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Abstract— Rheological object, such as various food products methods are frequently employed. One is Mass-Spring-Dampe
and biological tissues, has both elastic and plastic propées. (MSD) model and the other one is Finite Element (FE) model.
Modeling of rheological object has not been studied frequetty A MSD model consists of a mesh of mass points connected

comparing with the modeling of elastic one. Our previously @&- . . . .
veloped FE models of rheological objects were based on trigular between each other by a series of links. The dynamic befgvior

or tetrahedra finite elements. In this paper, the FE model of Of each link are governed by several springs and dampers
rheological object formulated with square (2D) or cubic (3D connected in certain configuration [4]. On the other hand, in
finite elements were presented. At first, the 2D FE model with FE model an object is described by a set of finite elements
square elements was formulated and was then extended to 3Ds& (o ¢ riangles and tetrahedra in 2D and 3D cases, respectively)
with cubic elements. The developed FE models were then utikd . . . .
to simulate regular shaped objects and computation cost and Dynarr_nc behav_lqrs of the object are then described b_V, the
simulation results were compared with the results from triangular- ~ Pehaviors of individual elements. MSD model has been etiiz
or tetrahedra- based models. We found that the FE model with to model a food dough, typical rheological object, by Nobori
tSquarel or CUtbitC i'eénemf W0rktS Sstwe” as the m0d?' tF’alsedtorlet al. They investigated three different mesh configurations: th
riangular or tetrahedra elements but can save computationcos : : i ;
With% speed-up ratio of about 30% in 2D or 50% ir? 3D cases. lattice [5], the truss [6], and .the hierarchical structyrgswith .
decreased MSD elements in order to reduce the computation
| INTRODUCTION cost. Thg MSD model has_ advantages of simple fc_>rml_JIation
and relatively low computation cost, but the formulatiomat
In our living life, we can find many rheological objectshased on continuum mechanics and the geometrical topology
such as various food products, biological organs and tsssusignificantly affects the simulation results. In our preiso
Different from elastic object, rheological object alwayielg works, we have developed FE dynamic models for simulating
residual deformation after a loading-unloading operatitinis rheological objects and proposed optimization-based ouisth
makes it more difficult to model a rheological object thafor estimating physical parameters [8], [9], [10]. We halsoa
an elastic one. In medical related applications, elastiea® developed an FE contact model to simulate the interactions
have been modeled frequently since most researchers adsubetween two objects [11]. To simulate large deformation and
that the biological organs and tissues are totally recderadeformation with rotation motion, nonlinear Green straingor
from the deformation or they only care about the deformatidras also been introduced into our FE model [12].
during but not after the operation. However, some bioldgica Our previous FE models were formulated with 2D trian-
tissues, such as brain, demonstrate rheological behawviater gular and 3D tetrahedra finite elements, which are the most
certain operation [1]. Residual deformation also happens popular and elementary elements. However in FE method,
some dropsical organs or tissues during a period of time afteher elements are also available, such as 2D quadrilateral
an operation and it may be very important for diagnosis ahd 3D hexahedron elements, etc. In this paper, therefoge, t
diseases. Such rheological behaviors cannot be simulated uformulation of FE rheological model with 2D square and 3D
elastic models and have to be simulated using rheologicabic finite elements will be formulated and the comparisons
models. Besides, many other objects, such as various faedcomputation cost and simulation results with previously
products, demonstrate rheological behaviors under lgaditriangular/tetrahedra elements will be performed.
unloading operations. Unfortunately, modeling and sitiotee. ~ The rest of the paper is organized as follows. Section 2
of rheological object has not been studied frequently so far presents the formulation of 2D model with square finite ele-
Early work on modeling rheological object dates back tments. 3D model with cubic elements will be presented in Sec-
Terzopouloset al. [2], who proposed a Burger model totion 3. Section 4 demonstrates computation costs and shiowla
describe rheological behaviors. Unfortunately, it is orly results of models with square/cubic and triangle/tetrednédite
conceptual description and no simulation results werergiveelements and comparisons and discussions will be made. The
Two-layered Maxwell model [3] has been used to simulat®nclusions and future works given in Section 5.
rheological forces when a sushi was grasped by a robot hand.
Good agreements in forces between simulation and experi- . .
mental results were obtained. However, the model is limitéd Formulation of Elastic Force
to one-dimensional (1D) simulation. In two-dimensionaD)2  First of all, let us start with 2D modeling of elastic defor-
and three-dimensional (3D) simulations, two popular mimdel mation with square finite element. LEiP,P;PP be a square

