高速ビジョンシステムを用いた 2リンクフレキシブルアームの制御

村中裕之(立命館大学) 平井慎一(立命館大学)

Control of 2-link flexible arm with high-speed visual feedback

*Hiroyuki MURANAKA (Ritsumeikan Univ.), Shinichi HIRAI (Ritsumeikan Univ.)

Abstract—This paper presents a vision-based Jacobian-free control of a 2-DOF flexible arm. Tip position of a manipulator is described by polar coordinate system instead of Cartesian coordinate system. This yields one-to-one monotonous relationship between polar coordinates and joint angles. Based on this relationship, we construct a simple PID controller to compensate tip position error. Simulation demonstrates how the proposed control works and revised laws are proposed.

Key Words: flexible arm, high-speed vision, control, polar coordinates, Jacobian Matrix

1. 緒言

ロボットアームの高速化長腕化の欲求に対し、アームの軽量化が進んでいる.そのため、アームの剛性が低下し、たわみや振動が生じる場合がある.

このような剛体でないフレキシブルアームの制御の 研究では,直接ひずみフィードバック制御[1]などの多 くの制御則が提案されている.これらの制御則では,フ レキシブルアームのモデルを必要とする.一方,高速 ビジョンセンサを用いることで,高速運動する制御対 象に対して,より簡単な制御則が期待できる.そこで, 本研究では撮影速度1000 fpsの高速ビジョンシステム を用いる事により,高速ビジュアルフィードバックに よるフレキシブルアームの先端位置制御を目指す.

また,従来の直交座標系での制御モデルに対し,目 標位置座標を原点からの角度と距離で表す円座標系を 用いる事により,ヤコビアンなどの複雑な逆運動学を 用いることなく,先端位置制御を実現する.

2. システム構成

本研究で前提となるシステムについて Fig.1 に示す. 本システムは,制御対象である2リンクフレキシブル アームの先端を1000 fpsの高速 CMOS カメラで撮影 し,FPGAボードを用いて高速画像処理を行い,アー ム先端位置を検出する.そして画像処理で得られたアー ム先端位置の座標をフィードバックし,制御を行う.

Fig.1 Hight speed feedback system

円座表系での制御

本報告では,アームの先端位置を円座標系で表す.円 座標系におけるフレキシブルアームのモデルを Fig.2 に 示す.

この円座標系モデルでは目標位置座標を原点からの 距離及び角度で指定する.

リンク1の長さを l_1 , リンク2の長さを l_2 , 関節1 の角度を θ_1 , 関節2の角度を θ_2 で表す.アームの先端 位置を直交座標で表し, 先端の座標を (x_e, y_e) で表すと

$$x_e = l_1 C_1 + l_2 C_{12} \tag{1}$$

$$y_e = l_1 S_1 + l_2 S_{12} \tag{2}$$

である.ここで $C_1 = \cos \theta_1$, $S_1 = \sin \theta_2$, $C_{12} = \cos(\theta_1 + \theta_2)$, $S_{12} = \sin(\theta_1 + \theta_2)$ と略記した, 直交座標でのヤコビ行列は

$$\boldsymbol{J} = \begin{bmatrix} \frac{\partial \theta_e}{\partial \theta_1} & \frac{\partial \theta_e}{\partial \theta_2} \\ \frac{\partial r}{\partial \theta_1} & \frac{\partial r}{\partial \theta_2} \end{bmatrix} = \begin{bmatrix} -l_1 S_1 - l_2 S_{12} & -l_2 S_{12} \\ l_1 C_1 + l_2 C_{12} & l_1 C_{12} \end{bmatrix}$$
(3)

である.これより,関節角 θ_1 , θ_2 と先端位置座標 x_e , y_e はカップリングしていることがわかる.さらに θ_1 , θ_2 の値によって,ヤコビ行列の要素は,正の値や負の 値をとることがわかる.これは θ_1 , θ_2 の増減と x_e , y_e のの増減が一意には対応していないことを意味する.

