingertips are deformed
the same. In Figure 9-(c), the fingers have both rotated
counterclockwise and the object has rotated clockwise,
while in Figure 9-(d), the fingers have rotated clockwise
and the object has rotated counterclockwise. The results of
the simulation agree with the observations shown in Figure
3. The simulation suggests that a pair of 1-DOF rotational
fingers with soft fingertips can control the orientation of a
pinched object.

Figure 10 compares the simulation and experimental
results of how the fingertips controlled the orientation of
the pinched object. In Figure 10-(a), the way in which the
object’s orientation angle θobj changes with its coordinate
xobj in the simulation was almost the same as how it
changes in the experiment. Also, in Figure 10-(b), the
relative changes in the object’s coordinates xobj and yobj

in the simulation were almost the same as those in the
experiment.

Figure 11 compares simulations based on the parallel
model with and without tangential deformation of the
fingertips. In Figure 11-(a), the slope of the plot of the
object’s orientation angle θobj against its coordinate xobj

is steeper without than with tangential deformation. Since
the simulation results based on the parallel model with
tangential deformation agree well with the experimental
results, tangential deformation probably occurs in actual
grasping and manipulation. In Figure 10-(b), the path of
the pinched object is the same regardless of tangential
deformation. Note that the center of the pinched object lies
on a line between the two points of contact in the initial
grasping position, as shown in Figure 9-(a), which may be

TABLE II
SEQUENCE OF MOTIONS

initial state both fingers grasp an object in parallel
motion 1 (θd

1 , θd
2 ) = (6 deg, 6 deg)

motion 2 (θd
1 , θd

2 ) = (20 deg, −10 deg)
motion 3 (θd

1 , θd
2 ) = (−2 deg, 13 deg)

motion 4 (θd
1 , θd

2 ) = (−10 deg, 20 deg)
motion 5 (θd

1 , θd
2 ) = (−7 deg, 17 deg)

motion 6 (θd
1 , θd

2 ) = (17 deg, −7 deg)
motion 7 (θd

1 , θd
2 ) = (−15 deg, 25 deg)

motion 8 (θd
1 , θd

2 ) = (5 deg, 5 deg)

why the paths were the same.
Figure 12 shows a simulation of rotation of a pinched

object by an external force. As shown in Figure 12-(a), the
pinched object rotates counterclockwise when the force is
applied, though angle 0 of the two joints are fixed. As
shown in Figure 12-(b) through (d), when the force is
relaxed, the object rotates back to its initial orientation.
Figure 13 shows the angle after the force has been relaxed.
The simulation results agreed well with the observations
shown in Figure 4.

Let us guide joint angles θ1 and θ2 to their desired values
θd
1 and θd

2 . The input torques on the joints of the right and
left fingers are u1 and u2, respectively. Now, let us apply
the following simple PID control laws to guide the joint
angles to their desired values:

u1 = −KP(θ1 − θd
1 ) − KDθ̇1

−KI

∫ t

0

{θ1(τ) − θd
1} dτ,

u2 = −KP(θ2 − θd
2 ) − KDθ̇2

−KI

∫ t

0

{θ2(τ) − θd
2} dτ,

where KP, KD, and KI denote proportional, differential,
and integral gains, respectively. Let us apply the sequence
of desired values in Table II. Figure 14 shows the simu-
lation results. We determined KP = 300 Nm/rad, KD =
14 Nm/(rad/s), and KI = 0.1 Nm/(rad·s). In Figure 14-(a)
and (b), respectively, the joint angles θ1 and θ2 of the right
and left fingers converge to their desired values within one
second. Figure 14-(c) and (d) show the object’s position,
and Figure 14-(e) shows its orientation. These figures
show that the object is stable once the joint angles have
stabilized, which suggests that the motion of the object is
inherently stable without any external sensor feedback.

From the above simulations, we conclude that our pro-
posed parallel distributed model provides a good explana-
tion of grasping and manipulation by soft hemispherical
fingertips. Moreover, soft hemispherical fingertips enable
us to simplify the control law in grasping and manipulation.

VII. DISCUSSION

On observations and simulations prove that a pair of 1-
DOF fingers with soft fingertips can regulate both grasping
force and object orientation. The number of DOFs needed
to grasp is summarized in Table III. It has been reported
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Fig. 14. Open loop control of object orientation

TABLE III
THE NUMBER OF DOFS NEEDED

soft-fingered
manipulation

hard-fingered
manipulation

grasping 1 2
grasping and orientation 2 3

model parallel radial

that, based on a radially distributed model, for a pair
of fingers with rigid fingertips to control the orientation
of a rigid object, they would need at least 3 degrees of
freedom, otherwise, regardless of their relative orientation,
the moments on the object would not be balanced, and that
the orientation of the object must be under sensor feedback.
However, our study shows that the moments are actually
balanced inherently by a pair of soft fingertips with one less
degree of freedom, and that the orientation of the object
can be controlled without sensor feedback. Consequently,
the control law for the pair of 1-DOF soft fingertips is
simpler.

