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Abstract -There are many kinds of deformable objects in our 

living life. Some of them demonstrate rheological behaviors 
during deformation, such as food, clay, human tissues, and 
organs. Usually, finite element (FE) model was employed to 
restructure or simulate the deformation behavior of such objects. 
However, there are important physical parameters to be known 
before simulation. In this paper, we presented an approach to 
estimate the physical parameters of rheological object based on 
FE dynamic model. Firstly, 1D FE dynamic model was described 
briefly and simulations were done with initial parameters. 
Secondly, the identification method was proposed according to 
analysis of deformation behavior and the identification results of 
simulation were given. Thirdly, this method was extended to 
2D/3D deformation and experiment was done by using clay as 
rheological object. Finally, identification results of experiment 
were given and a new model for describing rheological 
deformation was proposed based on the curve fitting of force 
relaxation for experiment data.  

I. INTRODUCTION 

In surgical training and invasive surgery, precise 
simulations of human organs and tissues have to be done to 
describe and predict interaction between deformation and 
external forces or loads. Such simulation models have been 
intensively studied since late 80’s and many methods had 
already been proposed to describe the deformation behavior 
of soft objects, such as: the mass-spring-damper method 
(MSD) [1], the finite difference method (FDM) [2], the 
boundary element method (BEM) [3], and the finite element 
method (FEM) [4]. The computation cost and force accuracy 
increase in this order. However, all of these models include 
important physical parameters which must be available before 
simulation. Unfortunately, there are little useful data can be 
obtained to describe these parameters until now. 

In recent years, some methods had already been proposed 
to estimate such physical parameters for deformable objects. 
Most of them focus on elastic or viscoelastic deformation. 
One popular method is to iterate simulation with updated 
physical parameters. Material property is then obtained by 
minimizing the difference between displacements observed 
from images and calculated by simulations [5],[6],[7]. This 
method can take both nonlinear behavior and multi-layered 
structure into account and works well in dealing with elastic 
deformation with one or two unknown parameters, such as 
Young’s modulus and Possion’s ratios. However, it is 
difficult to use this method in rheological deformation, 

because rheological deformation includes viscous modulus 
which denotes the relationship between stress and velocity of 
strain. It is difficult to obtain the velocity of displacement 
during deformation in actual experiment. Another problem is 
local optimum. When we simulate deformation with more 
than one physical parameter, these parameters will interact 
with one another and contribute together to the final 
deformation. So, there can be more than one set of parameters 
that satisfy the final deformation during iterations. 

    So far, there are only few papers can be found working 
on parameter estimation for rheological deformation. Some of 
them employed MSD model to simulate and analyze the 
deformation of objects [8],[9],[10],[11]. But none of them 
took inner deformation into account. Our previous work had 
already developed an FE model for simulating rheological 
deformation [12]. In this paper, we proposed an approach to 
identify the physical parameters of rheological object based 
on this FE model.  
 

II. FE DYNAMIC MODEL AND SIMULATION 

A. 1D FE Dynamic Model 
Depending on the deformation behavior in response to 

applied external force, deformable objects can be divided into 
three categories: viscoelastic, plastic, and rheological objects. 
Suppose that an object has a natural shape, as shown in Fig. 
1(a). Applying external force, the object deformed as shown 
in Fig. 1(b). After external force is removed, viscoelastic 
objects return to the original shape and there is no residual 
deformation, as shown in Fig. 1(c). Plastic objects remain all 
the deformation and there is no recovered deformation, as 
shown in Fig. 1(d). However, rheological objects partially 
remain the deformation but not all, as shown in Fig. 1(e). 

 

(a) Original shape (b) Deformed shape

(c) Viscoelastic (d) Plastic (e) Rheological  

Figure 1.  Deformation classification of soft objects 



E

c1

c2

Voigt Model

Viscous element

tp
Pull

dF
F

tk
Keep

F

tr
Release

(a) (b)

u1

u2

u3

u4

u5

 
 

Figure 2.  (a) Three-element model. (b) Deformation process used in 
simulation
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Figure 3.  Simulation results. (a) Force and displacement response of 
Long-time simulation. (b) Force and displacement response of Short-
time simulation 
 

TABLE I 
SIMULATION PARAMETERS 

Parameters 
E 

(Pa)
c1 

(Pa·s) 
c2 

(Pa·s) 
d 

(m) 
td 
(s)

tk 
(s)

