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Abstract— Among modeling of deformable objects, such as
human organs or tissues, various food products, and cloth,
accurate reproduction of rheological properties is a challenging
issue because rheological objects always yield residual de-
formation after arbitrary operations. In this paper, a finit e
element (FE) model was presented to simulate rheological
behaviors. In order to reproduce both deformation and force
behaviors simultaneously, two sets of physical parameterswere
estimated based on the FE model and nonlinear optimization.A
parameter switching strategy was then proposed to switch the
parameters from one set to the other during simulation. Experi-
mental results of commercial clay and Japanese sweets material
were presented to validate our FE model for simultaneous
reproduction of rheological deformation and force behaviors.
Contact simulations between rheological objects and external
instruments were also presented to shown the ability of our FE
model for dealing with arbitrary shaped objects.

I. INTRODUCTION

Modeling of deformable objects, such as human organs or
tissues, various food products, and cloth, has been studied
for over twenty years [1], [2]. In our definition, deformable
objects was roughly divided into three categories based on
their deformation behaviors: elastic, plastic, and rheological
object. Elastic or viscoelastic objects have the ability tocom-
pletely recover the deformations generated during operations
and plastic objects completely maintained those deforma-
tions. Rheological objects, on the other hand, have both
elastic and plastic properties. The deformation generated
in rheological objects was partially recovered and partially
maintained.

Modeling of elastic or viscoelastic objects has been studied
intensively, especially in surgical related applicationssince
most biological organs and tissues seem to be recoverable.
Some organs or tissues, however, may fail to completely
recover from the deformation. Porcine brain tissue was found
to be one example [3]. In vivo experimental results also
showed residual deformation presented in human liver [4].
In addition, many other objects, such as clay and various
food products, demonstrate rheological behaviors. However,
modeling and property estimation of rheological objects was
not studied sufficiently until now. Chuaet al. has stated that
the most critical barrier against the application of robotics
and automation in food industry is a lack of understanding
of the food product properties as an “engineering” material
for handling operations [5].

Early work on the modeling of rheological objects dates
back to Terzopouloset al. [2], who has used a Burgers

model to describe rheological behaviors. However, it is
only a conceptual description and no simulation results and
parameter information were given. A mass-spring-damper
(MSD) model was introduced to model a food dough and the
physical property was calibrated by genetic algorithm (GA)
optimization [6], [7]. The MSD model has an advantage
of less computation costs [8], but the formulation was not
based on continuum mechanics and the simulation accuracy
is quite limited. A two-layered Maxwell model [9] and
Fung’s viscoelastic model [10] has been used respectively
to describe the force response of a “Norimaki-sushi” when
grasped by a robot hand. Good approximations of rheological
forces were obtained. Unfortunately, both models are 1D
cases. In addition, the ISU exoskeleton technique was used
to model a clay to simulate interaction between virtual clay
and a human finger [11].

However, the above-mentioned works have focused on
either reproduction of deformation alone [6], [7] or repro-
duction of force alone [9], [10]. Nobody considered both
of them simultaneously. In many applications,e.g., surgical
simulation with haptic feedback or virtual manipulation of
food products, accurate results of both force and deformation
are necessary. We have therefore focused on the simultane-
ous reproduction of both rheological deformation and force
behaviors.

In this paper, we presented a two-dimensional (2D) FE
model for simulating rheological behaviors. Two sets of
physical parameters were calculated to capture rheological
deformation and force respectively. A parameter switching
strategy was then proposed to switch these two sets of pa-
rameters during simulation. Experimental results and contact
simulations were presented to validate proposed FE model
and estimated parameters.