Note that, in the parallel distributed model, the elastic
potential energy of a soft fingertip depends on its angle
relative to the grasped object. This dependency is due to
fingertip being hemispherical with a hard back plate; the
dependency does not exist for spherical fingertips because
its shapes does not vary when they are rotated. In contrast,
the hard plate behind the hemispherical soft fingertips
imposes a boundary condition on their deformation, and
results in their elastic energy varying with the relative ori-
entation. Consequently, the structure of a finger consisting
of a soft fingertip and a hard fingernail enhances dexterity
in grasping and manipulation.

VIII. CONCLUSION AND RESEARCH PERSPECTIVE

We modeled a pair of hemispherical soft fingertips with
1-DOF grasping and manipulating a rigid object. First, we
observed a pair of 1-DOF fingers with hemispherical soft
fingertips pinching a rigid object. We found that they could
grasp the object and control its orientation, in contrast to a
previously reported theory based on a radially distributed
model. Second, we proposed a parallel distributed model
of the hemispherical soft fingertips, which are similar in
structure to human fingertips in that they have a hard back
plate that buttresses the soft pad, as do our fingernails.
Third, we presented experimental results that support our
parallel distributed model. Then, we formulated the dy-
namics of grasping and manipulation performed by the
pair of 1-DOF fingers with soft fingertips. We showed
that the dynamics can be described by Lagrange equations
of motion with holonomic and nonhohonomic constraints
due to the contact between each fingertip and the object.
Finally, using our parallel distributed model, we simulated
the soft fingertips grasping and manipulating the object and
showed that our model agrees well with the observations.

In future studies, we will analyze the stability of the
grasping and manipulation and will apply our model to
grasping and manipulation by a multi-DOF, multi-fingered
hand to investigate more comprehensively how the back
plate/fingernail contributes to dexterity. Our model is pla-
nar, so we will extend it to a 3D model.

ACKNOWLEDGEMENT

This research was supported in part by the Ritsumeikan
University 21st Century COE program “Micro Nanoscience
Integrated Systems”.



REFERENCES

[1] Xydas, N. and Kao, I., Modeling of Contact Mechanics and Friction
Limit Surfaces for Soft Fingers in Robotics with Experimental
Results, Int. J. of Robotics Research, Vol. 18, No. 8, pp.941–950,
1999.

[2] Xydas, N., Bhagavat, M., and Kao, I., Study of Soft-Finger Contact
Mechanics Using Finite Elements Analysis and Experiments, Proc.
IEEE Int. Conf. on Robotics and Automation, pp.2179–2184, 2000.

[3] Kao, I. and Yang, F., Stiffness and Contact Mechanics for Soft
Fingers in Grasping and Manipulation, IEEE Trans. on Robotics
and Automation, Vol. 20, No. 1, pp.132–135, 2004.

[4] Johnson, K. L., Contact Mechanics, Cambridge University Press,
1985.

[5] Arimoto, S., Tahara, K., Yamaguchi, M, Nguyen, P, and Han, H. Y.,
Principle of Superposition for Controlling Pinch Motions by means
of Robot Fingers with Soft Tips, Robotica, Vol. 19, pp.21–28, 2001.

[6] Nguyen, P. and Arimoto, S, Performance of Pinching Motions of Two
Multi-DOF Robotic Fingers with Soft-Tips, Proc. IEEE Int. Conf. on
Robotics and Automation, pp.2344–2349, 2001.

[7] Doulgeri, Z., Fasoulas, J., and Arimoto, S., Feedback Control for
Object Manipulation by a pair of Soft Tip Fingers, Robotica, Vol. 20,
pp.1–11, 2002.

[8] Fasoulas, J. and Doulgeri, Z., Equilibrium Conditions of a Rigid
Object Grasped by Elastic Rolling Contacts, Proc. IEEE Int. Conf.
on Robotics and Automation, pp.789–794, 2004.

[9] Takahiro Inoue and Shinichi Hirai, Elastic Model of Deformable
Fingertip for Soft-fingered Manipulation, IEEE Trans. on Robotics,
Vol. 22, No. 6, pp.1273–1279, 2006.

[10] Baumgarte, J., Stabilization of Constraints and Integrals of Motion
in Dynamical Systems, Computer Methods in Applied Mechanics
and Engineering, Vol. 1, pp.1–16, 1972.