Long-time case 2 8 40 0.5 200 200

Short-time case 2 8 40 0.5 20 20

 

Rheological object can be described by three-element 
model which is a serial connection of a Voigt model and a 
viscous element, as illustrated in Fig. 2(a). We assume that 
deformation property is isotropic. A three-element model is 
attached on each segment between two neighboring nodal 
points. There are three physical parameters: Young’s modulus 
E, two viscous modulus c1, and c2. Deformation process of 
1D FE model during simulation is divided into three phases, 
as shown in Fig. 2(b). At first, a constant velocity is given to 
y-axis displacement of nodal point on the top surface from 
time 0 to time tP and we call this period pull phase. Then, we 
keep the displacement of this point from time tP to time tK and 
we call it keep phase. Finally we release this constraint after 
time tK and we call it release phase. This displacement 
constraint function can be described by following equations: 

( ) ( )P P

P P K

d t ; 0 t
d; t t t

t t
d t

t

⎧ ⋅ ≤ ≤⎪= ⎨
< ≤ +⎪⎩

, 

Let uN = [u1, u2, u3, u4, u5]T and vN= Nu be displacements and 
velocity vectors of nodal points P1 through P5. The two 
boundary conditions are then described by aTuN=0 and 
bTuN=d(t), where a=[1,0,0,0,0]T and b=[0,0,0,0,1]T. Then, 
dynamic equations of 1D rheological deformation can be 
described by a set of differential equations as follows: 
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where M is an inertia matrix, λ1 and λ2 are Lagrange 
multipliers, ω denotes a predetermined angular frequency, 
Matrix J is connection matrix determined by geometric 
quantities, Ω is defined as follows: 

( ) ( ) ( )2 1
N N0

1 2 1 2

exp d
t Ec E ct t t t t
c c c c E

⎛ ⎞ ⎛ ⎞′ ′ ′ ′= − − ⋅ +⎜ ⎟⎜ ⎟+ + ⎝ ⎠⎝ ⎠
∫Ω u u , 

A set of rheological forces can be simply described as: 

=F JΩ . 

B. Simulation Results 
Two simulations were conducted with different time period 

td and tk, which called Short-time and Long-time simulations 
respectively. There is a little difference in simulation results, 
as shown in Fig. 3. Parameters used in both simulations were 
given in Table I. 

From Fig. 3 we know, during pull phase, the rheological 
force increases rapidly in both simulations and it reaches a 
constant value in long-time simulation. This is because the 
displacements caused by Voigt model reach the maximum at 
a certain moment and after that the total displacement will be 
caused only by viscous part. On the other hand, during keep 
phase, the force decreases rapidly in both simulations even 
though the total displacements keep constant. This behavior 
was called force relaxation in stress analysis [13]. During 
force relaxation, the displacements caused by Voigt part will 
translate to viscous part. As long as the keep time tk is long 
enough, the force will reduce to zero and there is no 
displacement restored after releasing, as shown in Fig. 3(a). 
On the contrary, there are both residual force and restored 
displacements exist in Short-time simulation, as shown in Fig. 
3(b). According to the deformation behaviors illustrated 
above, the identification method for both simulations are 
presented step by step in next section. 
 

III. PARAMETER IDENTIFICATION 

During the parameter identification, we suppose that we 
have already known the initial and final position of all nodal 
points and normal force (there is no shearing force in 1D case) 
of nodal point on the bottom surface. These data can be easily 
measured in actual experiments.  



A. Identification for Long-time case 
There are three unknown physical parameters in 1D 

rheological deformation: Young’s modulus E, viscous 
modulus c1, and c2.  We have to derive three equations to 
identify these parameters since there is only one set of force 
data can be obtained on the bottom. 