II. MODELING OF RHEOLOGICAL OBJECTS

A. Selection of Physical Model

In our previous work, we have used serial three-element
[12], [13], four-element [14], and five-element [15] physical
model respectively to describe rheological behaviors. We
found that the four-element and five-element models were
more appropriate than three-element model for describing
rheological forces. We have summarized the physical models,
which can be used to simulate rheological behaviors, in [16].
We divided the physical models into two categories: serial
and parallel models, as shown in Fig. 1. Both models were
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Fig. 1. Two groups of rheological models: (a) serial models;and (b) parallel
models.

constructed by a sets of basic elements connected in a serial
and parallel configurations. According to the analysis of the
constitutive laws, we found that we are always able to find
a corresponding parallel model for an arbitrary serial model
and both models results in the same rheological behaviors.
It means that only one type (either serial or parallel) of
rheological model need to be investigated. In this paper, we
therefore employed a parallel five-element model (the last
row in Fig. 1b) to formulate rheological behaviors.

B. Rheological Force and Deformation

A parallel five-element model consists of two elastic
elements (denoted by parametersE1, E2) and three viscous
elements (denoted by parametersc1, c2, and c3). A elastic
element and a viscous element connected in serial was
defined as a Maxwell element. Thus, the parallel five-element
model also could be described as two Maxwell elements and
a viscous element connected in parallel. Letσ1, σ2, andσ3

be the stress at the first, the second Maxwell element, and at
the third viscous element, respectively. Letσ and ε be the
stress and strain at the 5-element model. The stress-strain
relationship can be therefore formulated as:

σ̇1 +
E1

c1
σ1 = E1ε̇,

σ̇2 +
E2

c2
σ2 = E2ε̇,

σ3 = c3ε̇,

σ = σ1 + σ2+ σ3.

(1)

Using finite element (FE) method, we constructed a 2D
object with a set of triangles and imposed the five-element
model on each triangle to govern the stress-strain relation-
ship. Using generalized Hooke’s law, 1D stress-strain rela-
tionship Eq. (1) can be convert to a 2D force-displacement
relationship as below:

Ḟ1 +
E1

c1
F1 = (λ ela

1 Jλ + µela
1 Jµ)u̇N ,

Ḟ2 +
E2

c2
F2 = (λ ela

2 Jλ + µela
2 Jµ)u̇N ,

F3 = (λ vis
3 Jλ + µvis

3 Jµ)u̇N ,

Frheo
2D = F1 +F2+F3,

(2)

whereF1, F2, F3, andFrheo
2D are force vectors corresponding

to stress vectorsσ1, σ2, σ3, andσ , respectively. VectoruN

consists of displacements at individual nodes. MatricesJλ
and Jµ are connection matrices which depend only on the
distribution of triangular mesh. Letγ be the Poisson’s ratio
and then variablesλ ela

1 , µela
1 , λ ela

2 , µela
2 , λ vis

3 , and µvis
3 can

be calculated as:

λ ela
i =

Eiγ
(1+ γ)(1−2γ)

, µela
i =

Ei

2(1+ γ)
, (i = 1,2),

λ vis
3 =

c3γ
(1+ γ)(1−2γ)

, µvis
3 =

c3

2(1+ γ)
.

C. Boundary Constraints

Supposing that a 2D object was fixed on the ground
and the top surface of the object was pushed down with
a displacement function ofd(t). Therefore, two boundary
constraints have to be imposed on the nodes of both top
and bottom surfaces. By using constraint stabilization method
(CSM) [17], these two boundary constraints can be formu-
lated as:

AT üN +AT (2ψ u̇+ ψ2uN) = 0,

BT (üN − d̈)+BT [2ψ(u̇N − ḋ)+ ψ2(uN −d)] = 0,

(3)

where matrixA and B denotes the nodes should be con-
strained on both top and bottom surfaces. Scalarψ was a
predetermined angular frequency and was set to 2000 for
both constraints.