II. 2D MODEL WITH SQUARE FINITE ELEMENT



n , » o - g Integrating the energy density Eq. 5 over the square element
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. _ . where h denotes the thickness of the square element and
Fig. 1: Square (a) and cubic (b) finite element.

constant coefficient matrices are formulated as

Laa:/DaaThdS, Lbb:/DbbThdS,

element with the side length as shown in Fig. 1la. Assume (8)
that RP; is parallel toé-axis and kP, is parallel ton-axis. Ly = Lba:/ ab'hds.
Let (&i,ni) be the coordinates of point;.PThen, coordinates 0
of Pj, P, and R can be calculated easily. Let us define shaggmilarly, we also have
functions corresponding to; PPj, P, and R as : 1
G é/ €2, + &2 hdS+—/ 2¢5,)2hdS
L _EHOm (&) ke + e NdSH 3 (2%n)
Nl.].k,l = 2 5 Nj,k.l,l =712 (9)
| | :}[VT yT]{Maa Mab}[yu]
Nt = w Nk = w 2 VI Mea Mo || Yy |7
; (1) where constant coefficient matrices are formulated as
where& = [&,n]" is any point inside squarelP,P;PcP. Let Mas — 2Ln L Mup = 2Lp + L
u=1[u(&,n),v(&,n)]" be displacement vector of the point. The Maa L a Mbb’i L bb bb T =, (10)
displacement vector can be then approximated using theeshap ab = “ba, ba = ab-
functions as: Consequently, potential energy stored in the square eleimen
calculated as
U=UN;jii+UNjeri+UNeij+UNG 6 (2) Uik = AG) + HGH. (11)

whereu;, uj, Uy, andu, be displacement vectors at nodal points . | derivative of i oG with T T
P, Pj, P, and R, respectively. Lets jy = [, u;, Uy, u]T be Partial derivative of integraG® with respect toy = [y, Yy ]

a collective vector consisting of displacements gt ®, P, is formulated as

and R. We also introduce another two collective vectors as: oG [ Laa Lap ] { Yy } (12)
Yo = [ui,uj, U, w]" andy, = [vi, vj, vi vi] T dy | Loa L Yo |’
_ Let us (_:alculate strf';un vector |nS|dEP.PjP_kP|. For an Similarly, we have
isotropic linear material, the Cauchy strain tenser=
€z, €nn. 26¢,]" is formulated as oGt { Maa Mg, ] { Yu } (13)
uo o oy Mpa My Yo !’
1 ry =aVe Note that the following permutation converts vectprinto
ov Uikl
&nn = an =b'y,, 3 L1kl
260y = 20 Y Ty, P W ) e
&= gn " 9E Yo+raV, ViUV W Ve Uy
where This permutation convert®G” /dy into dG*/du; jx; and
—(ni+1-1) (& +1-8) 0GH/dy into 0GH /du; j . As a result, a set of nodal forces
1 (ni+1-n) 1 —(E-§&) generated on;Rhrough P can be formulated as follows:
. (n-n) |* 7P (-&) |- @
—(n—ni) (&+1-8&) f__kl:_dUi,j,kJ _ JG» u oGH
Note that the density of elastic potential energy of an &guitr he ou; j k| ou; ki oui j ki (15)
linear material can be formulated as _ (/\Jg n HJE) Uik

1 1
W = A (&g +&nn)° + S p[262, + 262, + (26:,)], (5
2 (8¢e + €nn) ZH[ & an +(2een)] ®) Note thatJ? and JE are independent of; and n;, or |.

where scalars\ and pu denote Lamé’s constants, which carNamer,KD:)\J)ﬁ.;_uJé is a constant matrix and independent
be calculated by Young's modulus and Poisson’s ratiy as of nodal points coordinates. This is different from the FE

follows: model formulated with triangular element, in which connmartt
3 — yE = ©6) matricesJ, andJ, depend on the coordinates of nodal points
“arya-zy M aawy [12].



