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ABSTRACT
A systematic approach to the generation of �xture lo-

cation layouts is presented. Workpiece holding is one of
di�cult processes to be automated. Expert technicians
have a capability of determining a �xture layout appro-
priate to the given workpiece and the given operation.
Fixture planning system must have this capability in
order to automate the holding process.
In this article, we will develop a computational pro-

cedure that can derive �xture layouts for various work-
pieces. Firstly, �xture layouts are represented by topo-
logical relationship between the workpiece and a set of
�xtures. Secondly, static properties at each layout are
formulated by use of the cone theory. Next, a necessary
condition for reliable clamping is derived and a proce-
dure to investigate this condition based on the model
of the workpiece is developed using the cone theory.
Finally a simple example is shown to demonstrate the
computation process of possible �xture layouts.

INTRODUCTION
Workpiece holding is one of di�cult processes to be

automated. In factories, most holding processes are
performed by technicians whereas machining processes
are done by machines. Automatic holding of work-
pieces is thus required eagerly. Recently, some re-
searches to automatic �xture planning have been stud-
ied (Chang, 92). Workpieces must be �xed to tables
and pallets �rmly so that the machining process should
be achieved successfully. Skillful technicians have a ca-
pability of determining an adequate method of clamping
from the geometrical shape and the material of work-
pieces and machining conditions such as feed rate and
cutting forces. Fixture planning system must have this
capability of determining a holding method.

Some approaches to �xture planning have been devel-
oped in order to automate the determination process by
expert technicians. One approach to the �xture plan-
ning is based on expert systems (Liou and Suen, 92).
Empirical knowledge of expert technicians is extracted
and is expressed as a set of production rules. Clamp-
ing methods can be then inferred from the information
of workpieces and �xtures by applying the production
rules. This approach has, however, the following draw-
back; it is di�cult to acquire the rules from expert tech-
nicians since the technicians often cannot explain their
decision. Another approach is an analytical one based
on the model of workpieces and �xtures (Nguyen, 86).
Location of �xtures and clamping forces exerted by the
�xtures are derived analytically from the model of work-
pieces and �xtures built on a computer. This approach
is so systematic that it can be applied to various work-
pieces once the model of clamping process is developed
su�ciently.

There exist many �xture layouts where the topolog-
ical and the geometrical relationships between a work-
piece and �xtures di�er from one another. For the an-
alytical �xture planning, a computational method to
�nd �xture layouts capable of holding the workpiece
should be established. In this article, we will develop
an analytical method to enumerate possible topological
layouts of �xtures. Firstly, �xture layouts are described
by listing all contacting pairs between a workpiece and
a set of �xtures. Secondly, static behavior at each �x-
ture layout is analyzed and is formulated by use of the
theory of polyhedral convex cones. Next, a necessary
condition for reliable holding is derived based on the
static formulation. Computational procedure to inves-
tigate this condition is also developed using the cone
theory. Finally, a simple example is shown to demon-
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strate the computation process of �xture layouts by the
proposed approach.

REPRESENTATION OF FIXTURE LAYOUTS

Fixture Layouts
Workpiece holding is a process of locating and clamp-

ing a workpiece by �xtures. The process mainly con-
sists of three subprocesses; placing process, guiding pro-
cess, and clamping process. In placing process, some
guiding �xtures are placed to appropriate locations in
a workspace. In guiding process, a workpiece is guided
along the located �xtures to the goal con�guration. The
workpiece is required to be guided to the goal con�g-
uration easily and to be positioned precisely at that
con�guration. In the clamping process, clamping �x-
tures are located to hold the workpiece rigidly. The
workpiece must be held by �xtures without causing ex-
cess deformation of the workpiece. Fixture planning is
a process to determine a �xture location appropriate
to holding a workpiece. The �xture planning requires
the geometrical shape and the material of the workpiece
and the machining condition. Experienced technicians
are capable of planning an appropriate �xture location
for various workpieces.
There exist many �xture layout where the topological