一方,先端位置を円座標で表し,原点から先端を結 ぶ直線が水平から成す角を θ_e ,原点から先端までの距 離を r_e で表すと

$$r_e = (x_e^2 + y_e^2)^{\frac{1}{2}} = (l_1^2 + l_2^2 + l_1 l_2 C_2)^{\frac{1}{2}} \quad (4)$$

$$\theta_e = \operatorname{atan2}(y_e, x_e)$$

$$= \operatorname{atan2}(l_1 S_1 + l_2 S_{12}, l_1 C_1 + l_2 C_{12}) \tag{5}$$

である.したがって円座標でのヤコビ行列は

$$\boldsymbol{J} = \begin{bmatrix} \frac{\partial \theta_e}{\partial \theta_1} & \frac{\partial \theta_e}{\partial \theta_2} \\ \frac{\partial r}{\partial \theta_1} & \frac{\partial r}{\partial \theta_2} \end{bmatrix} = \begin{bmatrix} 1 & l_1 l_2 C_2 + l_2^2 \\ 0 & -l_1 l_2 S_2 \end{bmatrix}$$
(6)

である.これより,距離 r_e は, θ_2 のみに依存し, θ_1 に は依存しないことがわかる.さらに, $S_2 > 0$ のとき θ_2 が増加すると r_e が減少, $S_2 < 0$ のとき θ_2 が増加する と r_e が増加することがわかる.すなわち $S_2 < 0$ のと き θ_2 の増減と r_e の増減が一致する.そこで関節角 θ_2 に $-\pi \le \theta_2 \le 0$ という制約を課し, r_e の値をフィード バックすることにより, θ_2 の値を制御するという一対 一の対応関係を導入する.角度 θ_e は $\theta_1 と \theta_2$ の双方に 依存する.ここで, $\theta_e \ge \theta_1$ の間には,関節角 θ_1 が増 加すると角度 θ_e が増加するという関係があることがわ かる.すなわち, θ_1 の増減と θ_e の増減が一致する.そ こで θ_e の値フィードバックすることにより, θ_1 の値を 制御するという一対一の対応関係を導入する.

以上のように, θ_e の制御には, θ_1 , r_e の制御には θ_2 を対応させることにより,単純な一入力一出力の制御則を用いて2リンクフレキシブルアームを制御することができると期待される.

Fig.2 Two-link arm of circular polar coordinates setting

4. シミュレーション

アーム先端位置の円座標をフィードバックすること によって効果的な制御が可能か検証するため,C 言語 を用いてシミュレーションを行った.1リンクの長さ が 300mm の 2 リンクのフレキシブルアームを,初期位 置である鉛直下向き (先端角度 $\theta = -\pi/2$ rad,先端距 離 r = 600 mm)から,目標位置 (先端角度 $\theta = 0$ rad, 先端距離 r = 400 mm) に制御することを目標にシミュ レーションを行った.

フレキシブルアームのシミュレーションでは,吉川 らが提案した仮想受動関節を用いたモデリング手法[2] を用いた.これは,フレキシブルアームをいくつかの 剛体リンクに分割し,関節にフレキシブルアームのパ ラメータに一致するようにバネ・ダンパを設定する方 法である.空気抵抗は近似的に関節ダンパ要素で表す. また,実機で用いるアームとのキャリブレーションを 行った.各ゲインを Table 1 に示す.

まず,基本となる先端 PID 制御で考える.剛体が対象の関節角をフィードバックする一般的な PID 制御と 異なり,先端 PID 制御は先端角度と先端距離をフィー ドバックする制御である.制御則は次式で表される.

 Table 1 Definition of gain parameters

	0 1
記号	意味
K_p^{angle}	先端位置角度比例ゲイン
K_d^{angle}	先端位置角度微分ゲイン
K_i^{angle}	先端位置角度積分ゲイン
K_p^{length}	先端位置距離比例ゲイン
K_d^{length}	先端位置距離微分ゲイン
K_i^{length}	先端位置距離積分ゲイン
K_d^1	第1モータ回転角微分ゲイン
K_d^2	第2モータ回転角微分ゲイン

$$\tau_{1} = K_{p}^{angle} \cdot (\theta_{target} - \theta_{e}) - K_{d}^{angle} \cdot \dot{\theta}_{e} + K_{i}^{angle} \cdot \int (\theta_{target} - \theta_{e}) dt$$
(7)

$$\tau_2 = K_p^{length} \cdot (r_{target} - r_e) - K_d^{length} \cdot \dot{r_e} + K_i^{length} \cdot \int (r_{length} - r_e) dt$$
(8)

用いた制御ゲインを Table 2 に示す.また,先端 PID 制御のシミュレーション結果を Fig.3 に示す.