Equation 15 is used to calculate the elastic forces gerterasd any point inside the element. Kinetic energy of the eldmen
on a square elememiP;P;PP. Summing up all forces gen-is then described as:

erated on individual nodes, we are able to compute the elasti 1 .o
forces at all nodes as Tijki = /DPP_PKP| >Pu uhdS, (20)
7]
_ A H
F=- (/\JZD + “Jzo) Un;, (16) wherep denotes the density of the material. Substituting Eq. 19

whereF anduy are force and displacement vectors of all node'§',to Eq. 20 and integrating it, we have

matricesd), and Jb; are referred as connection matrices and T 1UT YR 21
they can be calculated by summing up the contributiondof el = 55 ol L LIGEEL Lol (21)
andJé from individual square elements. where
B. Formulation of Rheological Force , AUyyo 2.0 loxz 2042

A parallel five-element model (Fig. 1c in [12]) is employed in v, ikl = PIFh | 20900 Mz 20202 lax2 (22)
this paper to govern rheological behaviors of individualae PE36 | lae 2o Ao 2o
elements. The constitutive law of this model is formulated a A2:2 lox2 222 Al2x2

with 1,42 be a 2x 2 unit matrix. Note that the summation of
all blocks of matrixM; ; | is equal topl2hl,.», which is the
. 2 : mass of square elemeniP;P;PP. The mass matriM of an
02+ C—202 = Bae, (17)  object with square mesh can be then calculated by summing up
03 = C3é, the contributions oM; ; x| from individual square elements.
Assuming that a rheological object is fixed on ground and the
top surface of the object is pushed down with a displacement
where o1, 0z, and oz are stress at the first, second, and thiflinction of d(t). Both geometric constraints on the nodes of
layer of the five-element modely and € are the stress andbottom and top surfaces can be describedAbuy and BTuy
strain at the modelg;, Ey, c1, ¢z, andcs are Young’s moduli with matricesA and B denoting the nodes to be constrained.
and viscous moduli of individual elastic and viscous eleteerThus, Lagrange equation under these two geometric contsrai

. E; .
o1+ —o01 = E¢,
C1

0 =01+ 02+ 03,

of the model, respectively. can be formulated as
As presented in [12], the constitutive law Eqg. 17 can be 1.ro.. TaT Tor
converted into a relationship between rheological forcd an L= EUNMUN_U +A1A'uN+A;B uy, (23)
displacement by performing a series of replacements based o
the formulation of elastic force (Eq. 16) as where A; and A, are Lagrange multipliers denoting a set
of constraint forces, scaldd denotes the potential energy
Fi+ Epl - (,\f"a\]éD + uflanD) Un, generated inside the object and can be calculated by summing
G up the contributions of Eq. 11 from individual elements. &lot
Fo+ EFZ — (/\éalaJéD+u2e|aJtle) U, that the partial derivative o) with respect touy yields the
G2 (18)  force vector generated on all nodes.
Fs;= ()\%’iSJ’Z\D+ ug’iSJgD) Uy, Applying Lagrange equations of motion to Eq. 23, a set of

rheo motion equations of nodes can be formulated as

rheo i, —
whereF 1, F,, andF 3 are force vectors corresponding to stress —F55°+AA1+BA,—Miy =0. (24)
01, 02, andas, respect!velyz\f'a, pse, 282, andus'® are Lamé Using the Constraint Stabilization Method (CSM) [13] to
constants corresponding B andE; and can be calculated byconvert a set of geometric constrai®Suy = 0 andBTuy =0
Eqg. 3 of [12],A3" and u3"® described the model’s viscosity andnto a set of differential equations, we have
are defined by Eq. 15 of [12], vectouy and F5% denote the

rheological displacement and force vectors generated®REh ATiy +AT (ZOOUN + wZUN) =0, (25)
model. B (i —d) + B" [2w (i — d) + w? (uy — d)] =0,
C. Dynamic Equations of Rheological Deformation where w is a predetermined angular frequency and is set to

