Asia Simulation Conference 2009 Oct. 7, 2009

Simulation of Deformation in Robotics

Shinichi Hirai **Dept. Robotics Ritsumeikan Univ.**

http://www.ritsumei.ac.jp/se/~hirai/

Robots vs Creatures

Robots rigid material rigid motors

Creatures soft material soft muscles

Can soft robots be?

Soft Robots in our lab.

Flexible arm cont Soft-fingered manipulation

manipulat

modeling

Soft-fingered Manipulation

Background

Humans exhibit outstanding dexterity

What's the sources of dexterity

brain-nerve system binocular eyes tactile receptors else?

Robots vs Humans

Delay in signal transmission Rate in vision

< 1 ms up to 1,000 Hz 30 – 50 ms

30 Hz

Why humans can manipulate objects despite of such poor performance?

Human Finger Structure

Does this structure contribute to dexterity?

Human finger soft fingertip hard fingernail on the reverse side

Differs from animals

Observations (1/3) Ability of a pair of 1-DOF fingers with hemispherical soft tips and hard back plates

rotational joint

rotational joint

Experiment

Summary

- Model of soft finger
- Simple as possible
- Force depends on relative angle
- Model can describe this dependency
- Simulation with time delay

We can manipule objects by soft fingers despite of time delay in signal transmission

Circular Robot (2D motion)

diameter 40mm weight 3g

Control

Open loop PWM control of SMA coils

A –			
вΓ	~r		
с_			
D_			
Е —			
FΓ			
G —			
н			
crawling			

À	
в	
С	
D	
Е	
F	
G	
Н	

hill-climbing	

20 degrees

Voigt model

В

Jumping heights

	experiment [mm]	simulation[mm]
(a) cap	480	457
(b) cup	670	669
(c) peanut	970	980
(d) dish	1180	1171

Summary

- Circular robot (2D) jump three times its diameter
- Simulation
 particle-based modeling works well
- Spherical robot (3D) jump twice its diameter
- Jumping height depends on initial shapes
- "Dish shape"
 - small force but long contact time large impulse, higher jump

Simulation of deformation in Robotics

- General models often do not apply
- Simple models with other simulations
- Experimental verification is essential

Thank you for your attention

