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The situation of ball-end milling varies during the process with the change of cutting conditions. These variation

should be considered in order to control the ball-end milling. Cutting simulation is one of e�ective method to

understand the variation during the process. It is, however, di�cult to determine the process model for simulation

a priori. Thus, it is desired to construct the process model by learning from actual milling process. This paper

presents a learning system with process model selection. The system controls ball-end milling process by using

simulation result, and also acquires process model from actual milling data. Developed milling simulator provides

the function of geometrical and physical simulation. Process models are acquired by learning using a mathematical

programming method. The results of experiments by a prototype system show that cutting forces can be predicted

for various cutting conditions.

1. INTRODUCTION

The sophisticated control methodologies have
been developed and been applied to machine tools
to produce the various types of machined prod-

ucts, so far. Simulation based control method is
understood as one of useful method [1]-[6].

In spite of lots of works, there are two unsolved
basic problems. First problem is that most of
all simulation based control researches can be

applied to square-end milling only, and few re-
searches deal with ball-end milling[3][4]. Second

problem is the lack of systematic approaches to
construct process model. Systematic approaches

have been studied in turning only without any
geometrical model[5][6].
More sophisticated control methodologies are

required to realize more 
exible and high e�cient
machining. These methodologies should have

a capability of dealing with ball-end milling in
conventional manner.
This paper shows the development of learning

system with process model selection in order to
overcome the above problems. The system has

functions of simulation based control for ball-end
milling, and also has the functions to acquire the

process model from actual milling data.
In Section 2, framework of developed learning

system is described. In Section 3, ball-end milling
process is modeled with respect to the geometrical
shape of workpieces and cutting force. Further-

more, a method to modify NC data based on
a simulation result is described. Process model

acquisition using a mathematical programming
method is discussed in Section 4. In Section 5,
con�guration of experimental system is explained

and the result of experiments which show cutting
force can be predicted for various conditions are

presented.

2. FRAMEWORK OF LEARNING SYS-

TEM WITH PROCESS MODEL SE-

LECTION

Figure 1 illustrates a framework of learning
system with process model selection. As shown in

Fig. 1, developed system has two phases : cutting
phase and learning phase.

Cutting phase consist of process planning, cut-
ting simulation, NC data generation, and machin-
ing. Especially, cutting simulation is fundamental

function in the cutting phase. In this research,
the process is assumed to be described as a

collection of process model which can be used
in a certain situation. The collection of process

model is stored in the model base. At �rst,
default process model is used for the simulation.
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Figure 1. Framework for learning system with
process model selection

After machining in various cutting conditions,

most desirable process model is selected from the
model base and the selected one is used for the
simulation. Scheme of cutting phase is called

simulation based control method.
In learning phase, a process model is acquired

from measured sensory data for each cutting
condition. These acquired models are stored in
the model base and will be used in a future

simulation. There are three levels in learning
system : learning system(LS) with process model

generation, LS with process model selection, and
LS with parameter determination. They have the

di�erent levels of automation. First system has
the abilities to extract the in
uence factors from
the measured data and discover the mathematical

functions. Second one has ability to select a suit-
able function among acquired multiple process

models. Third one has ability to determine the
process model parameters from measured data.
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Figure 2. Processing 
ow of cutting simulation

In general, model generation is di�cult prob-

lem for computers. Thus in this paper, it is
assumed that various models are generated by
empirical knowledges and know-hows a prior.

Then, model selection and parameter determi-
nation are considered as the problem of learning

system with process model selection.

3. SIMULATION BASED CONTROL

3.1. Modeling of ball-end milling process

Simulation based control uses the predicted
values of cutting force, machining error, tool life

and so on. In this paper, ball-end milling process
is modeled with respect to the geometrical shape

of workpieces and the cutting force. Geometrical
shape is indispensable information, since it is gen-
erally di�cult to control ball-end milling process

in an empirical method due to the complex shapes
of workpieces. Furthermore, cutting force is one

of the most important physical information be-
cause it has essentially related to tool de
ection,
chattering, tool wear, and so on.

Developed simulation 
ow is shown in Fig. 2.
Process simulation consists of geometrical simu-

lation and physical simulation. The shape of a
machined workpiece is evaluated in the geometric

simulation and cutting force is computed in the
physical simulation.



3.1.1. Geometrical simulation

Machined workpiece geometry can be expressed
as a Boolean subtraction of the tool swept vol-

ume geometry from blank workpiece geometry.
Furthermore, the cutting part of 
ute is approxi-
mately detected by judgement whether small 
ute

is inside of workpiece or outside. The choice
of geometrical expression is important since the

process simulation requires a lot of geometrical
computations. Many geometrical models have
been proposed, so far. The following features are

important to calculate the geometrical shape in
ball-end milling process.

� There is a unique tool swept volume corre-

spond to every surface point.

� Every tool swept volume is expressed as the
set of simple mathematical function.

� Expression of tool swept volume can be
known a prior.

� Boolean subtractions and judgement of


ute must be calculated fast.

� High geometrical accuracy is required.

Considering the above features, geometrical
shape is expressed by 2-dimensional array which

contains geometric properties for all pixels. This
method is called G-bu�er[7] or P-map[8]. In
this case, geometric property is given by the

mathematical expression of tool swept volume.
This method can be applied to other tools easily.

Figure 3 shows the comparison between Z-map
expression and used expression. Cutting proc-

esses are expressed by renewaling the memory of
the recent number of tool swept volume for each
machined pixel. Pixel size must be determined

small enough to express required accuracy. At
least, cusp height must be expressed so that the

accuracy can be evaluated in the simulation.

