
Modeling and parameter estimation of rheological objects for
simultaneous reproduction of force and deformation

Zhongkui Wang and Shinichi Hirai
Department of Robotics, Ritsumeikan University
Noji-higashi 1-1-1, Kusatsu, 525-8577, Japan

gr046074@ed.ritsumei.ac.jp, hirai@se.ritsumei.ac.jp

Abstract—Many deformable objects in our living life demon-
strate rheological behaviors, such as human organs and tissues,
clays and various food products. Rheological objects include
both elastic and plastic properties. Due to the presence of
residual (permanent) deformation, it is difficult to model rheo-
logical objects, especially to reproduce both force and residual
deformation simultaneously. In this paper, a series of physical
models was investigated for simulating rheological behaviors.
Generalized formulations of the constitutive laws were derived
for serial and parallel physical models, respectively. We found
that the serial models are appropriate for formulating strain,
whereas the parallel models allow a convenient calculation of
stress. Analytical expressions of force and residual deformation
were then derived for generalized parallel models. Theoretical
discussions suggested the difficulty to reproduce both force
and deformation simultaneously using linear physical models.
A 2D FE (finite element) model was then formulated and
an efficient method for estimating physical parameters were
proposed by taking the advantages of analytical force expres-
sions. Experimental results with commercial clay and Japanese
sweets material were presented to validate our modeling and
parameter estimation methods. A dual-moduli viscous element
was also introduced to improve our FE model for reproducing
rheological force and deformation simultaneously.
Index Terms—Modeling; Parameter estimation; Rheological

object; Finite element method; Simulation.

I. INTRODUCTION
Modeling and simulation of soft deformable objects has

been studied for over 20 years [1], [2] and has played an
important role in many fields, including computer aided
surgery, food automation, and robotics. Deformable objects
can be roughly divided into three categories based on their
deformation behavior: elastic object, in which the defor-
mation is completely reversible; plastic object, in which
the deformation is completely maintained; and rheological
object, in which the deformation is partly reversible. Previous
work on modeling of deformable objects has mainly focused
on elastic and visco-elastic objects, especially in surgical
applications since most biological organs and tissues seem
to be recoverable after loading-unloading operations. Some
organs and tissues, however, may fail to completely recover
from the deformation. Hrapko et al. found that porcine
brain tissue did not recover completely after a loading-
unloading cycle [3]. In vivo experimental results showed that
residual deformation may also present in human liver [4]. In
addition, many other deformable objects, such as clay and
various food products, demonstrate rheological behaviors.
Chua et al. stated that the most critical barrier against the

application of robotics and automation in food industry is a
lack of understanding of the food product properties as an
“engineering” material for handling operations [5]. To date,
modeling of 2D/3D rheological objects have not been well
developed and an effective method for determining physical
properties of rheological object as an “engineering” material
has not yet been established.
Generally, modeling a rheological object is more difficult

than modeling an elastic or plastic object due to the presence
of residual deformation. Early work on the modeling of
rheological objects dates back to Terzopoulos et al. [2], who
have proposed several physical models to describe inelastic
objects and a Burgers model was introduced to describe
rheological behaviors. However, it is only a conceptual
description and they did not give any simulation results and
information of parameter determination. A particle-based (or
mass-spring-damper) model was employed to model a food
dough and a method for calibrating its physical parameters
was proposed based on a genetic algorithm (GA) optimiza-
tion [6], [7]. The particle-based model has an advantage
of less computation costs [8], but the formulation was not
based on continuum mechanics and the simulation accuracy
is quite limited. A two-layered Maxwell model [9] and
Fung’s viscoelastic model [10] has been used respectively
to reproduce the force response of a “Norimaki-sushi” when
grasped by a robot hand. Good approximations of force
behaviors were obtained. Unfortunately, both models are 1D
cases. In addition, the ISU exoskeleton technique has been
used in modeling clay to simulate an interaction between
virtual clay and a human finger [11].
Interestingly, above-mentioned work has focused on either

reproduction of deformation alone [6], [7] or reproduction
of force alone [9], [10]. None of them considered both.
However, in some application, e.g., surgical simulation with
haptic feedback or virtual manipulation of food products,
accurate results of both force and deformation are neces-
sary. Both force and deformation behaviors of organs and
tissues were considered simultaneously in an ex vivo and
an in vivo property characterization of porcine livers [12],
[13]. However to our knowledge, in current surgical related
applications, organs and tissues were mostly supposed to be
elastic or visco-elastic and no residual deformation was taken
into consideration.
In our previous work, we have developed FE models