Table 2 Control gain parameters for tipPID

$\mathrm{K}_\mathrm{p}^\mathrm{angle}$	30	K_{p}^{length}	1.0
$\mathrm{K}^{\mathrm{angle}}_{\mathrm{d}}$	4	K_{d}^{length}	0.015
K_i^{angle}	5	K _i ^{length}	0.1

Fig.3 Result of tipPID simulation

目標に収束するまでに 10 秒程度かかり, ダンピング 不足により振動の収束も遅い.そこでダンピング不足 を解決するため,式(2)のダンピング要素である \dot{r}_e を $\dot{x} + \dot{y}$ に変更し,さらに関節角の微分ゲインを加えたの が 先端 PID+D 制御である.制御則を次式に示す.

$$\tau_{1} = K_{p}^{angle} \cdot (\theta_{target} - \theta_{e}) - K_{d}^{angle} \cdot \dot{\theta}_{e} + K_{i}^{angle} \cdot \int (\theta_{target} - \theta_{e}) dt - K_{d}^{1} \cdot \dot{\theta}_{1}$$
(9)

$$\tau_{2} = K_{p}^{length} \cdot (\boldsymbol{r}_{target} - \boldsymbol{r}_{e}) - K_{d}^{length} \cdot (\dot{x} + \dot{y}) + K_{i}^{length} \cdot \int (\boldsymbol{r}_{length} - \boldsymbol{r}_{e}) dt - K_{d}^{2} \cdot \dot{\theta}_{2}$$
(10)

なお,初期姿勢,及び目的位置は同じである.

このときの制御ゲインを Table 3 に示す.シミュレー ション結果を Fig.4 に示す.

Table 3 Control gain parameters for tipPID+D

K _p ^{angle}	40	K_p^{length}	0.1
K _d ^{angle}	5	K_{d}^{length}	0.01
K _i ^{angle}	20	K_i^{length}	0.2
K ¹ _d	0.2	$\rm K_d^2$	0.2

Fig.4 Result of tipPID+D simulation

Fig.4からダンピング不足が改善していることがわかる.PID 制御では目標値がステップ関数状に与えられる場合,積分ゲインが大きくなり,初期トルクが過大になる場合がある.それにより振動を励振する場合がある.特にフレキシブルアームではその振動が長時間

残り,制御結果に影響し易い.比例・微分先行型 PID 制御である I-PD 制御はその問題に有効である.制御 則を次式に示す.

$$\tau_1 = K_i^{angle} \cdot \int (\theta_{target} - \theta_e) dt - K_p^{angle} \cdot \theta_e - K_d^{angle} \cdot \dot{\theta}_e - K_d^1 \cdot \dot{\theta}_1$$
(11)

$$\tau_2 = K_p^{length} \cdot (\boldsymbol{r}_{target} - \boldsymbol{r}_e) - K_d^{length} \cdot (\dot{x} + \dot{y}) + K_i^{length} \cdot \int (\boldsymbol{r}_{length} - \boldsymbol{r}_e) dt - K_d^2 \cdot \dot{\theta}_2$$
(12)

このときの制御ゲインを Table 4 に示す.シミュレー ション結果を Fig.5 に示す.またそのときの先端の軌道 を Fig.6 に示す.

Table 4 Control gain parameters for tipI-PD+D

$\mathbf{K}_{\mathbf{p}}^{\mathbf{angle}}$	40	K _p ^{length}	0.1
$\mathrm{K}^{\mathrm{angle}}_{\mathrm{d}}$	5	K_{d}^{length}	0.01
$\mathrm{K}^{\mathrm{angle}}_{\mathrm{i}}$	20	K_i^{length}	0.2
K_d^1	1	K_d^2	0.2

Fig.5 Result of tipI-PD+D simulation

振動幅が小さく,また収束も早くなっているのがわ かる.以上よりフレキシブルアームにおいて高速ビジュ アルフィードバックを用いた,先端 I-PD + D 制御が 有効であるといえる.しかし,今回は目標座標を一点 (先端角度 $\theta = 0$ rad,先端距離 r = 400 mm)のみでシ ミュレーションを行っており,目標座標が他の象限の 場合にもこの制御則が有効であるか検証していく予定 である.

Fig.6 Trajectory of end point in tipI-PD+D control

5. 結言

本稿では,高速ビジュアルフィードバックによるフレ キシプルアームの先端位置制御を提案し,簡単な制御 則(tipI-PD + D制御)で2リンクフレキシブルアーム が制御できることをシミュレーションによって示した.

また,直交座標系との差異として円座表系でのモデ ル,および運動学を考察し,ヤコビアンを用いずに簡 単に制御できることを示した.今後,実機での検証を 行う予定である.

参考文献

- [1] 羅正華,山本透: "ゲイン適応によるフレキシブルロボットアームのひずみ直接フィードバック制御",日本機械学会論文集(C編),59,566,pp.3146-3150,1993.
- [2] 吉川恒夫,田村正人: "フレキシブルアームに対する仮 想受動関節モデルの有効性の検討",日本ロボット学会 誌,17,2,pp.250-259,1999.