3.1.2. Physical simulation

Before physical simulation, a desirable process
model is selected. Then, physical simulator

use the process model and predict instantaneous
cutting force for each rotational angle.

In physical simulation, cutting force is com-
puted as the vector sum of all small forces loaded

on individual divided small 
utes. Geometric
model described in the previous section is used in
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Figure 3. Comparison of geometrical expression

order to examine whether each 
ute interferences

the workpiece or not. Small forces corresponding
to each 
ute are computed using the physical

model. Let us use a simple two-dimensional
cutting model in a plane perpendicular to 
ute.
Small force fv parallel to movement of each

cutting 
ute and ff perpendicular to movement
are expressed as follows:

�
fv
ff

�
=

8<
:

(c1 +
c2

h
) � (1� c3 � V )

(c4 +
c5

h
) � (1� c6 � V )

9=
; ��A (1)

where �A is a cutting area, h is equivalent cutting
depth, V is cutting velocity, and c1 through c6
are parameters. Parameters c1 through c6 are
determined by cutting conditions and selected
based on situation similarity. In this research,

similarity is de�ned as Euclid norm of the cutting
conditions and the tool movement direction.

Calculated small forces by equation (1) are
evaluated with reference to the absolute coor-
dinate system. These small values are summed

up to derive cutting force. In this paper, two-
dimensional cutting model is used. More precise

models such as oblique cutting model are also
applicable in the physical simulation.

An example of graphic output during the sim-
ulation is shown in Figure 4.



Figure 4. Example of CRT display

3.2. NC data modi�cation based on simu-

lation result

NC data is modi�ed a priori in order to improve

control robustness[1][2]. For a new situation, one
process model must be chosen in simulation. In

this approach, a process model corresponding to a
new situation is assumed to be the process model

which is acquired in most similar situation. Then,
the accuracy of the simulated results limited.
Usually, simulation base control method trusts

the predict values perfectly. In this case, however,
the model accuracy must be taken into consid-

eration when the simulation results are used.
Accuracy is de�ned as the function of situation
similarity and regularized residual computed in

the learning process. Figure 5 illustrates the
procedure of NC data modi�cation.

4. LEARNING SYSTEM WITH PROC-

ESS MODEL SELECTION

It has been recognized that the feedback of

actual process information into simulation is ef-
fective in order to improve the simulation accu-
racy[1]. Recently, Matsumura et al proposed the

concept of \adaptive prediction" and constructed
a prototype system for turning process[6].

Figure 6 shows the processing 
ow of the
learning system. Physical model is acquired from

measured data. In this study, a mathematical
programming method is adopted to calculate the
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Figure 5. Pre-process NC data modi�cation

model parameters. Quasi-Newton method is used

to minimize the residual. The residual R is given
as follows:

R = min(R1; : : : ; RM )

Rj =

NX
i=1

kF̂i � fj(X;C)k

where F̂i (i 2 [1; N ]) are measured data, fj (j 2

[1;M ]) are mathematical functions of physical
model, X is the machining condition set, and C

is the model parameter set. A physical model

function that minimizes the residual is selected
as suitable function among the known functions.

The process model corresponding to the cur-
rent condition is stored in model base by mem-
orizing a set of the new process model, model

parameters, and cutting conditions.
Memory-based learning method is applied in

order to store the acquired model and parameters.
The method is fast and never overlearn. Further-

more, it is easy to evaluate the learned result since
process models are memorized in explicit forms.
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5. EXPERIMENTAL RESULTS AND

DISCUSSION

5.1. Experimental system

Figure 7 illustrates the con�guration of pro-

totype system developed in this study. The
system can be divided into four major modules:
machining simulator, NC data modi�er, machin-

ing center with a CNC controller, and model
maintenance module.

Procedure of learning system is as follows:

1. Process model and parameters are selected
from model base constructed in memory,

considering the model accuracy and condi-
tion similarity.

2. Cutting force is predicted using machining
simulation.

3. NC data is modi�ed to maximize the feed
rate within the criteria of cutting force.

4. Cutting force is measured in machining and

compared with predicted force.

5. New process model parameters are calcu-

lated form measured data using a mathe-
matical programming method.

6. Calculated parameters and residual are

memorized with cutting conditions as the
index of memory.

measured output

simulated output

N001T01M06
N002G00X0Y0Z0
N003G01X2000
N004G00Z1000
    .......................

NCdata

 selected
parameter

modification
    criteria

estimated
parameter

N001T01M06
N002G00X0Y0Z0
N003G01X2000
N004G00Z1000
    .....................

modified
NCdata

 simulator

 memory

     NC
modifier

 estimator

 Machine Tools

Figure 7. Con�guration of prototype system

5.2. Experimental results

To evaluate the ability of prediction, cutting
force is measured and is compared with simula-

tion result. Experimental conditions are listed
in Figure 8. For the measurement of instanta-
neous cutting force, 3-dimensional dynamometer

is mounted on the machining center. Comparison
between measured data and simulation result is

shown in Figures 9 and 10.
Two types of simulation are performed. One

simulation uses the process model acquired from
preparatory experiments(model-1). Another sim-
ulation uses the process model acquired from one

actual machining data measured at a di�erent
feed rate(0.1mm/rev)(model-2).

From the experiment results, both of simula-
tion results are within 25% in accuracy. Adapta-
tion of more precise model is future works.

6. CONCLUSIONS

Learning system is studied in order to adapt
simulation based control method into actual ball-
end milling process. Algorithm of learning system

with process model selection is proposed.
A prototype system is developed. The experi-

ment results show, 1) cutting force is predicted
within 25% in accuracy, 2) learning system is

e�ective because there is no need to make the
preparatory experiment for the model building.
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