and the geometrical relationships between a workpiece
and a set of �xtures are di�erent from one another. Fig-
ure 1 illustrates some examples of possible �xture layout
for a planar workpiece by point-contact �xtures. The
�gure illustrates topologically di�erent layouts of �x-
tures. For example, Figure 1-(a) shows a �xture layout
where edge 1 and edge 3 are in contact with point �x-
tures. The workpiece is not �xed by this layout. Figure
1-(b) expresses another layout where edge 2 and edge
3 are in contact with the �xtures. Note that the work-
piece can be held when the two �xture are located oppo-
site to each other. Namely, this layout has a possibility
to holding the workpiece rigidly. In the �xture planning,
both the topological relationship and the geometrical
features must be determined. One approach to the de-
termination is that the possible topological layouts are
�rstly enumerated and one layout is then chosen after
deciding the geometrical features for individual layout
candidates. All of the �xture layout candidates which
have a possibility to clamping the workpiece should be
enumerated in order to establish the above systematic
approach to the �xture planning. Thus, we will focus
on the enumeration of �xture layout candidates in this
article.

Contact Pairs
Workpiece holding is performed by mechanical con-

tacts between a workpiece and �xtures. The force and
the moment applied to a workpiece by contacting �x-
tures strongly depend upon the geometrical shape of
the �xtures and their layout as well as the friction at
the contacting points. Let us express a topological �x-
ture layout by the pairs between workpiece elements and
�xture elements. Let us consider the following work-

(a) (b)

(c) (d)

workpiece
fixture

edge 1
edge 2

edge 3

edge 4

Figure 1. Simple example of �xture layout

piece elements; 1) faces, 2) edges, and 3) vertices. As-
sume that �xture elements consist of a) point-contact
�xtures, b) line-contact �xtures, and c) plain-contact
�xtures. The contacting pairs are then expressed by a
pair between a workpiece element and a �xture element.
Mechanical contacts between a workpiece and �xtures
are represented by listing contacting pairs. The con�g-
uration of each �xture can be described by the relative
position and orientation between the �xture and its cor-
responding workpiece element. Let qi be a vector rep-
resenting the relative con�guration between the work-
piece and the i-th �xture. Assuming that the workpiece
is �xed by n �xtures, the relative con�guration between
a workpiece and a set of �xtures can be given by the
collective vector q consisting of vector q

1
through qn as

follows:

q = [q
1
; q

2
; � � � ; qn]: (1)

Namely, the �xture location is expressed by the con�g-
urations corresponding to the individual contact pairs.
Since workpiece elements and �xture elements consist

of bounded faces, the range of con�guration qi is also
bounded. Let Di be a set of relative con�gurations be-
tween the workpiece and the i-th �xture. For example,
let us consider a contact pair between a point-contact
�xture and a planar face. The position of the �xture
must be within the face and the orientation of the �x-
ture must be chosen so that the �xture are not interfered
with by the workpiece. The position and the orienta-
tion of the �xture thus must be limited and the relative
con�guration is bounded in a certain region. Note that
a boundary representation model of solid objects pro-
vides all information necessary to compute set Di. For
example, the range of the position of a point �xture
contacting to a workpiece face is derived by the coordi-
nates of all end points of the face. The orientation of the
�xture is determined by the outward normal vector of
the face. Thus, the con�guration set Di corresponding
to a contact pair between a point-contact �xture and
a workpiece face can be computed from the geometri-
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cal features of the workpiece face. Consider a contact
pair between a line �xture and an edge of the work-
piece. The range of the �xture position is determined
by the end points of the line �xture and those of the
edge. The con�guration set corresponding to a contact
pair between a line �xture and a workpiece edge can
be calculated from the geometrical features of the line
�xture and the workpiece edge. Generally, set Di can
be computed numerically from the geometrical model
of a workpiece and that of �xtures on a computer.