D. 2D FE Dynamic Equations

Let M be the inertia matrix andλ1 and λ2 be the
Lagrange multipliers which denote a set of constraint forces
corresponding to both boundary constraints. Using the La-
grange dynamic method, dynamic equations of all nodes are
formulated as

−Frheo
2D +Aλ1+Bλ2−MüN = 0. (4)

Combining Eqs. (2), (3), (4), and consideringvN = u̇N , we
could end up with a set of differential equations which
described the 2D dynamic behaviors of a rheological object
under a pushing or pulling operation. By numerically solving
these equations, we could calculate the deformation and
forces at each nodes of the triangular mesh. In addition, the
2D FE model can be easily extended to 3D case by changing
the triangular mesh to tetrahedral mesh and adding thez-axis
components in all the matrices and vectors.

III. PARAMETER ESTIMATION

A. Analytical Expressions of Forces

Generally, the properties of various materials were esti-
mated through some standard compressive or tensile tests.
Mostly, such tests only provided 1D measurement data.
In our applications, however, 2D/3D measurements are re-
quired. We pushed a flat-squared object from the entire top
surface with a constant velocity from time 0 totp and this
time period was called pushing phase. Before releasing the
deformation, the deformed shape was maintained from time
tp to tp +tk and this period was called keep phase. During the



compressive test, the force responses and several deformed
images were recorded by a tactile sensor and a calibrated
camera. Using these experimental measurements, we were
able to estimate the physical parameters.

We previously proposed an approach to estimate the pa-
rameters based on FE simulation and iterative optimization.
The idea of this method is to iterate the FE simulation with
updated physical parameters until the difference between the
simulation and experiment becomes minimal. This method
was robust but time consuming. Therefore in this paper, we
introduced an efficient method to estimate the rheological
properties by taking the advantages of analytical expressions
of rheological forces. Note that the pushing velocity is
constant in pushing phase and is zero in the keep phase.
Therefore, we can easily solve the differential equations of
Eq. (2) in both pushing and keep phase. Finally, we have the
expressions of rheological forces in both phases as follows:

F(t) =
2

∑
i=1

ci
(

1− e
−

Ei
ci

t)M γ p+ c3p, (0≤ t ≤ tp), (5)

F(t) =
2

∑
i=1

ci
(

1− e
−

Ei
ci

tp
)

e
−

Ei
ci

(t−tp)M γ p, (tp ≤ t ≤ tp + th),

(6)
where

M γ = γλ Jλ + γµJµ =
γ

(1+ γ)(1−2γ)
Jλ +

1
2(1+ γ)

Jµ .

Vector p consists of velocities at individual nodes in the
pushing phase. Note that the Poisson’s ratioγ can be
determined in advance by using the experimental data of
deformed shape in the keep phase, as discussed in [17]. The
vector p can be then obtained from the simulation results
during pushing operation with knownγ. Using Eqs. (5) and
(6), we can easily calculate the force responses during both
pushing and keep phases.

B. Analytical Expression of Residual Deformation

According to the discussions of our previous work [16],
we found that the residual deformation was dominated by the
sum of the viscous moduli∑3

1 ci and force history through
pushing and keep phases. The residual deformationuN(∞)
can be formulated as:

M γ uN(∞) =
1

∑3
i=1 ci

∫ tp+tk

0
F(t)dt. (7)

C. Parameter Estimation

Using Eqs. (5) and (6), we can estimate parameters
E1, E2, c1, c2, and c3 by minimizing the force difference
during pushing and keep phase. Instead of using iterative FE
simulation, we calculated all the force data directly from the
force expressions. This method could result in an optimized
solution within only several seconds depended on the initial
setting. The estimated parameters from this optimization
provided accurate force results but we failed to reproduce
residual deformation. In order to accurately capture residual
deformation, the sum of the viscous moduli∑3

1 ci has to be
close to the value calculated from Eq. 7. If we predetermined

the value of∑3
1 ci and used it as a constraint to minimize the

force difference, we could estimate all the parameters and
yield a good reproduction of residual deformation. Again,
we were not able to accurately reproduce the force response
at the same time. We therefore concluded this behavior
as a contradiction between accurate reproduction of force
response and reproduction of residual deformation. This be-
havior only happens in rheological object where the residual
deformation exists. This is because the physical model used
in our FE formulation is a linear model, especially the
linear viscous element. We found that this contradiction
phenomenon will appear as long as the physical model is
linear and no matter how many elements included in the
physical model. However, we could employ two sets of
parameters to capture force and deformation respectively,
as discussed in [17]. The estimation process of two sets of
parameters can be summarized as the following four steps:

1) Estimation of Poisson’s ratioγ by minimizing the
difference of deformed shape in keep phase;

2) Estimation of the first set parameters by minimizing
the force difference based on Eqs. (5) and (6);

3) Calculating the value of∑3
1 ci using Eq. (7).

