電源内蔵型柔軟ロボットにおける転がり移動運動

立命館大学 松本 泰明. 中西 永. 平井 恒一

Rolling Locomotion of a Deformable Soft Robot with Built-in Power Source

Yasuaki MATSUMOTO, Hisashi NAKANISHI and Shinichi HIRAI (Ritsumeikan Univ.)

Abstract: Locomotion over rough terrain has been achieved mainly by rigid body systems, including crawlers and leg mechanisms. We have proposed an alternative method, which uses deformation of a robot body, and developed a prototype of this deformable robot with an internally supplied power source. In this peper, we apply dynamic simulation and quasi-static method to analyze the rolling motion of this robot.

緒言 1.

不整地での移動を実現するロボットには,クローラや 脚機構,ヘビ型ロボットなどのメカニズムが使われてい る[1].これらのロボットは主に硬い部品から構成され ており大きく重い.そのため,人に危害を与える恐れや 転倒からの回復が容易ではないという欠点がある.-方,我々が開発した移動跳躍ソフトロボットは,柔らか いボディを変形させることで転がり移動や跳躍を実現す るという従来のメカニズムとは異なる新しい手法を用い ている [2]. このメカニズムは軽くシンプルで高い運動 性を実現できる.本研究では,電源内蔵化による重量の 増加が,柔軟ロボットの転がり移動にどのような影響を 及ぼすかを実機実験,動的シミュレーションおよび準静 力学的解析により調べる.

2. 転がり移動の原理

柔軟ロボットにおける外殻変形を用いた転がり移動の 原理を Fig.1 に示す. Fig.1-(a) においてロボットは安 定状態にある.静力学の変分原理より,物体の安定な変 形形状でのポテンシャルエネルギーは最小である、アク チュエータによりボディを変形させると,ポテンシャル エネルギーに勾配が生じ、ロボットと地面との接触領域 まわりに,重力によるモーメントが発生する.このモー メントにより,ロボットは地面の上を転がることで移動 する. 例えば, Fig.1-(b) の場合は, 右回りにモーメン トが発生し右方向に移動する.アクチュエータによって 連続的な変形を行うことで,ロボットは移動し続けるこ とができる.

Fig.1 Principle of rolling locomotion.

移動実験 3.

柔軟ロボットの構造と制御方法について述べる. 外部電源型 (Robot I) を Fig.2-(a) に,電源内蔵 型 (Robot II) を Fig.2-(b) に示す.外部電源型は, ϕ 100×20×t0.10 mm の薄板ばね鋼フレームの内側に 8 本の形状記憶合金 (Shape Memory Alloy: SMA) コイ ルアクチュエータが張られている,電源内蔵型は,さ らに3個のリチウムイオンポリマーバッテリと1個の SMA コイル駆動制御回路を搭載している. PIC マイコ ンから出力した制御信号によって FET スイッチングを 行い, SMA コイルに流す電流を制御することで, SMA コイルを独立に駆動させることが可能である.今回は **Fig.**2-(C) に示す AE パターンにより移動を行う.切り 替え時間は 5.0 s とした . 各ロボットの重量は , 外部電 源型が 5.9g, 電源内蔵型が 10.7g である.

各ロボットの転がり移動を比較するために、平地およ び傾斜角10度の坂道において実機実験を行った.床面 には PVC を用いた.各ロボットともに楕円形を維持し ながら転がり移動を行った.Fig.3に各ロボットの移動 距離を示す.各グラフともに階段状であり,急激に転が る時とあまり変化しないときを繰り返す.これは柔軟ロ ボットの転がり移動の特徴であるといえる.各ロボット を比較すると, 平地においては電源内蔵型は外部電源型 と比べ 4% 遅れており, 坂道においては 1% の遅れで あった、坂道において差が小さくなっていることから、 電源内蔵型は坂道を安定して登っていると推測される.

(a) Robot I

(c) AE pattern

Fig.2 Rolling soft robot and a pattern of SMAcontraction.

Fig.3 Distance moved, as assessed experimentally.

Fig.4 Simulated distance moved by a rolling soft robot.

この要因としては摩擦力の増加により滑りが抑えられた ためと考えられる.そこで次に,動的シミュレーション を作成し,準静力学的解析と共に重量増加による転がり 移動への影響をより詳細に解析する.

4. シミュレーション

パーティクルモデルを用いて動的シミュレーション を作成し解析を行った.その結果を,Fig.4 に示す.シ ミュレーションでも階段状の移動が確認でき,実機実験 と同じように転がり移動を行っていることが分かる.各 ロボットを比較すると,平地において遅れは確認できず 重量が2倍になっている影響は全く確認されなかった. また,坂道において電源内蔵型の移動距離が外部電源型 を上回る結果が得られた.

次に準静力学的解析を行い,ロボットの形状から算出 される重力ポテンシャルエネルギーの勾配を表現した. その解析結果を Fig.5 に示す.横軸は初期状態からの 回転角度を示し,青い点線は重心位置を示している.ロ ボットの形状が楕円の場合,重力ポテンシャルエネル ギーの勾配は二つ山の形を取る.AE パターンにおいて 十分にボディが変形する時間をおいた場合,重力ポテン シャルエネルギーの最小とロボットの重心位置が一致し ロボットが安定状態にあることが分かる.電源内蔵型は 外部電源型の2倍の重量があるため,重力ポテンシャル エネルギーの勾配の山が高くなっている.そのため,ロ ボットが姿勢を崩した際に坂を転がり落ちる可能性が低 い.重力ポテンシャルエネルギーの勾配からも,電源内 蔵型の方が安定して坂道を登ることができるということ が分かった.

5. 結言

本研究では、電源内蔵化による重量の増加が、転がり 移動運動に与える影響を解析した.実機実験およびシ ミュレーションから、重量の増加は柔軟ロボットの転が

Fig.5 Simulation results of a rolling soft robot.

り移動の安定性を上げるということが分かった.よっ て,移動ロボットに関してはセンサーなどを搭載しても 運動性能に悪影響を及ぼさない.今後は,センサーを搭 載し目標物を探知するなどの応用が考えられる.また, 動的シミュレーションによって障害物を乗り越えるパ ターン,移動速度の向上,省エネルギーでの移動などと いった制御パターンの探索を行う.

参考文献

- S. Hirose, Biologically Inspired Robots Snake-like Locomotors and Manipulators, Oxford Science Publications, 1993.
- [2] Y. Sugiyama, S. Hirai, "Crawling and Jumping of Deformable Soft Robot", Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp.3276-3281, Sendai, September, 2004.