After having the formulation (Eq. 18) of rheological force1000 for both constraints during simulation.
(Introducing velocity vectowy = Uy and combining Egs. 18,

we can formulate a set of dynamic equations of rheologica - ] - i -
deformation. At first, let us compute the kinetic energydesi 24 @nd 25, we obtain a set of differential equations which fo

square elemerfflP,P;PP. Note that the rate of displacemenmm‘?‘ted 2D FE r_‘nodel c_>f rheological deformation. Numericall
vector with respect to time is described by solving these differential equations, we are able to comput
the rheological force and deformation based on square finite
u=u; Ni,j,k,l + Uj Nj,k,l,i + l'JkaJ’i’j + U N|,i,j,k7 (19) elements.



I1l. 3D MODEL WITH CUBIC ELEMENTS that the mass matrix of a cubic element can be calculated as
. . . r8ls 4l 23 4lz 2 | 213 43 7
In 3D case, we formulate the FE modeling with cubic 4|2 8,2 4|2 2|§ |33 2|33 4|2 2|2
elements, as shown in Fig. 1b. The formulation process is the 213 413 8l3 43 213 4l3 23 3
same with 2D square case. Some variables, however, have t(M[3 _ P3| 43 215 43 83 43 203 13 23
be reformulated to fit the 3D coordinate system. First of all, 63 | 213 13 23 4l 8l3 43 23 43

; . I3 213 413 23 4l3 83 43 23
the shape functions are defined as s 4y 2 1 20 4l 85 4l

1 L 4l3 213 13 23 43 213 4l3 83 |
Ni==(&+1=&)ni+1-n)(G+1-7), _ _ _ (29)
| with 13 be a 3x 3 unit matrix.
Nj = %(E =&)i+1-=n)(G+1-9), From the above formulation we found that the major differ-
1 ence in 2D and 3D model is the calculation of the connection
N = l_s(f &) (n—n)(G+1-2), and mass matrices. Fortunately, they are constant maaiues
1 can be prepared in advance.
N =&+ — -ni)(¢+1-20),
! I13(EI S0 =m)& O (26) IV. SIMULATION AND COMPARISONRESULTS
Nm=|—3(5i+|—5)(l‘l—l‘li)(5—5i), A. Smulation Setup
1 . _ : 2D and 3D FE simulations are performed with different
N = |_3(E — &) -m)({=4), meshes and in different nodal resolutions. Assuming a 2D
1 - : regular-shaped object is fixed on ground with triangular and
N = I_3(E —&)mi+=n)(¢=4), square meshes as shown in Fig. 2a and Fig. 2b, respectively.
Ng — %(Ei =M+ -mM( =), In 2D case, the nodal resolution of the object is set to%