1) Force curve fitting in pull phase: In three-element model, 
we have the relationship between stress σ and strain ε as 
follows [14] 

voigt visε ε ε= + ,                                 (2) 
voigt voigt

1E cσ ε ε= + ,                            (3) 
vis

2cσ ε= ,                                      (4) 

By removing voigtε and visε , we have the following first order 
differential equation about stress and strain 

1 2 2

1 2 1 2 1 2

c c EcE
c c c c c c

σ σ ε ε+ = +
+ + +

.                   (5) 

In pull phase, ε  = constant and ε  = zero. We can obtain 
force approximation by solving above differential equation 
and replacing σ by FP, and ε by JuN 

( ) ( ) ( )
Keep Keep
N N

P 2 P 1 2 1
P P 1 2

t exp t
t t

Et c c t
c c

⎡ ⎤ ⎛ ⎞= + − −⎢ ⎥ ⎜ ⎟+⎣ ⎦ ⎝ ⎠

Ju JuF F .   (6) 

where FP(t1) is known force at time t1 and Keep
Nu denotes 

displacements vector during keep phase. In Long-time 
simulation, vector Keep

Nu  is equal to the final displacement 
vector Final

Nu , as shown in Fig. 3(a). 
2) Force curve fitting in keep phase: In keep phase, ε = 0 

and ε = zero. The force approximation in this phase can be 
obtained by solving (5) 

( ) ( ) ( )K K 2 2
1 2

F t exp tEt t
c c

⎛ ⎞= −⎜ ⎟+⎝ ⎠
F ,                 (7) 

3) Displacement transition: In keep phase, displacement 
caused by elastic part totally turned into plastic part. So, we 
can obtain displacements of Voigt part at time tP by 
integrating FK(t) through tP to infinite 

( ) ( ) ( ) ( )
P P

1 2
K K 2 2 K pt t

1 2

d t exp t d tE c ct t t t
c c E

∞ ∞ +⎛ ⎞= − =⎜ ⎟+⎝ ⎠
∫ ∫F F F , (8) 

The velocity of Voigt part at time tP can be obtained easily by 
using (2) and (4) and replacing σ by FP, ε by JuN 

( ) ( )Voigt Keep
N P N P P P 2t t t c= −Ju Ju F ,                  (9) 

Then, by substituting (8) and (9) into (3), we have 

( ) ( ) ( ) Keep
P P K P 1 2 1 2 N Pt t tc c c c⎡ ⎤− = + ⋅⎣ ⎦F F Ju .         (10) 

Finally, we can identify unknown parameters in Long-time 
simulation by solving (6), (7) and (10). Identification results 
and errors were shown in Table II. 

TABLE II 
IDENTIFICATION RESULTS FOR LONG-TIME SIMULATION 

Parameters
E 

(Pa) 
c1 

(Pa·s) 
c2 

(Pa·s) 
Results 2.0006 8.0107 40.005 

Error (%) 0.03 0.134 0.0125 

 

B. Identification for Short-time case 
In Short-time simulation, the rheological force does not 

decrease to zero during keep phase and displacements restore 
a little, i.e. Keep

Nu ≠ Final
Nu . However, we assume that we only 

can obtain Final
Nu in actual experiment. So, we have to derive 

the relationship between Keep
Nu and Final

Nu . 
According to (3), the stress at time (tP+tK) can be written as 

( ) ( )Voigt voigt
P K Res 1 P Kt t t tE cσ ε ε+ = + + ,            (11) 

where Voigt
Resε denotes residual strain restored after releasing. 

During keep phase, the total strain keep constant, i.e. 
voigt visε ε+ is constant. By taking its time derivative, we have 
voigt vis 0ε ε+ = . By substituting this into (11) and considering 

(4), we have 

( ) ( ) ( )Voigt
Res 1 2 2 P Kt tc c Ecε σ⎡ ⎤= + +⎣ ⎦ ,              (12) 

At time (tP+tK), we have 
Keep Final Voigt

Resε ε ε= + ,                          (13) 

By substituting (12) into (13), replacing σ by FK, and ε by JuN, 
we can finally obtain the relationship between Keep

Nu and Final
Nu  

( ) ( ) ( )keep final
N N 1 2 2 K P Kt tc c Ec= + ⎡ + ⎤ +⎣ ⎦Ju Ju F .      (14) 

Then, by substituting (14) into (6), we can obtain the first 
equation for force approximation of pull phase in Short-time 
simulation. The second equation for force approximation of 
keep phase is the same with (7). Now, let us derive the third 
equation about displacement transition in Short-time case. 
From Fig. 3(b) we know that the elastic displacements of 
Voigt model at time tP partly translate into viscous 
displacement and residual elastic displacements recover after 
releasing. So, we can obtain the transition displacements at 
time tP by integrating FK(t) through time tP to time tP+tK 