STATIC ANALYSIS OF CLAMPING PROCESS

Static Modeling of Workpiece Holding Using
Cone Theory
In this section, we formulate static relationship of a

workpiece constrained by �xtures. An e�cient mathe-
matical tool have been established based on the theory
of Polyhedral Convex Cones (Goldman and Tucker, 56)
in order to deal with unidirectional constraints due to
mechanical contacts (Hirai and Asada, 93). This tool
provides an e�cient formalization for treating unidirec-
tional constraints that we need to deal with in a �x-
ture process. In the following analysis, we will investi-
gate statically admissible force and mement p. Vector
p = [fx; fy; fz;mx;my;mz] is the force and moment act-
ing on the workpiece that satisfy the static equilibrium
condition.
Fixture layout is described by a list of contact pairs,

as mentioned before. Each contact pair causes a
reaction force upon the workpiece. Let di be the
wrench vector corresponding to the i-th contact pair
(Ohwovoriole and Roth, 81). If all of the contact points
are frictionless, the force and moment equivalent to the
reaction force at the i-th contact pair is given by ridi,
where coe�cient ri denotes the magnitude of the reac-
tion force. Note that coe�cient ri is non-negative since
the contacts are unidirectional. The range of reaction
forces is thus described by the sum of equivalent forces.
Namely,

F = f

nX
i=1

ridi j ri � 0; i 2 [1; n]g (2)

where [1; n] represents integers 1 through n. Set F is a
semi-in�nite cone in the 6-dimensional space consisting
of a �nite number of edges, as shown in Figure 2. This
set is called a polyhedral convex cone and is abbreviated
to PCC. Vector di is a vector along an edge of the cone.
Let us express the above equation simply by

F = spanfd1;d2; � � � ;dng: (3)

This form is referred to as the Span Form of the PCC.
Each vector involved is called a span vector. Therefore,
the reaction force set is described by a PCC.
As shown in Figure 2, set F can be regarded as a cone

surrounded by a �nite number of hyperplanes. Let a1
through ah be outer normal vectors to the hyperplanes.

F

ak

id

Figure 2. Polyhedral convex cone

Set F is then expressed as follows:

F = fp j a
T
j p � 0; 8j 2 [1; h]g: (4)

For the sake of simplicity, the set given by eq.(4) is
denoted as

F = facefa1;a2; � � � ;ahg (5)

which is referred to as the Face Form of the PCC. Each
vector involved is called a face vector.
Let us consider friction the between the workpiece

and the �xtures. Friction is represented by the friction
cone (Erdmann, 86), which speci�es the range of re-
action forces. The axis of the cone is parallel to the
normal vector of the surface. Sides of the cone make an
angle tan�1 �, where � denotes the coe�cient of fric-
tion. Let us approximate the friction cone by a PCC
consisting of mi span vectors. The force and moment
equivalent to the reaction forces at the i-th contact pair
is then given by a PCC in the span form as follows:

Fi = spanf dik j k 2 [1;mi]g: (6)

The collective reaction force is described by the convex
sum of the friction cones at individual contact pair. The
set of reaction forces is thus given by

F = F1 + F2 + � � �+ Fn (7)

where + denotes the convex sum of two sets. The con-
vex sum of sets X and Y is de�ned as follows:

X + Y
4

= fx+ y j 8x 2 X; 8y 2 Y g: (8)

It has been shown that the convex sum of PCC's
is also given by a PCC and its span form con-
sists of the span vectors of individual PCC's
(Goldman and Tucker, 56). This implies that the span
form of cone F is given by span vectors of cones F1

through Fn. Namely,

F = spanf dik j i 2 [1; n]; k 2 [1;mi]g: (9)
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Thus, the set of reaction forces is described by a poly-
hedral convex cone in the span form as well.

Force Closure Clamping
In workpiece holding, �xtures apply unidirectional

forces and moments upon the workpiece. A desired con-
dition for the holding is to guarantee that no motion
occurs no matter what disturbance force and moment
are imposed on the workpiece. This condition, which is
referred to as Force Closure, has been given by Ohwovo-
riole and Roth (Ohwovoriole and Roth, 81). The con-
dition can be restated by using the reaction force set
given by eq.(7). An arbitrary non-zero force p which
is not involved in the reaction force set F violates the
force equilibrium condition and causes some workpiece
motion. The force closure condition is not satis�ed in
this case. Thus, for the force closure clamping, the re-
action force set must involve all the forces and moments
in the 6-dimensional vector space R6:

F = R
6 (10)

The problem of force closure is basically to investigate
whether the set F covers the whole vector space or not.
The above equation can be examined by use of the
computational algorithms of polyhedral convex cones
(Hirai and Asada, 93).