for simulating various deformable objects [14]. A three-
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element [15] and a four-element [16] models were employed
respectively to describe rheological behaviors. A method
for identifying physical parameters was proposed based on
iterative optimization [16]. We found that the four-element
model was more appropriate than the three-element model
for reproducing rheological forces. In addition, experimental
results with commercial clay indicated that a contradiction
between the reproductions of force and residual deformation
may exist due to the linearity of the physical model.
In this paper, we summarized the physical models which

could be used to represent rheological behaviors. According
to the configuration among elements, we divided the phys-
ical models into two groups: serial and parallel models. A
general constitutive law for each configuration was formu-
lated. To analyze the reason of the contradiction between
reproductions of force and residual deformation, analytical
expressions of force and residual deformation were derived
and discussions were done. Two-dimensional FE dynamic
model was then given with simpler formulation comparing
with the previous one. Based on the analytical expressions
of rheological forces, a more efficient method for estimating
the physical parameters was proposed. Experimental results
with commercial clay and Japanese sweets material were
presented to validate our discussions and methods. Finally, a
dual-moduli viscous element was introduced to improve our
current model for simultaneously reproducing both rheolog-
ical force and deformation.

II. SUMMARIZATION OF PHYSICAL MODELS
Physical models are often employed to describe de-

formable materials and objects, e.g., an elastic element (Fig.
1a) and a viscous element (Fig. 1b) represent ideal elastic
and viscous material, respectively. An elastic and a viscous
elements connected in series was called a Maxwell element
(Fig. 1c), which denotes a simplest rheological material. An
elastic and a viscous elements connected in parallel was
called a Kelvin (sometimes called Kelvin-Voigt) element
(Fig. 1d), which denotes a visco-elastic material. We refer
the above four elements as basic elements. By connecting
some basic elements in different configurations, many phys-
ical models could be obtained for simulating rheological
behaviors. We divided such models into two groups: serial
and parallel models (Fig. 2).

A. Generalized Serial Model
A serial rheological model consists of numbers of Kelvin

elements and a viscous or a Maxwell element connected in
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Fig. 1. The basic elements for describing deformable materials: (a) the
elastic; (b) the viscous; (c) the Maxwell; and (d) the Kelvin elements.
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Fig. 2. 2 groups of rheological models: (a) serial, and (b) parallel models.

series. Note that the deformation generated in an elastic or a
Kelvin element is completely recoverable. Therefore, a serial
rheological model must include a viscous element connected
in series, which causes the residual (permanent) deformation.
According to the presence of elastic element, serial models
can be divided into two types, as shown in Fig. 3. Let us
take the type 1 model as an example to show the derivation
procedure of the constitutive law.
Note that the constitutive law of four basic elements were

formulated as:

Elastic element : σ = Eε,

Viscous element : σ = cε̇,

Maxwell element : σ̇ +
E
c

σ = E ε̇,

Kelvin element : σ = Eε + cε̇,

(1)

where vector σ and ε are the stress and strain generated
in basic elements. Constants E and c are the Young’s mod-
ulus and viscous modulus of elastic and viscous elements,
respectively.
Let εi and εn+1 be the strain at the i-th Kelvin element

and the (n+1)-th viscous element, respectively. Let Ei and
ci be the Young’s modulus and viscous modulus of the i-th
elastic and viscous elements, respectively. Due to the serial
connections among these basic elements, the total stress at
the serial model is equal to the stress at each basic element
and the total strain at the serial model is equal to the sum
of the strains at all basic elements. That is,

σ = Eiεi+ ciε̇i, 1≤ i≤ n,
σ = cn+1ε̇n+1,

ε =
n+1

∑
i=1

εi.
(2)
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Fig. 3. Generalized serial models: (a) type 1; and (b) type 2.



Taking Laplace transform of the above equations, we have

σ(s) = Eiεi(s)+ cisεi(s), 1≤ i≤ n,
σ(s) = cn+1sεn+1(s),

ε(s) =
n+1

∑
i=1

εi(s).
(3)

Eliminating εi(s) from the above equations, we then have

ε(s) =
[( n

∑
i=1

1
s+ ri

1
ci
)
+

(1
s
1
cn+1

)]
σ(s), (4)

where ri = Ei/ci. Let us define a polynomial as below:
n

∏
i=1

(s+ ri) = Ansn+An−1sn−1+ · · ·+A1s+A0. (5)

The coefficients of the above polynomial have the forms of:

An = 1, An−1 =
n

∑
i=1
ri, An−2 =

n

∑
i=1

n

∑
j=1
j �=i

rir j, · · · , A0 =
n

∏
i=1
ri.

(6)
Multiplying Eq. 4 by Eq. 5, we have
n

∏
i=1

(s+ ri)ε(s) =
n

∏
i=1

(s+ ri)
[( n

∑
i=1

1
s+ ri

1
ci
)
+

(1
s
1
cn+1

)]
σ(s)

=
[ n

∑
i=1

n

∏
j=1
j �=i

(s+ r j)
ci

+
n

∏
j=1

s+ r j
s

1
cn+1

]
σ(s).