( ) ( ) ( )P K

P

t +t KVoigt 1 2
Tra K P K P Kt

2 2

d t t +t
t c c

t
c Ec

+
⎡ ⎤= = −⎣ ⎦∫

F
Ju F F , (15) 

The residual elastic displacements can be obtained by 
replacing σ by FK, and ε by JuN in (12). So, the total 
displacement of Voigt model at time tP is 

( ) ( ) ( )Voigt Voigt Voigt
N Tra Res 1 2 2 K Ptc c Ec⎡ ⎤= + = +⎣ ⎦Ju Ju Ju F ,   (16) 

Then, by substituting (9), (16) into (3) and considering (14), 
we can finally obtain the third equation as follows 



TABLE III 
IDENTIFICATION RESULTS FOR SHORT-TIME SIMULATION  

Parameters 
E 

(Pa) 
c1 

(Pa·s) 
c2 

(Pa·s) 
Results 2.0046 8.0098 40.134 

Error (%) 0.23 0.123 0.335 
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Figure 4.  Comparison of the simulation data and fitting curves. (a) 
Curve fitting in Long-time simulation. (b) Curve fitting in Short-time 
simulation 
 

( ) ( ) ( )Final
K P KN1 2 1

P P K P
1 2 P P

t t
t t

t t
c c c

c c E
+

− = ⋅ + ⋅
+

FJu
F F .    (17) 

Finally, we can identify unknown parameters in Short-time 
simulation by solving (6) with (14), (7) and (17). 
Identification results and errors were shown in Table III and 
curve fitting for both simulations are given in Fig. 4. Table III 
and Fig. 4 show the validity of this identification method for 
FE simulation. In next section, this will be extended to 2D/3D 
rheological deformation. 
 

IV. 2D/3D RHEOLOGICAL DEFORMATION 

A. FE Dynamic Model Extension 
In 2D/3D isotropic elastic deformation, the relationship 

between stress and strain can be formulated as follows [13]: 

( )λ µσ λ µ ε= +I I ,                               (18) 

where λ and µ denote Lamé’s constants and matrices Iλ and Iµ 
originate from the isotropy of the object deformation. 

In 2D/3D isotropic rheological deformation, we assume 
that deformation can be characterized by six parameters: 

ela ,λ ela ,µ vis
1 ,λ vis vis

1 2, ,µ λ and vis
2µ . The first two are Lamé’s 

constants, which describe elastic deformation. The next two 
describe viscosity and the last two show plasticity. For the 
sake of simplicity, we assume that these parameters are 
described by four physical parameters as below 

ela γ vis γ vis γ
1 1 2 2

ela γ vis γ vis γ
1 1 2 2

,  ,  ,

,  ,  ,

E c c

E c c

λ λ λ λ λ λ

µ µ µ µ µ µ

= ⋅ = ⋅ = ⋅

= ⋅ = ⋅ = ⋅
          (19) 

where ( )( )γ γ 1+γ 1 2γλ ⎡ ⎤= −⎣ ⎦  and ( )γ 1 2 1 γµ ⎡ ⎤= +⎣ ⎦ . 

Then, by solving (5) and replacing physical parameters by 
Lam é ’s constants given in (19), we can obtain the 
relationship between rheological force and displacement of 
2D/3D deformation as follows 

 = +λ λ µ µF J Ω J Ω ,                               (20) 

where Jλ and Jµ are two connection matrixes determined by 
geometric quantities, λΩ and µΩ can be calculated as follows 

( )( )( )( )

( )( )( )( )

ela vis ela vis ela
2 10

ela vis ela vis ela
2 10

exp d ,

exp d ,

t

t

tt t t

tt t t

λ λ λ

µ µ µ

′= Λ −Λ +′ ′−

′= Γ −Γ +′ ′−

∫

∫

λ N N

µ N N

Ω u u

Ω u u
  (21) 

where ( )ela ela vis vis
1 2λ λ λΛ = + , ( )ela ela vis vis

1 2µ µ µΓ = + . 
Finally, we can obtain the dynamic model of 2D/3D 

rheological deformation by replacing JΩ in (1) by F in (20), 
vector a and b by corresponding matrices A and B, and Ω by 
time derivative of (21). 