COMPUTATION OF FIXTURE LAYOUT CAN-
DIDATES

Possible Reaction Force Sets
The set of the force and the moment that can be

applied to a workpiece by each �xture varies accord-
ing to the relative con�guration between the workpiece
and the �xture. For example, consider a contact pair
between a planar face of the workpiece and a point-
contact �xture. The moment acting on the workpiece
varies according to the location of the contacting point
while the direction of the translational force does not
change. For a contact pair between a vertex element
of the workpiece and a planar-face �xture, the force set
depends upon the direction of the planar �xture. As
shown in eq.(6), the set of reaction forces is described
by a PCC. The span vectors of the cone depend upon
the relative con�guration, that is, the force cone corre-
sponding to the i-th contact pair at con�guration qi is
described as follows:

Fi(qi) = spanf dik(qi) j k 2 [1;mi]g: (11)

Assume that the workpiece is clamped by n �xtures. As
shown in eq.(7), the reaction force set F at con�guration
q = [q

1
; � � � ; qn] is given by

F (q
1
; q

2
; � � � ; qn) =

F1(q1) + F2(q2) + � � �+ Fn(qn): (12)

Recall that a �xture location satis�es the force closure
condition if the force set F covers the whole vector

space. Location of �xtures is characterized by con�gu-
rations q

1
through qn corresponding to the individual

�xtures. The condition for force closure clamping is
thus given by the following equation:

9q
1
; q

2
; � � � ;qn s.t. F (q

1
; q

2
; � � � ; qn) = R

6
: (13)

Span vectors of reaction force set Fi(qi) are nonlinear
functions with respect to con�guration qi. In addition,
the force closure condition can be checked by applying
numerical procedures rather than by solving analytical
equations. In order to investigate whether the above
condition is held or not, it is required to check the force
closure condition for all combination of the con�gura-
tions q

1
through qn. Thus, it is di�cult to examine

whether the above condition is satis�ed or not in an
analytical method nor in a numerical computation ap-
proach.
Instead of investigating the above condition, we will

examine a necessary condition for the force closure
clamping. The di�culty of the above condition results
from the dependency of set Fi upon con�guration qi. In
order to evaluate possible reaction force corresponding
to each pair collectively, let us introduce a collection of
reaction force sets for all con�gurations at each contact
pair. An aggregation of the force sets corresponding to
the i-th contact pair is then de�ned by

Pi
4

=
[

q
i
2Di

Fi(qi) (14)

This set is referred to as Possible Reaction Force Set
corresponding to the i-th contact pair. Since the re-
action force set Fi(qi) at an arbitrary con�guration qi

is involved in the possible reaction force set Pi, if the
force closure �xture layout condition given by eq.(13) is
satis�ed, the following condition is held:

P = R
6 (15)

where set P is the convex sum of possible reaction force
sets corresponding to individual contact pairs:

P = P1 + P2 + � � � + Pn: (16)

If the force closure condition given by eq.(13) is sat-
is�ed, the above equation is held. Namely, the above
equation is a necessary condition for a force closure �x-
ture layout. Force closure condition given by eq.(13) is
not always satis�ed even if the above equation is held.
Nevertheless, the above equation is e�ective since sets
P1 through Pn are independent of con�guration q. Set
P denotes the possible reaction force and moment by a
set of �xtures. Note that set P is described by a con-
vex sum of possible reaction force sets P1 through Pn.
In the following section, we will investigate the possible
reaction force sets.