(7)

We then find the following equation:
n

∏
j=1
j �=i

(s+ r j) = (s+ r1) · · · (s+ ri−1)(s+ ri+1) · · · (s+ rn)

= sn−1+Bi,1sn−2+ · · ·+Bi,n−2s+Bi,n−1,

(8)

where

Bi,1 =
n

∑
j=1
j �=i

r j, Bi,2 =
n

∑
j=1
j �=i

n

∑
k=1
k �=i
k �= j

r jrk, · · · , Bi,n−1 =
n

∏
j=1
j �=i

r j. (9)

Substituting Eqs. 5 and 8 into Eq. 7, we have the following
Laplace transform equation:

(Ansn+1+An−1sn+ · · ·+A0s)ε(s)
= (Bs1n s

n+Bs1n−1s
n−1+ · · ·+Bs11 s+B

s1
0 )σ(s),

(10)

where

Bs1n =
n

∑
i=1

1
ci

+
An
cn+1

, Bs1n−1=
n

∑
i=1

Bi,1
ci

+
An−1
cn+1

, · · · , Bs10 =
A0
cn+1

.

(11)
Applying the inverse Laplace transform to Eq. 10 yields the
constitutive law of serial model of type 1 as follows:

n+1

∑
i=1
Ai−1

∂ iε
∂ ti

=
n

∑
j=0
Bs1j

∂ jσ
∂ t j

. (12)

Note that the highest-order derivative of strain ε is one order
larger than the highest-order of stress σ . In addition, there

is no constant term in the coefficients of strain polynomial
(the left side of Eq. 12).
Following the same derivation procedure, we could obtain

the constitutive law of serial model of type 2 as follows:
n+1

∑
i=1
Ai−1

∂ iε
∂ ti

=
n+1

∑
j=0
Bs2j

∂ jσ
∂ t j

, (13)

where

Bs2n+1 =
1
En+1

, Bs2n =
n

∑
i=1

1
ci

+
An
cn+1

+
An−1
En+1

, · · · , Bs20 =
A0
cn+1

.

(14)
Equation 13 suggested that the highest-order derivative of
strain ε is equal to the highest-order of stress σ . Note that
the left side of Eq. 13 has the same form with the left side
of Eq. 12.

B. Generalized Parallel Models
Two kinds of parallel rheological models were shown in

Fig. 4. Due to the parallel connections among basic elements,
the total strain at the parallel model is equal to the strain at
each basic element and the total stress at the parallel model
is equal to the sum of the stress at all basic elements. For
parallel model of type 1, we therefore have

σ̇i+
Ei
ci

σi = Eiε̇ , 1≤ i≤ n,

σn+1 = cn+1ε̇,

σ =
n+1

∑
i=1

σi.

(15)

Following the same derivation with serial models, we could
end up with the constitutive law of parallel model of type 1
(Fig. 4a) as follows:

n

∑
i=0
Ai

∂ iσ
∂ ti

=
n+1

∑
j=1
Bp1j

∂ jε
∂ t j

, (16)

where

Bp1n+1 = cn+1, Bp1n =
n

∑
i=1
Ei+An−1cn+1,

· · · , Bp11 =
n

∑
i=1
Bi,n−1Ei+A0cn+1.

(17)

Correspondingly, the constitutive law of parallel model of
type 2 (Fig. 4b) could be formulated as:

n

∑
i=0
Ai

∂ iσ
∂ ti

=
n

∑
j=1
Bp2j

∂ jε
∂ t j

, (18)
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Fig. 4. Generalized parallel models: (a) type 1; and (b) type 2.



where

Bp2n =
n

∑
i=1
Ei, Bp2n−1=

n

∑
i=1
Bi,1Ei, · · · , Bp21 =

n

∑
i=1
Bi,n−1Ei. (19)

According to Eqs. 12, 13, 16, and 18, we found that the
constitutive law of serial model of type 1 (Eq. 12) has
the identical form with the parallel model of type 1 (Eq.
16) except some coefficients having different formulations.
Correspondingly, the constitutive laws of serial model of type
2 (Eq. 13) also has the same form with the parallel model
of type 2 (Eq. 18) by replacing the summation limit n+ 1
in Eq. 13 by n. Note that same constitutive laws yield same
deformation behaviors. Therefore, for simulating a certain
behavior, we could use either a serial model or a parallel
model. Actually, for any type of physical model, which
consists of any numbers of basic elements connected in any
configuration, we are always able to find a corresponding
serial or parallel model which yields the same behaviors.
This allows us to investigate only one representative model
instead of analyzing all models for understanding the ability
of physical models. In this paper, we investigated the parallel
models. In addition, according to Eq. 2, if the total stress
at the serial model was available, we could easily calculate
the total strain by summing up the individual strain at each
element due to the independence among these strains. On the
other hand, Eq. 15 indicated that the convenient calculation
of rheological force could be achieved by using the parallel
models.