B. Identification Method Extension 
The identification equations in 2D/3D case can be easily 

obtained by extending the equations in 1D case. By replacing 
c2·J in (6), (10), and (17) by vis vis

2 λ 2 µλ µ+J J , replacing 
E/(c1+c2) in (6) and (7) by ( )ela vis vis

1 2λ λ λ+ , replacing 
c1/(c1+c2) in (10) and (17) by ( )vis vis vis

1 1 2λ λ λ+ , and replacing 
c1/E in (17) by vis ela

1λ λ , we can finally obtain all the 
equations for identification of 2D/3D rheological deformation. 

In 2D/3D rheological deformation, there are totally four 
unknown physical parameters: Young’s modulus E, two 
viscous modulus c1, c2, and Poisson’s ratio γ. But there are 
only three equations as presented above. However, it is noted 
that there are several nodal points on the bottom surface in 
2D/3D deformation. We can employ the Least Square 
Method (LSM) among nodal points on the bottom surface of 
real object to solve above equations. 

 

V. EXPERIMENT AND RESULTS 

A. Pushing Experiment 
The commercial clay made of flour, water, and salt was 

used as a rheological object through our experiments. The 
identification method given in Section III was employed to 
estimate the physical parameters. The clay of size 
80mm×80mm×12.5mm was pushed by a motorized stage 
(made by SURUGA SEIKI Co.) with a displacement about 
10mm and a constant velocity of 0.5mm/s. Before releasing, 
the displacement was kept about 48 seconds. Some markers 
were drawn on the surface of the clay by using a resist pen 
filled with lacquer ink. The deformation behaviors recorded 
by a camera are shown in Fig. 5(a), (b), and (c). By using a 
simple image processing, we can obtain a 2D FE mesh of 
these deformations as shown in Fig. 5(d), (e), and (f). The 
force data were recorded by a tactile sensor (made by NITTA 
Co.) as shown in Fig. 6. This sensor can measure the 
distribution of pressure. 



B. Identification Results 
As we assumed before, available data for us include the 

normal force at nodal points on the bottom surface and the 
final displacements of all nodal points. It is because the final 
displacements are easy to obtain in actual experiments and it 
can be calculated by subtracting the final position from the 
original position of nodal points.  

Fig. 6(a) shows the pressure distribution on the bottom 
surface which was covered by 32×6 sensing elements. The 
bottom surface was divided into 5 segments. Each segment 
denotes one nodal point, as shown in Fig. 6(a). Three of them 
(P2, P3, and P4) include 8×6 sensing elements and the other 
two (P1 and P5) include 4×6 sensing elements. Force data 

acted on each point was calculated by summing up the force 
results of all sensing elements on corresponding segment. As 
shown in Fig. 6(b), the force data on point P2 did not 
decrease to zero after releasing. This is because the clay stuck 
to the sensor surface after releasing. We only use force data 
on nodal points P2, P3, and P4 in identification and the force 
data on P3 and P4 are quite similar with P2. The force data on 
P1 and P5 will not be used because we suppose the 
rheological force was concentrated in every nodal point in 
identification. However, P1 and P5 are on the boundary and 
only have half force data each in actual experiment. 

By using the identification method presented in Section III 
and substituting displacement and force data into it, the 
physical parameters can be identified. Identification results 
are given in Table IV. Let sim sim rel, , ,i i ix y x and rel

iy be x and y 
coordinates of simulation and real deformation respectively, 
W and H be width and height of the object in the original 
shape. Then, the error was calculated by following equation 

( ) ( )
25 2 2sim rel sim rel

  1Error 100  [%]
W H

i i i i
i

x x y y
=

⎡ ⎤− + −⎢ ⎥⎣ ⎦
= ×

×

∑
 

The deformation difference between simulation and 
experiment at the end of keep phase is quite small as shown 
in Fig. 7(a) and Table IV. In contrary, Fig. 7(b) shows that we 
cannot obtain a good approximation of the force even though 
the deformations are almost the same. This is because the 
three-element model used in this paper is a linear model. 
Rheological objects in the real world demonstrate many 
nonlinear behaviors. However, if we only focus on the 
deformation behavior when the object is subject to 
displacement constraint and the accuracy of force response is 
not important, we still can use this model to simulate the 
rheological deformation. 