Computation of Possible Reaction Force Sets
In order to obtain force set Pi corresponding to the

i-th contact pair using eq.(14), we have to compute a
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Figure 3. Interpolation of polyhedral convex
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union of PCC's over a continuous region Di. In this
section, we develop a technique to approximate a union
of PCC's from a �nite number of con�gurations instead
of the continuous region.
Let us divide the region Di into a �nite number of

small regions, Di1 through DiL, as shown in Figure 3.
Set Pi then consists of unions of PCC's over individual
small regions:

Pi =

L[
l=1

[
q

i
2Dil

Fi(qi): (17)

According to (Hirai and Asada, 90), a union of PCC's
over a small regionDil can be approximated by a convex
sum of PCC's at �nite number of points in the region:[

q
i
2Dil

Fi(qi) = Fi(qi1) + � � �+ Fi(qim); (18)

where qi1 through qim are representative con�gurations
in region Dil. The union over Di is then given by the
union of the obtained convex sums. Recall that the con-
vex sum of PCC's is also a PCC. Therefore, the possible
reaction force set Pi given by eq.(14) is approximated
by a union of �nite number of PCC's as follows:

Pi =

L[
l=1

Pil; (19)

where Pi1 is the convex sum corresponding to the l-
th small region. Note that the convex sum of PCC's
can be computed on a computer using the computation
algorithms of PCC's. Thus, possible reaction force set
Pi can be derived on a computer from the model of the
workpiece and the �xtures.
Recall that the convex sum of PCC's is also given by

a PCC. Substituting eq.(19) into eq.(16) and expanding
the obtained equation, we �nd that set P is described
by a union of a �nite number of PCC's. In order to
investigate whether condition (15) is satis�ed or not,
let us �rstly compute the simplest form of the union of
PCC's. The simplest form of the union consists of the
smallest number of PCC's. If a union of two PCC's,
A and B, coincides to their convex sum A + B, union

workpiece

fixture fixture

force
closure

Figure 4. Search tree for �xture layout

A[B can be replaced by the convex sum, which is also
a PCC. This implies that two PCC's are reduced into
one PCC if the above condition is satis�ed. Accord-
ing to (Hirai and Asada, 90), we can examine whether
a union of two PCC's coincides to their convex sum
or not on a computer. Thus, the simplest form of the
union of PCC's can be computed by checking this con-
dition. Next, let us investigate whether condition (15)
is satis�ed or not. Condition (15) is satis�ed and force
set P covers the whole space if, and only if, the simplest
form of the union consists of unique PCC and the cone
covers the whole space of force and moment. It can be
checked whether a PCC covers the whole space or not
by the computation algorithms of PCC's. As a result,
we can examine whether condition (15) is satis�ed or
not for any �xture layout on a computer.

Searching Fixture Layout Candidates

As mentioned previous section, eq.(15) provides a
necessary condition for force closure clamping. Thus,
�xture layout candidates, which have a capability to
force closure clamping, can be enumerated by investi-
gating whether individual sets of contact pairs satisfy
this equation or not. As shown in Figure 4, let us con-
sider a tree where each node of the tree represent a
�xture layout. The root node of the graph denotes a
layout where no �xtures are contacting with the work-
piece. Since all layouts are described in this tree, �xture
layout candidates can be enumerated by searching the
tree. Note that all contact pairs involved in node Cn are
members of node Cm if node Cn is a descendant of node
Cm. Thus, if a layout corresponding to one node satis-
�es the condition given by eq.(15), its descendents also
hold the condition. Namely, it is not necessary to check
descendants of the node that satis�es the condition.
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Note that possible reaction force set P corresponding
to a �xture layout is described by a convex sum of force
sets, P1 through Pn, which denote the range of the re-
action forces at individual contact pairs that compose
the layout. Thus, if node Cn is a descendant of node
Cm, possible reaction force set corresponding to node
Cn is given by a convex sum among that of node Cm

and the possible reaction force sets at all contact pairs
which are involved in node Cn but not involved in node
Cm. Namely, we can reduce the computation time of
possible reaction force set corresponding to descendant
nodes by utilizing that of a parent node.
Considering the above features, let us search a �xture

layout tree by breadth-�rst search starting with the root
node of the tree. The computational result of possible
reaction force set P at each node is stored so that it can
be utilized in the computation of possible reaction force
sets at its descendants. If a �xture layout correspond-
ing to a node satis�es the condition given by eq.(15),
its descendants are not investigated. Since a set of sev-
eral �xtures provides a force closure holding in general,
it can be expected that the searching procedure does
not cause a combinational explosion. Thus, all topolog-
ical layouts of �xtures that have a capability to force
closure holding can be enumerated using this searching
procedure.