III. ANALYSIS OF PARALLEL MODEL
A. Experimental Rheological Behaviors
Typical rheological behaviors (force and deformed shapes)

of commercial available clay and Japanese sweets material
were shown in Fig. 5. The sweets materials were provided
by OIMATU, a sweets company in Kyoto. Two flat squared
objects made of the above-mentioned two materials were
pushed respectively by a motorized stage with a constant
velocity during the pushing phase (0≤ t ≤ tp). Before unload-
ing, the deformed shapes were maintained for a while, which
was called holding phase (tp ≤ t ≤ tp+ th). The rheological
forces (Fig. 5a-1 and 5b-1) were measured by a tactile
sensor and deformed shapes (initial, held, and final shapes
as shown Fig. 5a-2 and 5b-2) were recorded by a calibrated
camera. During the pushing phase, the rheological forces
were increasing with the deformation increasing. During
the holding phase, however, the deformed shapes were kept
unchanged while the rheological forces were decreasing
(force relaxation). After unloading, the rheological forces
went to zero and the deformed shapes were partially recov-
ered. Figure 5 showed that rheological behaviors of different
materials are quite different. Comparing with clay, the force
relaxation behavior of sweets material was slower and the
recovered deformation was smaller. Our target is to find an
appropriate model to reproduce both rheological force and
deformation behaviors simultaneously. Let us now investigate
the ability of generalized parallel model for achieving this
target.

t

t

t

t

(a) Experimental results with commercial available clay

(b) Experimental results with Japanese sweets material

(a-1) Rheological force (a-2) Deformed shapes

(b-1) Rheological force (b-2) Deformed shapes

Fig. 5. Typical rheological behaviors of: (a) commercial available clay,
and (b) Japanese sweets material.

B. Analytical Expression of Rheological Force
We took the parallel model of type 1 as an example to

show the derivation. In the pushing phase, we suppose the
strain rate is constant, i.e., ε̇ = p. Solving Eq. 15, we have the
analytical force expression in the pushing phase as below:

σ(t) =
n

∑
i=1
cip

(
1− e−

Ei
ci
t)

+ cn+1p, (0≤ t ≤ tp). (20)

In the holding phase, solving Eq. (15) with ε̇ = 0 and initial
condition of σi(tp), we can formulate the analytical force
expression in this phase as:

σ(t) =
n

∑
i=1
cip

(
1− e−

Ei
ci
tp)e− Eici (t−tp), (tp ≤ t ≤ tp+ th).

(21)

C. Analytical Expression of Residual Deformation
After unloading, we intuitively considered to solve the

constitutive law Eq. 16 with σ = 0 to formulate the strain
recovering curve. However, when the order of time derivative
of strain ε exceeds two, it becomes impossible to solve Eq.
16 because we have no information about the initial condition
of strain derivative. We therefore turn our focusing to each
viscous element which dominates the residual strain. Let
εelai (t) and εvisi (t) be the strain at each elastic and viscous
element, respectively. Note that the stress at a Maxwell
element is equal to the stress at the elastic element and the
viscous element as well. Thus, total stress after unloading
could be formulated as:

σ(t) =
n+1

∑
i=1

σi(t) =
n

∑
i=1
ciε̇visi (t)+ cn+1ε̇(t) = 0. (22)

Integrating the above equation from time tp + th to time
infinity, we have

n

∑
i=1
ci
∫ ∞

tp+th
ε̇visi (t)dt+ cn+1

∫ ∞

tp+th
ε̇(t)dt = 0, (23)



and thus
n

∑
i=1
ci
[
εvisi (∞)− εvisi (tp+ th)

]
+ cn+1

[
ε(∞)− ε(tp+ th)

]
= 0.

(24)
It is important to note that the residual strain at every
viscous element in a parallel model should be the same and
equal to the total residual strain when time goes to infinity,
i.e., εvis1 (∞)=εvis2 (∞)=· · ·=εvisn (∞)=ε(∞), because all elastic
elements completely recovered from the deformation. Thus,
Eq. 24 yields

ε(∞) =
n

∑
i=1

ciεvisi (tp+ th)
∑n+1j=1 c j

+
cn+1ε(tp+ th)

∑n+1j=1 c j
. (25)

Each viscous element has its own constitutive law as
σi=ciε̇visi . Integrating this law through time 0 to time tp+ th,
we have

εvisi (tp+ th) =
1
ci

∫ tp+th

0
σi(t)dt. (26)