(a) (b) (c)

(d) (e) (f)  
 
Fig. 5.  Deformation behaviors in experiment: (a), (b), (c) Images 
taken by camera. (d), (e), (f) Description of images by using FE 
mesh. (a), (d) Initial shape. (b), (e) Deformed shape in the end of 
keep phase. (c), (f) Deformed shape in final condition. 
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Fig. 6.  Force response in experiment: (a) Force response in tactile 
sensor. (b) Force data on point P2. 
 

TABLE IV 
IDENTIFICATION RESULTS 

Parameters
E 

(Pa) 
c1 

(Pa·s) 
c2 

(Pa·s) γ  
Error
(%) 

Results 3.33×104 1.69×105 3.11×107 0.332 0.064
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Fig. 7.  Deformation comparison and force approximation: (a) Solid 
line denotes deformation in simulation using identified parameters and 
dashed line denotes deformation in real experiment. (b) Solid line 
shows force response in experiment and dashed line shows force 
results in simulation by using identified parameters. 
 



C. Discussion on the Force Relaxation 
As shown in Fig. 6(b), during the keep phase, the 

rheological response of force relaxation is dominant. In three-
element model, this force response can be described by one 
exponential decay function, as given in (7). However, 
experiment result shows that one exponential decay function 
can not obtain a good curve fitting for the force relaxation. 
Reference [15] stated that we can choose two exponential 
terms to approximate the relaxation behavior. According to 
(7), we choose follow equation to approximate the force 
relaxation in the keep phase 
 

( ) ( )( ) ( )( )1 1exp expF t A a t t B b t t= ⋅ − − + ⋅ − − ,      (22) 
 
when A=0.3879, B=1.1975, a=0.22, and b=0.0015, we can 
obtain a good curve fitting for the experiment data, as shown 
in Fig. 8(a). This means that there must be at least two 
exponential functions in (7) during the keep phase. Based on 
this consideration, let us change the three-element model to a 
new model which include one Maxwell models connected 
with a viscous element in parallel and another elastic element, 
as shown in Fig. 8(b). 

In this model, we can easily obtain the relationship 
between stress and strain as follows 

1 2 1 2A A B Bσ σ σ ε ε+ + = + ,                     (23) 

where 

( )

( )

2 1 1 1 2
1

1 2

1 2
2

1 2

1 2

1 2 1 2
2

1 2

,

,

,

.

E c E c cA
c c

E EA
c c

B E
E E c cB

c c

+ +
=

=

=

+
=

 

During the keep phase, the total strain keeps a constant, i.e. 
ε = 0 and ε  = 0. Thus, we can obtain the analytical 
expression of force relaxation in this phase by solving (23) 

( ) ( )( ) ( )( )1 1exp expt P m t t Q n t tσ = ⋅ − − + ⋅ − − ,       (24) 

where 
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( )1tσ  is a integral initial value at time t1 which should be 
close to the starting time of keep phase. 

By comparing (24) with (22), we found that the model 
shown in Fig. 8(b) is better than three-element model to 
describe rheological deformation. We can obtain a good 
approximation of force relaxation during the keep phase. 

 

VI. CONCLUSION AND FUTURE WORKS 

In this paper, an identification method of physical 
parameters for rheological deformation based on a FE 
dynamic model was presented. Since this method only 
involved theoretical analysis and simple calculation, it is easy 
and fast to identify the parameters when the required data are 
available. The required data used in this method include the 
force data of some nodal points on the bottom or the top 
surface which can be measured by a tactile sensor and the 
final displacements of all nodal points which can be obtained 
by using a camera in 2D deformation and a CT or MRI device 
in 3D case. Experiment results show that by using the three-
element model we can not obtain a good force approximation. 
Based on curve fitting of force relaxation, we proposed a new 
model which includes one Maxwell model connected with a 
viscous element in parallel and another elastic element. We 
believe this model can be employed to describe rheological 
deformation and it is better than three-element model. In 
addition, this identification method presented in this paper 
also can be used in elastic or viscoelastic deformation. 

In our future works, the new model will be applied to 
2D/3D FE dynamic model to simulate rheological 
deformation and the identification method of physical 
parameter will be developed based on this model. Moreover, 
the new model and the identification method will be extended 
to non-uniform rheological deformation. 
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