The top-center node is deformed vertically during simolati
] ) ] with a displacement functiod(t), which appears in Eq. 25
where(&, n;,4) is the coordinate of pointiP[¢,n,{]™ denotes 4 s described by Fig. 2c. During time peridd, tp], the
any point inside the cubic elemel; PjPP PP PrPs, is the  gpiect is pushed down with constant velocity and the time
side length of the element. period is called push phase. During time perifigl tp+t],
Two components of elastic potential energy are recomput@@ deformation generated in the object is kept unchange and
as it is called keep phase. Accordingly, the deformed shape in
oAl 5 the keep phase is .called keep-shape. After tp;netk, the
G3pp = > /B (egg + &nn +€gg) av, geometrical constraint on the top-center node is removed an
- the object is allowed to recover freely and finally reach a
Ghp £ /El (5525 + & +5525) av (27) permanent shape, which is called final-shape accordingly. |
1 r ) ) ) 3D case, FE simulations with both tetrahedra and cubic nseshe
+ 5/ {(anz) + (2¢7¢)"+ (2€¢p) } av, are performed and the same displacement funatiopis used
o ) :
to deform the object. Instead of pushing from the top-center
whereess, €qn, &¢, &1, €77, @andgzg can be calculated from node, the entire top surface of the object is deformed in 3D
the linear Cauchy strain tensor in 3D case. simulations. The size of the object is set t8&x 0.08 mn? in
Taking the partial derivative of the above integrét, and 2D and 008x 0.08x 0.08mn¥ in 3D cases, respectively. The
GgD with respect taus, we have a set of nodal forces generatdapdéﬂ resolutions used in simulations are set to%and 9x 9

on R through R as: for 2D and 5x5x 5 and 9x 9x 9 for 3D cases, respectively.
The physical parameters used in simulations are the same and
fo=— (,\J% I HJS) U, (28) listed in Table I, wheresim denotes total simulation time.
where f ;5 andug denote the force and displacement vectors at ) &0

dt)

nodes of the cubic elemeft, matrices)?, andJ¥ are constant T,
matrices with a dimension of 2424. By summing up the D & t
contributions ofd?, andJ¥, from individual cubic elements, we
are able to calculate a stiffness matigp = A4, + pdby
for an object. The dimension of matricel, and J%, is
3N x 3N with N denoting the nodal number of the mesh. By
L) A u 0o @) (b) (©

replacingdsy by J3p andJ;y by J55 in Eq. 18, we are able to _ ) ] )
compute the rheological forc& in 3D case. Consequently,Fi9- 2: A 2D regular-shaped object fixed on the ground with
we can formulate a set of dynamic equations of rheologiddandle () and square (b) mesh respectively, a displaseme
deformation in 3D case as presented in the last section. NtBctiond(t) (c) is acted on the center node of the object.




TABLE I: Physical parameters used in simulations , e / -
/ /
/
p " E]_ E2 C1 C2 C3 _ / Z /
arameter 3 / £/
(Pa) (Pa) (Pas) | (Pas) | (Pas) g/ o/
Value | 1x10* | 2x10* | 3x10° | 2x10° | 1x 1P / /
h (m t 4 tsi
Parameter y m P « o .
2D only (s) (s) (s) Timets © * rimets ©
Value 0.35 0.012 2 4 10 (a) Force in 5<5 (b) Force in 9< 9

B. Smulation Results and Comparisons

The simulations were coded by MATLAB’s M-file and run
on a desktop with an Intel CPU (2.8GHz) and 3.25 GB of
RAM. The integrations were performed using a MATLAB'’s
build-in function named “ode23”. The computation costs of
simulations were recorded and listed in Table 1. We found
that the element number of a square mesh is two times smaller
than a triangular mesh in 2D case, but the speed-up ratio is.
about 30%. On the other hand, the element number of a cubic
mesh is six times smaller than a tetrahedra mesh in 3D case,
but the speed-up ratio is about 50%. We also found that the.
speed-up ratio is not increasing along with the increase of-
nodal resolutions. Therefore, we conclude that the square 0~
cubic finite elements yield faster simulation comparinghwit | L~ | ~ 7 | N
the triangular or tetrahedra finite elements and the spped-u () Final-shape in 55

ratios are about 30% in 2D and 50% in 3D cases, respectively. ) ) ) ) ) )
Fig. 3: Comparisons of simulation results in 2D with bluesn

We also compared the simulation results of rheologicala‘srcfor triangular mesh and red lines for square mesh.