Substituting Eq. 26 into Eq. 25 and considering σ(t) =

∑n+1i=1 σi(t), we finally end up with the expression of total
residual strain:

ε(∞) =
1

∑n+1i=1 ci

∫ tp+th

0
σ(t)dt. (27)

This equation indicates that the final residual deformation of
a parallel rheological model depended on the sum of viscous
moduli and the integration of force through the pushing and
holding phase.
For the parallel model of type 2, we could obtain the

same formulations of force expression in the holding phase
and the same formulation of final residual deformation with
the summation limit n+ 1 replaced by n in Eq. 27. The
only difference of the parallel model of type 2 is the force
expression in the pushing phase, which is given by

σ(t) =
n

∑
i=1
cip

(
1− e−

Ei
ci
t)

, (0≤ t ≤ tp). (28)

D. Discussions
Typical simulation results of rheological stress and strain

were shown in Fig. 6 by using a 5-element model (the last
row of Fig. 2b) and a 2-layered Maxwell model (the middle
row of Fig. 2b). According to Eqs. 20, 21, and 28, we found
that the stress curve was determined by viscous moduli ci
and time coefficients Ei/ci of exponential functions. The
coefficients Ei/ci determine the changing tendency in stress
during the holding phase, as formulated in Eq. 21. In order
to obtain similar force relaxation curve as shown in Fig. 5, at
least two exponential terms are needed, one with large value
of Ei/ci and another one with small Ei/ci. The large Ei/ci
describes the rapid decreasing in force and the small one
denotes the slow decreasing. For example, the stress curves in
Fig. 6 were both simulated with coefficients of E1/c1= 0.005
and E2/c2 = 0.5. After determining coefficients Ei/ci, Eq.
20 could be used to determine the viscous moduli ci, which
dominated stress amplitude σ(t) in the pushing phase. Note
that there is a sudden drop in stress (Fig. 6a) at the end of

Holding

tp tp+th

Pushing
( )p ht tσ +

( )ptσ

1 1n ncσ ε+ += &

( )ε ∞

Holding

tp tp+th

Pushing ( )p ht tσ +

( )ptσ

( )ε ∞

(a) Parallel model type 1 (b) Parallel model type 2

Fig. 6. Typical simulation results of rheological behaviors by using: (a)
5-element model, and (b) 2-layered Maxwell model.

pushing phase for 5-element model (parallel type 1). This
sudden drop was denoted by σ = cn+1ε̇ . Figure 6b showed
that the 2-layered Maxwell model (parallel type 2) results in
attenuated vibrations in both stress and strain after unloading
(Fig. 6b). Based on the above discussion, we could say that
the parallel model has the ability of reproducing rheological
force behaviors. Our previous work [16] has shown good
reproduction of rheological force for commercial clay. How-
ever, we failed to reproduce the recovered shape.
Equation 27 implies that the residual strain is dominated

by the sum of viscous moduli ci. On the other hand, param-
eters ci also strongly affect force amplitude as formulated in
Eqs. 20, 21, and 28. This caused a contradiction between the
reproduction of rheological force and recovered shape. For
example, if we determine the parameters ci from force data,
the sum of ci will therefore yields a certain recovered shape.
We are unable to change this shape to our desired one. On
the contrary, if we firstly calculated the sum of ci based on
Eq. 27, we have an upper limit (∑n+1i=1 ci) for each modulus
ci and we have to keep each ci under this limit during the
reproduction of force behaviors. For some materials, we may
be able to achieve a good reproduction of force with ci
under the limit. For most materials, however, this limit was
always broken in order to well capture the force curve. The
above discussion suggests that parallel model do not have the
ability to reproduce both rheological force and deformation
simultaneously. Section 5 will give quantitative discussion
of this problem. The discussion in Section 2 indicated that
we could always find a corresponding parallel model for
arbitrary physical model. We can therefore conclude that
physical models are not able to reproduce both rheological
force and deformation simultaneously for most rheological
objects.

IV. FE DYNAMIC MODEL AND PARAMETER ESTIMATION
A. Formulation of FE Dynamic Model
The FE method has proven to be a powerful tool for

simulating complex behaviors of deformable objects. In FE
simulation, an object is described by a set of elements
(e.g., triangles in 2D and tetrahedrons in 3D). The dynamic
behaviors of the object are then determined by analyzing the
behaviors of individual elements. In this paper, we employ
a 2-layered Maxwell model as an example to present 2D FE
dynamic model. We constructed a 2D object with triangle



mesh (Fig. 5a-2 and 5b-2) and attached the two-layered
Maxwell model onto each triangle. Let vectors uN and vN
be a set of displacements and velocities of nodal points in
2D mesh. Let vectors Frheo2D and Fext be a set of rheological
forces and external forces on nodal points. Following the
same formulation procedure presented in our previous work
[14], [15], [16], we could end up with an FE dynamic model
consists of following differential equations:

u̇N = vN ,

Mv̇N−Aλ =−Frheo2D +Fext ,
−AT v̇N = AT (2ωvN + ω2uN),

Ḟ1 =−
E1
c1
F1+(λ ela1 Jλ + μela1 Jμ)vN ,

Ḟ2 =−
E2
c2
F2+(λ ela2 Jλ + μela2 Jμ)vN ,

(29)

where the last two equations were obtained from the first
equation of Eq. 15 by changing 1D stress-strain relationship
to 2D force-displacement relationship. Two-dimensional rhe-
ological force could be therefore formulated as