NUMERICAL EXAMPLE

In this section, we will demonstrate the computation
process of �xture layout candidates by taking a sim-
ple example shown in Figure 5. The planar workpiece
shown in Figure 5-(a) consists of the following workpiece
elements:

straight edge e1 through e6

circular curve c

parabolic curve p

vertex v1 through v5

For the sake of simplicity, we assume that point �xture
element P and line �xture element L are available, as
shown in Figure 5-(b). Straight edges, a circular curve,
and a parabolic curve of the workpiece can be held by
point �xtures. Vertices v1, v2, v3, and v5 are convex
vertices of the workpiece, which can be clamped by line
�xtures. Vertex v4 is a concave vertex, which can be
held by point �xtures. Thus, we have 13 contact pairs
as follows:

(ei; P ) i = 1; 2; � � � ; 6
(c; P )
(p; P )
(vj ; L) j = 1; 2; 3; 5
(v4; P )

Next, possible reaction force sets are computed for in-
dividual contact pairs. Let us demonstrate the compu-
tation process of a possible reaction force set by taking
the third contact pair, (e3; P ). Let the x-axis and the

2

R4

2 3 1

1
1

28

p

c

e1

e2
e3

e4e5

e6

v1

v2v3v4

v5

(a) Example of workpiece

point fixture

line fixture

(b) Fixture elements

Figure 5. Simple example of workpiece and

�xture elements

y-axis in the directions along edges e1 and e6, respec-
tively, and vertex v1 be the origin of the coordinates.
Edge e3 is then described as follows:

x3(q3)
4

= [x3(q3); y3(q3)] = [9 � q3; 5]

where q3 is a parameter that speci�es the point on edge
e3. The range of parameter q3 is given by

D3 = fq3 j 0 � q3 � 3g:

Outward normal vector at pointx3(q3) and tangent vec-
tor at that point are given as follows, respectively:

n3(q3) = [0;1]; t3(q3) = [�1; 0]

Assume that a point �xture P is in contact with edge
e3 at point x3(q3). The set of reaction forces is then
described by

F3(q3) = spanfd
n
3
(q3)� �d

t
3
(q3)g;

where dn
3
(q3) and d

t
3
(q3) are wrench vectors given by

d
n
3
(q3)

4

=

�
n3(q3)

x3(q3)� n3(q3)

�
=

"
0
1

9� q3

#

d
t
3
(q3)

4

=

�
t3(q3)

x3(q3)� t3(q3)

�
=

"
�1
0
5

#

and � denotes the coe�cient of friction. Dividing the
parameter range D3 into ten small regions, we have the
possible reaction force set corresponding to pair (e3; P )
as follows:

P3 = spanfw1;w2;w3;w4g;
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where individual span vectors are given as follows:

w1 = (�0:5; 1:0; 11:5);

w2 = (0:5; 1:0; 6:5);

w3 = (�0:5; 1:0; 8:5);

w4 = (0:5; 1:0; 3:5):

In this computation process, the union of ten PCC's at
individual small regions is simpli�ed into sole PCC as
shown in the above. Possible reaction force sets corre-
sponding to other contact pairs can be computed in the
same way.
Based on the computation of possible reaction force

sets, combinations of contact pairs are checked whether
the combinations satisfy a necessary condition given by
eq.(15). All �xture layout candidates computed using
the developed method are listed in Figure 6. In this ex-
ample, 60 topologically di�erent layouts are found for
force closure holding. During the computation process,
466 nodes are checked whether the condition is satis-
�ed or not. Note that the search tree originally con-
sists of 213 = 8192 nodes. About 94% nodes are not
investigated due to the pruning mentioned in the pre-
vious section. We have implemented the procedure to
enumerate �xture layout candidates on a SUN SPARC-
station LX. This procedure was implemented in C and
Euslisp (Matsui and Inaba, 90). Possible reaction force
sets corresponding to the 13 contact pairs listed before
were computed in 2 minutes and 12 seconds. The search
tree was investigated in 3 hours and 5 minutes.