and deformation from different meshes. Figure 3 shows the

comparison results in 2D case withx% and 9x 9 nodal o ]
resolutions. We found that the deformed shapes from bdtA2lly becomes negligible as the nodal resolution reaches
meshes are almost same but a difference appears in rhellogigrt@in number [9]. o

forces. The square mesh yields slightly smaller force thanComparison results in 3D case are shown in Fig. 4. For the
the triangular mesh. In other words, an object modeled G§nvenience of clear comparison, only 2D projections of 3D

square mesh is slightly softer than the same object modefigformation were given in the figure. From Fig. 4we_ found that
by triangular mesh. In addition, we also found that IargélFe deformation are matched very well but larger differeimce

nodal resolution yields smaller force amplitudes and betffrces appeared between both meshes. However, force trends
agreements in deformation. This tendency of force rednctif Poth meshes are same. The difference in forces between

will be weaker with the increase of the nodal resolution arfiiferent meshes is caused by the geometrical topologys Thi
difference can be eliminated by performing model calilomati

or parameter estimation. In other words, different FE mgshe
require different physical parameters in order to predéctain
rheological force behaviors. The comparisons done in thyEep

(c) Keep-shape in 55 (d) Keep-shape in 29

(f) Final-shape in % 9

TABLE II: Comparison of simulation costs

Model | Nodal Element | Element| Sim. | Speed-up tend to show that the square or cubic finite element has the
dim. resol. type number | cost (s) ratio same ability as the triangular or tetrahedra element foretiogl
Triangle 32 8.66 rheological behaviors. In addition, 3D simulation snapstaj
5x5 Square 16 cee | S233% both resolutions are shown in Fig. 5 to demonstrate how 3D
2D Triangle 128 42.92 simulation is.
99 Square 64 2908 | SL78%
V. CONCLUSIONS AND FUTURE WORKS
Tetrahedra 384 40.09
355 Cube 64 1744 | 26°0% In this paper, FE dynamic models of rheological objects
3b Tetrahedra| 3072 | 8366.83 were developed using 2D square and 3D cubic finite elements.
9x9x9 cube 512 3850.00 53.98% Comparing with 2D triangular and 3D tetrahedra elements,

the formulations with square and cubic elements are less



—— Tetrahedra
—— Cube

Tetrahedra as
Cube

Force [N]
Force [N]
=

s s L
o 1 2 3 78 9 w0 o 1 2 3 78 9 1
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(a) Force in 5x<5x5 (b) Force in %x9x9
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(c) Keep-shape in 55x5

001 0 001 002 003 004 005 006 007 008 009

(f) Final-shape in %9x9

001 0 001 002 003 004 005 006 007 008 009

(e) Final-shape in 55x5

Fig. 4: Comparisons of simulation results in 3D with blueskn
for tetrahedra mesh and red lines for cubic mesh.

(b) Keep-shape in 99x9

(a) Keep-shape in 85x5
Fig. 5: 3D simulation snapshots for both resolutions.

complicated because the connection matrices are no longer
related with the coordinates of nodes. Because less nunfibe

elements are involved in square or cubic meshes, computalﬁ
costs were significantly reduced comparing with triangular
and tetrahedra meshes. We found that the speed-up r
in computation costs are about 30% in 2D and 50% in 3

models respectively and they were not affected much by

nodal resolutions. Comparisons of simulation results betw

) . on Wk
different meshes showed good agreements in deformation [ou
certain differences in rheological forces. However, thecéo
trends were the same which guaranteed the same abilities_ of

both meshes for simulating certain rheological behaviafter
performing model calibration or parameter estimation, Fiie

models formulated with square or cubic finite elements can
work as well as models with triangular or tetrahedra element
for simulating rheological objects.

In the future, parameter estimation for FE models with squar
or cubic finite elements will be investigated as we have done
for the triangular and tetrahedra elements. FE model based o
nonlinear Green strain tensor will be also formulated using
square and cubic finite elements to simulate large defoomati
and deformation with rotation motion. Model with irregular
shaped objects and contact interaction will also be fortedla
based on square and cubic elements.
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