Frheo2D = F1+F2. (30)

Let γ be the Poisson’s ratio and then variables λ ela1 , μela1 ,
λ ela2 , and μela2 could be calculated as follows:

λ elai =
Eiγ

(1+ γ)(1−2γ)
, μelai =

Ei
2(1+ γ)

, (i= 1,2).

The detailed definition and description of other variables and
matrixes can be found in our previous work [14], [15], [16].
Comparing with our previous FE dynamic model, this

model has a simpler formulation. This should thank to the
advantage of parallel physical model, in which each layer of
Maxwell element has an independent stress. Using Eq. 29,
we can simulate rheological behaviors and typical results
were shown in Fig. 6b.

B. Parameter Estimation
Before simulating any real objects, their physical parame-

ters have to be available in advance. In the above FE model,
there are a total of 5 unknown parameters: E1, E2, c1, c2,
and γ . Our previous work [16] has proposed an approach to
identify these parameters based on iterative FE simulation
and nonlinear optimization. The idea is to iterate FE simula-
tion with updated physical parameters until the difference
between simulation and experiment becomes minimal. In
[16], we found that we could estimate the Poisson’s ratio
γ separately because only γ affected the held shape. We
could then identify other parameters by minimizing force
difference. This method is simple and works well but it
is time-consuming. For force optimization, it took hours or
days (depends on initial parameter setting) to obtain results.
However, according to the analysis in the previous section,
we can take the advantage of analytical force expression to
develop a more efficient method.
Extending Eqs. 28 and 21 to 2D formulations, we have

F(t) =
n

∑
i=1
ci
(
1− e−

Ei
ci
t)MγvPushN , (0≤ t ≤ tp), (31)

F(t) =
n

∑
i=1
ci
(
1−e−

Ei
ci
tp)e− Eici (t−tp)MγvPushN , (tp ≤ t ≤ tp+ th),

(32)
where

Mγ = γλJλ + γμJμ =
γ

(1+ γ)(1−2γ)
Jλ +

1
2(1+ γ)

Jμ .

Vector vPushN could be obtained from the simulation results
in the pushing phase with the known Poisson’s ratio γ .
An objective function is defined to be:

e(θ ) =
N

∑
i=1
‖fexpi − fcali (t,θ )‖2, (33)

where N is the number of sampling points, vector fexpi
and fcali (t,θ ) are experimental forces and calculated forces,
respectively, at the i-th sampling time, and vector θ is the
parameters to be estimated. The optimization is terminated
when the tolerance on e(θ ) or the tolerance on θ less than
a threshold, 1× 10−6. The basic estimation algorithm is as
follows:
1) Initial setting of material parameters.
2) Using Eqs. 31 and 32 to calculate force.
3) Using Eq. 33 to calculate the objective function.
4) If the terminate conditions are not satisfied, adjust
parameters and repeat steps 2–3.

This method is much faster than our previous simulation-
based method. We could obtain a solution with only several
seconds by using MATLAB optimization toolbox.
In addition, extending Eq. 27 to 2D formulation, we have

MγuN(∞) =
1

∑n+1i=1 ci

∫ tp+th

0
F(t)dt. (34)

Note that residual deformation uN(∞) and force data F(t)
are available from experimental measurements. Matrix Mγ
can be prepared in advance since it only depends on initial
geometrical coordinates and Poisson’s ratio γ . This equation
allows us to calculate the sum of viscous moduli ∑n+1i=1 ci.