4) Estimation of the second set parameters by minimizing
the force difference with known∑3

1 ci as a constraint.

D. Parameter Switching Strategy

As discussed in the last section, two sets of parameters
were necessary to accurately reproduce both rheological
force and deformation. We could use both sets of pa-
rameters as input to simulate the rheological objects, as
presented in [17]. However, this is time-consuming since
two geometrically identical objects need to be simulated
inside the simulator. In this paper, we therefore proposed
a parameter switching strategy to switch these two sets of
parameters from one set to the other. As shown in Eq. 7,
since the residual deformation was dominated by∑3

1 ci, we
have therefore proposed a dual-moduli viscous element as
shown in Fig. 2a. The stress-strain relationship of the dual-
moduli viscous element was formulated as:

σ(t) = (κα + c)ε̇(t), (8)

where scalarsα and c were parameters to be determined.
Switch functionκ takes the following value:

κ =
{

−1 criterion is satisfied;
1 otherwise.

(9)

(b)

cκ α,  ,  

(a)

E1

E2

c3

cκ α1 1,  ,  

cκ α2 2,  ,  

Fig. 2. (a) the dual-moduli viscous element and (b) parallel5-element
model with two dual-moduli viscous elements.



TABLE I

ESTIMATED PARAMETERS FOR BOTH MATERIALS

E1 E2 c1 c2 α1 α2
Material γ

(Pa) (Pa) (Pa·s) (Pa·s) (Pa·s) (Pa·s)

Clay 0.2902 3.7731×104 8.0952×104 1.1247×107 5.9559×105 2.0444×106 1.0179×105

Sweets 0.3474 1.3787×104 2.5865×104 2.7672×107 6.0402×104 2.7657×107 6.4650×103

Time [s]

F
o
rc

e
 [
N

]

(a-1) deformed shape (a-2) typical force response

(a) experimental measurements with commercial clay

(b-1) deformed shape (b-2) typical force response

(b) experimental measurements with Japanese sweets material

Fig. 3. deformed shapes and typical force responses of both commercial
clay and Japanese sweets material.

Introducing two dual-moduli viscous elements into the par-
allel 5-element model, as shown in Fig. 2b, we could modify
the FE model by replacing the first two equations of Eq. (2)
with the following two equations:

Ḟ1 +
E1

κα1 + c1
F1 = (λ ela

1 Jλ + µela
1 Jµ)u̇N ,

Ḟ2 +
E2

κα2 + c2
F2 = (λ ela

2 Jλ + µela
2 Jµ)u̇N .

(10)

The parameter switching should happen in the moment
when the deformation started to recover. Thus, the criterion
used in Eq. 9 could be time or some events which can easily
distinguish the recovery moment. In the rest of this paper,
we will introduce two such criterions: simulation time and
contact detection.

IV. EXPERIMENTS AND VALIDATION

A. Experimental Results and Estimated Parameters

Two rheological objects made of commercial available
clay and Japanese sweets material were used in our experi-
ments. The flat-squared objects were pushed with a constant
velocity of 0.2m/s by a linear stage. Some markers were
drawn on the object surfaces for easy comparison of internal
deformation. The force responses were measured by a tactile
sensor. Initial, deformed, and recovered shapes were recorded
by a calibrated camera. Deformed shapes of both materials

Simulation

Experiment

(a-1) Rheological force (a-2) Held shape

Experiment Simulation

(a) validation results for commercial clay with time criterion

(b) validation results for Japanese sweets material with time criterion

(a-3) Final shape

Experiment Simulation

Simulation

Experiment

(b-1) Rheological force (b-2) Held shape

Experiment Simulation

(b-3) Final shape

Experiment Simulation

Fig. 4. Validation results of both materials with the time criterion.

and the typical force responses were shown in Fig. 3. These
measured data were then used to estimate the physical
parameters and the estimated results for both materials were
given in Table I.