CONCLUDING REMARKS
A systematic approach to the generation of �xture

layouts has been developed based on the theory of
polyhedral convex cones. Firstly, the topological re-
lationship between a workpiece and a set of �xtures
was described by listing contact pairs. We found that
the static properties of the workpiece strongly depends
upon the topological layout of �xtures. Secondly, the
static behavior of the workpiece was analyzed and was
formulated by use of the cone theory. Force closure con-
dition, which has been proposed as a reliable clamping
condition, was also formulated using polyhedral convex
cones. Thirdly, a necessary condition for force closure
holding was established by introducing possible reaction
force sets, which specify the range of reaction forces at
individual contact pairs. It was found that we could
investigate whether this condition was satis�ed or not
using the computational algorithms of polyhedral con-
vex cones. Finally, a simple example was shown in or-
der to demonstrate the computational process of �xture
layout. We have shown that all possible �xture layouts
was derived by use of the proposed method.
Using the developed method, we can enumerate all

topological layouts of �xtures from the model of a work-
piece and a set of �xtures. This method has a capability
of dealing with various workpieces systematically and
enables us to plan workpiece holding processes analyti-
cally.

REFERENCES
Chang, C.-H., Computer-Assisted Fixture Planning

for Machining Processes, Manufacturing Review, Vol.5,
No.1, pp.15{28, 1992
Erdmann, M., Using Backprojections for Fine Motion

Planning with Uncertainty, Int. J. Robotics Res., Vol.5,
No.1, pp.19{45, 1986
Goldman, A. J. and Tucker, A. W., Polyhedral Con-

vex Cones, Kuhn, H. W. and Tucker, A. W. eds., Lin-
ear Inequalities and Related Systems, Annals of Math.
Studies, Vol.38, Princeton, pp.19{39, 1956
Hirai, S. and Asada, H., A Model-Based Approach to

the Recognition of Assembly Process States Using the
Theory of Polyhedral Convex Cones, 3rd Japan-U.S.A.
Symposium on Flexible Automation, Kyoto, pp.809{
816, 1990
Hirai, S. and Asada, H., Kinematics and Statics of

Manipulation Using the Theory of Polyhedral Convex
Cones, Int. J. Robotics Research, Vol.12, No.5, Octo-
ber, pp.434{447, 1993
Liou, F. W. and Suen, D. J., The Development of

a Feature-Based Fixture Process Planning System for
Flexible Assembly, J. Manufacturing Systems, Vol.11,
No.2, pp.102{113, 1992
M�antyl�a, M., An Introduction to Solid Modeling,

Computer Science Press, 1988
Matsui, T. and Inaba, M., Euslisp: An Object-based

Implementation of Lisp, J. Information Processing,
Vol.13, No.3, pp.327{338, 1990
Nguyen, V, Constructing Force-Closure Grasps,

Proc. IEEE Int. Conf. Robotics and Automation,
pp.1368{1373, 1986
Ohwovoriole, M. S. and Roth, B., An Extension of

Screw Theory, ASME J. Mechanical Design, Vol.103,
Oct., pp.725{735, 1981

7



(1) (2) (3) (4) (5)

(7) (8) (9) (10) (11)

(13) (14) (15) (16) (17)

(19) (20) (21) (22) (23)

(25) (26) (27) (28) (29)

(31) (32) (33) (34)

(6)

(12)

(38)

(44)

(50)

(18)

(24)

(30)

(36)(35)

(37) (39) (40) (42)(41)

(43) (45) (46) (48)(47)

(49) (51) (52) (54)(53)

(56)(55) (57) (58) (60)(59)

Figure 6. Result of computation of �xture layouts
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