V. VALIDATION AND NONLINEAR MODEL
A. Experimental Validation
Experimental data shown in Fig. 5 were taken as ex-

amples to quantitatively demonstrate the contradiction in
reproduction of rheological force and residual deformation.
We employed the two-layered Maxwell model and Eq. 29 to
simulate the behaviors of these two objects. Using the pa-
rameter estimation methods proposed in the last section, we
obtained two sets of physical parameters for each material,
as given in Table I. The first set of parameters was estimated
by minimizing the force difference without considering the
final residual deformation. In other words, we used four
unknown parameters (E1, E2, c1, and c2) to optimize Eq.
33. During the estimation of the second set of parameters,
however, we took the residual deformation into consideration
by using Eq. 34 to calculate c1+ c2, as given in the second
column of Table I. The other three parameters were then
estimated by minimizing force difference. Table I suggested
that large values of c1 + c2 were needed to achieve good



TABLE I
ESTIMATED PARAMETERS FOR BOTH MATERIALS

c1+ c2 E1 E2 c1 c2 e(θ )
Material

(Pa·s)
γ

(Pa) (Pa) (Pa·s) (Pa·s) (N2)
1.3988×107 3.1753×104 7.2168×104 1.3291×107 6.9737×105 4.0794

Clay
9.6961×106

0.2902
3.7731×104 8.0952×104 9.2023×106 4.9380×105 24.515

1.3328×107 1.0553×104 3.7340×104 1.3212×107 1.1602×105 0.8388
Sweets

1.6849×106
0.3353

2.8909×103 1.1612×104 3.3585×105 1.3491×106 186.48

reproduction of rheological forces for both materials, where
clay has c1 + c2 = 1.3988× 107Pa·s and sweets material
has c1+ c2 = 1.3328× 107Pa·s. However, in order to well
reproduce the final recovered shape, small values of c1+ c2
are necessary, e.g., c1+ c2 = 9.6961× 106Pa·s for clay and
c1 + c2 = 1.6849× 106Pa·s for sweets material. For both
materials, the values of c1+ c2 for force reproduction are
larger than the values for deformation reproduction. We
failed to satisfy the requirement of value c1+ c2 for both
force and deformation reproduction. Two values of c1+ c2
for clay are quite close but very different for sweets material.
It indicated that it is more difficult for sweets material to
reproduce force and deformation behaviors simultaneously.
Using the estimated parameters listed in Table I, we

could simulate the rheological behaviors of both materials.
Comparison between simulation results and experimental
measurements were shown in Figs. 7 and 8, where Figs.
7a and 8a were simulated with the first set of parameters
(Table I) for both materials and Figs. 7b and 8b were with
the second set of parameters. We found that clay has more
coincident results than sweets material using two sets of
parameters. This again attributes to the value of c1+c2 with
close values of c1+ c2 resulting in more coincident results,
and vice versa. Figure 8 suggested that it is impossible for
sweets material to reproduce both force and deformation
behaviors simultaneously by using the two-layered Maxwell
model. This impossibility will not be changed by adding
more elements on the physical model or by changing the con-
figuration among basic elements. This impossibility comes
from the linearity of the basic elements, especially the linear
viscous element which dominates both stress amplitude and

Simulation

Experiment

(a-1) Rheological force (a-2) Held shape

Experiment Simulation

(a-3) Final shape

Experiment Simulation

(a) Using the parameters estimated by force optimization alone

(b-2) Held shape

Experiment Simulation

Simulation

Experiment

(b-1) Rheological force

(b) Using the parameters estimated by force optimization with fixed c1+c2

(b-3) Final shape

Experiment Simulation

Fig. 7. Validation results of commercial available clay.

Simulation

Experiment

(a-1) Rheological force

(a) Using the parameters estimated by force optimization alone

(a-2) Held shape

Experiment Simulation

(a-3) Final shape

Experiment Simulation

Simulation

Experiment

(b-1) Rheological force

(b) Using the parameters estimated by force optimization with fixed c1+c2

(b-3) Final shape

Experiment Simulation

(b-2) Held shape

Experiment Simulation

Fig. 8. Validation results of Japanese sweets material.

residual strain. Figures 7 and 8 also showed that the held
shapes simulated with different sets of parameters have
the identical results and quite close to the experimental
measurements. This is because the held shape was only
affected by the Poisson’s ratio γ [16] and our FE model
can reproduce both force and held shape simultaneously. In
addition, it is necessary to mention that the Poisson’s ratios
γ listed in Table I were estimated in advance by minimizing
the difference of the held shape between simulation and
experiment.

B. Introduction of Dual-Moduli Viscous Element

According to the above discussions, we found that the
parameter c1 + c2 must take different values through the
simulation to capture both force and residual deformation.
We therefore formulated a viscous element as

σ(t) = (κα + c)ε̇(t), (35)

where scalars α and c were parameters to be determined.
Switch function κ takes the following value:

κ =
{ 1 t ≤ tp+ th;
−1 t > tp+ th.

(36)

This dual-moduli viscous element has an ability to switch
the parameters from one set to another during simulation.
Introducing Eq. 35 into our FE model, we could modify our
FE model by replacing the last two differential equations of



TABLE II
ESTIMATED PARAMETERS FOR SWEETS WITH NONLINEAR MODEL

Parameters Estimated results Parameters Estimated results
E1 (Pa) 1.0553×104 E2 (Pa) 3.7340×104

c1 (Pa·s) 6.6093×106 c2 (Pa·s) 7.8618×104

α1 (Pa·s) 6.6027×106 α2 (Pa·s) 3.7403×104

Simulation

Experiment

(b) Final shape

Experiment Simulation

(a) Rheological force

Fig. 9. Validation results of sweets material with the nonlinear model.