B. Validation Results

1) Validation with Time Criterion: Using the proposed
FE model and estimated parameters, we could simulate the
behaviors of above two objects. At first, we used simulation
time as a criterion to start the parameter switching. The sim-
ulation results compared with experimental measurements
were demonstrated in Fig. 4. We were able to accurately
reproduce both rheological forces and deformation simulta-
neously.

2) Validation with Criterion of Contact Detection: Con-
tact between an object and an external instrument often
happens in many applications, such as surgery operation and
food grasping. During the contact modeling, we found that
the moment of losing contact could serve as a good criterion
for parameter switching. The process of contact modeling
was presented in [18]. Using the estimated parameters of
sweets material (as listed in Table I), we performed a contact
simulation between a rheological object and an external
instrument. The simulation results compared with experi-
mental measurements were shown in Fig. 5. We successfully
reproduced both rheological force and deformation behaviors
by using the proposed parameter switching strategy.

We also conducted simulations with irregular shaped ob-
jects. For example, a semi-circular object was deformed by
a squared instrument. Total simulation time is 16 seconds.
The instrument was moved down 25mm in first 4 seconds
with a constant velocity. Then, the instrument was stopped
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Fig. 5. Validation results of Japanese sweets material withcriterion of
contact detection. Simulation results (red line) comparedwith experimental
measurements (black line): (a) the initial shape and position of the object
and instrument, (b) the deformed shape when the deformationwas holding,
(c) the final recovered shape, and (d) the rheological force behaviors.

and maintained the deformed object for 4 seconds. The in-
strument moved back to the original position within another
4 seconds. After the instrument was moved back to the
original position, the object still had 4 seconds to recover.
The estimated parameters of sweets material were used in
this simulation. Some snapshots of simulation results were
shown in Fig. 6, where the parameter switching strategy was
applied. To demonstrate the function of parameter switching
strategy, snapshots without parameter switching were also
given in Fig. 7. In this case, we could obtain accurate
force results but the deformation behaviors were not as we
expected. At simulation time 8.2s, the instrument and object
had lost contact in Fig. 6d but still in contact in Fig. 7a. The
final recovered shapes of both cases were also quite different.

(a) 0 s (b) 2 s (c) 4 s

(d) 8.2 s (e) 12 s (f) 16 s

Fig. 6. Simulation snapshots of a semi-circular object pushed down by a
flat squared instrument with parameter switching strategy.

(a) 8.2 s (b) 12 s (c) 16 s

Fig. 7. Simulation snapshots without parameter switching.

In addition, we also investigated the rheological behaviors
of a circular object operated by two external instruments with
one at the top and the other at the bottom, as shown in Fig.
8 with parameter switching and in Fig. 9 without parameter
switching. The bottom instrument was static and the top
instrument was moved down to push the object. Figure 8b
showed that the object had already deformed and contacted
with the bottom instrument due to gravity before the top
instrument touch the object. The final recovered shape was
also not symmetrical relative to the horizontal axis due to the
gravity in both figures. The deformation behaviors showed
that our FE model worked in a natural way.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, a parallel five-element physical model was
used to describe the rheological behaviors and a 2D/3D FE
dynamic model were formulated to simulate such behaviors.
By taking the advantage of parallel configuration of the
five-element model, analytical expressions of rheological
force and residual deformation were formulated and an
efficient approach for estimating physical parameters was
then presented based on these expressions and nonlinear
optimizations. To accurately reproduce both rheological de-
formation and force simultaneously, two sets of physical
parameters were estimated. One of each captures deforma-
tion and force respectively. A parameter switching strategy
was then proposed to switch these parameters from one

(a) 0 s (b) 2 s (c) 4 s

(d) 8.2 s (e) 12 s (f) 16 s

Fig. 8. Simulation snapshots of a circular object operated by two
instruments with parameter switching strategy.



