Pneumatic Active/Passive Devices for Wearable Robots

Shinichi Hirai and Sadao Kawamura Dept. Robotics, Ritsumeikan Univ. Japan

Soft Mechanical Suits

Wearable mechanical system to support human action

> Sports exercise Rehabilitation

Issues to be tackled

 Soft and Light-weighted Devices conform to human body actuators/variable impedance devices

 System Integration attaching to human body control

Soft and Light-weighted DevicesSolutionPneumatic devices

System Integration

sports exercise

Force against human motion

sports exercise

Pneumatic Active Devices

HRA (Hexahedron Rubber Actuator)

PGA (Pneumatic Group Actuator)

Hexahedron Rubber Actuator (HRA)

Property of HRA

Pneumatic Group Actuator (PGA)

Vertical Bend of Double-stage PGA

Motion of Double-stage PGA

Pneumatic Passive Devices

Variable Bend-rigidity Device

Variable Viscosity Device

Linear Devices

Traditional passive devices

springs, dampers, brakes

• Constant properties

- Heavy and bulky (not wearable)
- Few freedoms of motion

Goal: Variable-impedance Wearable devices Solution: Pneumatic

Qualitative Classification of Passive Devices

Туре	Expansion /	Bending	Twisting
	Contraction		
Α	V	S or H	S or H
B	S or H	V	S or H
С	S or H	S or H	V
D	V	V	S or H
Е	S or H	V	V
F	V	S or H	V
G	V	V	V

Variable Extensional-rigidity (VER) Type-A

Prototyping VER device

Unidirectional rigidity

Teeth glued at one end point

Two rows of teeth for bidirectional rigidity

Variable Bend-rigidity (VBR) Type E

Stacked thin films in an envelop Inside vacuum increases the bend-rigidity

VBR device - modeling

Geometrical moment of inertia

Bend rigidity

1888866666

vacuum

000

00

N WI

ポリプロピレ ポリイミド

UAL

74-1

000

E · Inor

b

beam

T.

n number of films

Property of VBR device

Bending force - Time

Bending force - Displacement

30 Polypropylene films (150mm × 30mm)

Micro surface machining

Goal: increase bend rigidity Solution: micro teeth on films

Polyimide ($\times 200$)

Acrylic acid resin ($\times 200$)

Measuring bend-rigidity

displacement

displacement

Variable Viscosity

$F = B(n, p, s) \operatorname{sgn}(\dot{x}) + K_s(x, n, s) + K_c(x, p, s)$ $B: \text{friction} \quad K_s: \text{Film elasticity} \quad K_c: \text{Envelop elasticity}$ $n: \text{ # of films} \quad s: \text{ film area} \quad p: \text{ pressure } x: \text{ displacement}$

Dynamic Property of VBR device

$$F = B(n, p, s)\operatorname{sgn}(\dot{x}) + K_s(x, n, s) + K_c(x, p, s)$$

Dominant term: Coulomb friction

Virtual Viscosity

F is proportional to *p n*, *s* : const control $p = k/\dot{x}/$

Linear Variable Bend-rigidity (LVBR) Type-E

Multiple fibers in an envelop

Force-displacement

Natural state Vacuum state

Variable Whole Rigidity Type-G

Particles on an envelop Inside vacuum increases the rigidity

Property of VWR

Contraction rigidity is proportional to radius Bend rigidity is proportional to geometrical moment of inertia

System Integration

Ankle Orthosis Orthosis for Stair Descending

Wearable Haptic Device for Hand Wearable Virtual Reality

Assist of Upper-Limb Motion Assist of Standing-up Motion Assist for Jumping

Ankle Orthosis

spring

Total weight : 770g Pump is activated by spring

Orthosis for Stair Descending

vacuum

70 Polypropylene films (300mm × 90mm)

Motion during descending

Elbow Orthosis

Two VER devices Attached to the elbow center Angle sensor

70 Polypropylene films (325mm × 80mm)

Wrist Orthosis

Two VER devices Attached to the wrist center Angle sensor

20 Polypropylene films (160mm × 50mm)

Finger Orthosis

Three VWR devices Attached to the finger base Sliders at fingertips

30 Polypropylene films (100mm × 10mm)

Wearable Haptic Device for Hand

Wearable Virtual Reality

Virtual Boxing

Virtual Elasticity and Viscosity

Assist of Upper-Limb Motion

Upper-Limb Motion Assist

Assist of Standing-up Motion

Total weight : 2 Kg Actuators : HRA 220g × 2

Torque during stand-up motion

Air Supply System

Tank : 293gCompressor : 240gRegulator : 264gMax pressure : 145 KPaSupply : 73 times (173 KPa) (Human weight 60 Kg)

Assist for Jumping

Jump Assist Orthosis

Variable Extensionalrigidity devices

Total weight : 1.65 Kg Actuators : 200g × 2

Control delay : 0.05 sec

Jump Assist Orthosis (Foot)

Total weight : 500gActuators : HRA $40g \times 2$

Touch sensor

Experiment

Without assist

With assist

Conclusion

Pneumatic Active/Passive Devices
Prototyping Devices active: PGA, HRA passive: VER, VBR, LVBR, VWR
Control of Passive Devices virtual viscosity
Designing and Prototyping Orthosises

Ongoing Issues

- Synchronization with Human Motion
- Attaching to Humans
- Miniaturization of Air Distribution System