Eq. 29 with the following two equations:

Ḟ1 =−
E1

κα1+ c1
F1+(λ ela1 Jλ + μela1 Jμ)vN ,

Ḟ2 =−
E2

κα2+ c2
F2+(λ ela2 Jλ + μela2 Jμ)vN .

(37)

Using the parameter estimation methods proposed in the
last section, we could determine all the parameters for
Japanese sweets material based on the new model, as given
in Table II. Simulation results compared with experimental
measurements were shown in Fig. 9. We could now achieve
good reproduction of both rheological force and residual
deformation simultaneously.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we summarized physical models for sim-
ulating rheological objects. We formulated the generalized
constitutive laws for both serial and parallel models. We
found that serial and parallel models have the identical
constitutive laws and they could be replaced by each other
with small changes of some coefficients. We also found that
the serial models are appropriate for calculating strain while
the parallel models are convenient for calculating stress.
Analytical expressions of rheological forces and residual
deformation for generalized parallel models were derived.
Theoretical discussions showed the difficulty for linear mod-
els to reproduce rheological forces and residual deformation
simultaneously. A simpler 2D FE dynamic model and a more
efficient method for parameter estimation were presented by
taking the advantages of the analytical force expressions.
Instead of iterative FE simulations, the parameter estima-
tion method proposed in this paper only involved direct
calculations of force expressions and we could obtain an
optimal solution within only several seconds. To validate our
modeling and parameter estimation methods, experiments
with commercial clay and Japanese sweets materials were
performed. We found that the value of c1 + c2 strongly
affected both force amplitudes and the residual deformation.
We failed to reproduce both force and recovered shape

simultaneously for sweets materials and we believe that the
linear viscous elements caused the failure. Therefore, a dual-
moduli viscous element was then introduced to improve our
FE model and simultaneous reproduction of rheological force
and deformation were finally achieved.
In the future, nonlinear modeling of rheological objects

will be investigated except switching parameters. Biological
organs and tissues, such as porcine livers and brain tissues,
will be employed to validate our modeling and parameter
estimation methods.
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[8] B. A. Lioyd, G. Székely, and M. Harders, “Identification of spring pa-
rameters for deformable object simulation,” IEEE Trans. Vis. Comput.
Graph., vol.13, no.5, pp. 1081–1094, Sept./Oct., 2007.

[9] N. Sakamoto, M. Higashimori, T. Tsuji, and M. Kaneko, “An Optimum
Design of Robotic Hand for Handling a Visco-elastic Object Based on
Maxwell Model,” Proc. IEEE International Conference on Robotics
and Automation (ICRA ’07), pp. 1219–1225, Roma, 2007.

[10] C.-H.D. Tsai, I. Kao, N. Sakamoto, M. Higashimori, and M. Kaneko,
“Applying Viscoelastic Contact Modeling to Grasping Task: An Ex-
perimental Case Study,” IROS ’08, pp. 1790–1795, Nice, 2008.

[11] Y.-H. Chai, G. R. Luecke, and J. C. Edwards, “Virtual Clay Modeling
Using the ISU Exoskeleton,” Proc. IEEE Virtual Reality Annual
International Symposium (VRAIS ’98), pp. 76–80, Atlanta, 1998.

[12] E. Samur, M. Sedef, C. Basdogan, L. Avtan, and O. Duzgun, “A
robotic indenter for minimally invasive measurement and characteriza-
tion of soft tissue response,” Med. Image Anal., vol.11, pp. 361–373,
Aug., 2007.

[13] B. Ahn and J. Kim, “Measurement and characterization of soft tissue
behavior with surface deformation and force response under large
deformations,” Med. Image Anal., vol.14, pp. 138–148, 2010.

[14] J. Muramatsu, T. Ikuta, S. Hirai, and S. Morikawa, “Validation of
FE deformation models using ultrasonic and MR images,” in Proc.
9th International Conference on Control, Automation, Robotics and
Vision (ICARCV’06), pp. 1–6, Singapore, 2006.

[15] Z. Wang, K. Namima, and S. Hirai, “Physical parameter identification
of rheological object based on measurement of deformation and force,”
ICRA ’09, pp. 1238–1243, Kobe, 2009.

[16] Z. Wang and S. Hirai, “Modeling and parameter identification of
rheological object based on FE method and nonlinear optimization,”
IROS ’09, pp. 1968–1973, St. Louis, 2009.