(a) 8.2 s (b) 12 s (c) 16 s

Fig. 9. Simulation snapshots of a circular object operated by two
instruments without parameter switching strategy.

set to another when a criterion was satisfied. Experimental
results using commercial available clay and Japanese sweets
materials were given to validate proposed FE model and
estimated parameters. Finally, contact simulations between
rheological objects and external instruments were presented
to demonstrate the ability of our FE model for dealing with
arbitrary shaped objects.

In the future, nonlinear modeling, such as geometrical
nonlinearity, will be introduced into our FE model to cover
large deformation and rotation behaviors. In addition, more
rheological materials, including biological organs or tissues,
will be tested to further validate our FE model and parameter
estimation method.
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[8] B. A. Lioyd, G. Székely, and M. Harders, “Identificationof spring pa-
rameters for deformable object simulation,”IEEE Trans. Vis. Comput.
Graph., vol.13, no.5, pp. 1081–1094, Sept./Oct., 2007.

[9] N. Sakamoto, M. Higashimori, T. Tsuji, and M. Kaneko, “AnOptimum
Design of Robotic Hand for Handling a Visco-elastic Object Based on
Maxwell Model,” Proc. IEEE International Conference on Robotics
and Automation (ICRA ’07), pp. 1219–1225, Roma, 2007.

[10] C.-H.D. Tsai, I. Kao, N. Sakamoto, M. Higashimori, and M. Kaneko,
“Applying Viscoelastic Contact Modeling to Grasping Task:An Ex-
perimental Case Study,”Proc. IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS ’08), pp. 1790–1795, Nice, 2008.

[11] Y.-H. Chai, G. R. Luecke, and J. C. Edwards, “Virtual Clay Modeling
Using the ISU Exoskeleton,”Proc. IEEE Virtual Reality Annual
International Symposium (VRAIS ’98), pp. 76–80, Atlanta, 1998.

[12] J. Muramatsu, T. Ikuta, S. Hirai, and S. Morikawa, “Validation of
FE deformation models using ultrasonic and MR images,” inProc.
9th International Conference on Control, Automation, Robotics and
Vision (ICARCV’06), pp. 1–6, Singapore, 2006.

[13] Z. Wang, K. Namima, and S. Hirai, “Physical parameter identification
of rheological object based on measurement of deformation and force,”
Proc. IEEE International Conference on Robotics and Automation
(ICRA ’09), pp. 1238–1243, Kobe, 2009.

[14] Z. Wang and S. Hirai, “Modeling and parameter identification of
rheological object based on FE method and nonlinear optimization,”
Proc. IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS ’09), pp. 1968–1973, St. Louis, 2009.

[15] Z. Wang and S. Hirai, “Modeling and property estimationof Japanese
sweets for their manufacturing simulation,”Proc. IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS ’10),
Taipei, 2010, accepted.

[16] Z. Wang and S. Hirai, “Modeling and parameter estimation of rheolog-
ical objects for simultaneous reproduction of force and deformation,”
in 1st International Conference on Applied Bionics and Biomechanics
(ICABB2010), Venice, 2010, accepted.

[17] Z. Wang and S. Hirai, “Modeling and estimation of rheological
properties of food products for manufacturing simulations,” Journal
of Food Engineering, 2010, doi:10.1016/j.jfoodeng.2010.08.011.

[18] Z. Wang and S. Hirai, “Contact modeling and parameter switching
for simultaneous reproduction of rheological force and deformation,”
Proc. IEEE International Conference on Robotics and Biomimetics
(ROBIO2010), 2010, submitted.


