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I. INTRODUCTION

Imitating human touch is still challenging for anthropo-
morphic robotic hands. Human can perform dexterous tasks
basing on not only vision, but also rich information from
touch mechanism. Even in some cases with visual occlusion,
he/she can easily assess grasped object characteristics, such as
friction, roughness, localization, and grip estimation. It thanks
to human cutaneous mechanoreceptors which includes four
functionally distinct types of tactile afferent [1]. These affer-
ents have particularly high densities in the fingertips, bringing
dynamical events, such as skin deformation, direction and spa-
tial distribution of contact forces. Recent research on robotics
has kept focusing on creation of robotic hand with human-
like sensory systems to perform dexterous tasks, especially
tactile sensing system [2]. With advanced technology such
as piezo-resistive or capacitive array types, nowadays tactile
sensors have better sensitivity, higher spatial resolution, but
still far from human afferents. Nonetheless, tactile information
has been used widely in robotic hands in many potential
applications, such as object recognition, contact states assess.
In this paper, we show how to exploit image processing
techniques in tactile data information reasoning. It brings
the benefits to reduce data processing burden, particularly
enriches information of contact states, promises efficient tool
to implement robotic tasks.

Conventional applications using tactile sensor attempted to
extract efficient force distribution on the contact surface to find
out when the contact occurs or is broken, and the location
of contact. There are also numerous researches working on
object recognition using machine learning techniques, incor-
porating with uncertainties in measurements. Pezzementi et
al. [3] make use of tactile image to obtain local surface
information during object exploring, combining those patches
to build an object. Authors in [4] also utilize tactile images
of objects, taking advantage of ”Bag-of-Features” in vision
to propose a recognition method. Most of approaches use
small-sized, coarse resolution tactile sensor, therefore obtained
data merely brought discrete and insufficient information about
contact condition. With increasingly developing technology, it
is promising to create sensor with high resolution. At that time,
it would require a different look of tactile sensor, with more
advanced and convenient processing method, to bring rich and
reliable information for recognition and control. Our method,
as treating tactile data as an image, bases on good resolution
sensing array, conveying multiple modalities of a physical
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Fig. 1. Nitta R© tactile sensor with the soft pad. This image was edited from
the original one in [5]

contact: pressure, contact shape, localization, and stick-slip.

II. METHOD

A. Tactile Sensor

In this research, we utilized a Nitta R© I-SCAN50 tactile
sensing system [5]. It is constructed by a grid of tension-
sensitive electro-conductive ink lines (Fig. 1). The working
principle is quite straightforward: when no load applies at
one intersection, there is a light contact between inks, re-
sulting high resistance of inks; when a force is applied to
the sensing sheet, conductive inks are pushed to make a
strong contact, causing the resistance to drop dramatically.
By scanning intersection nodes, information about pressure
distribution can be obtained. This sensor consists of 44×44
tacels (tactile elements), with 44 mm×44 mm in square size,
and 1 mm in row/column spacing. A soft pad with similar
square size and 2 mm in thickness covers the sensing area to
form a complete soft tactile fingertip. This tactile system was
afterward attached on a robotic finger through a Nitta R© 6-
DOF (degree-of-freedom) force/torque sensor. We set up the
systems on a dual robot arm with grasped object between end-
effectors, so that they are able to work in cooperation to imitate
a robotic parallel gripper.

B. From Tactile Data to Image Processing

Assuming that there is an object grasped by fingertips, we
have an imprint on the tactile sensor soft pad. Depending on
applied load each tacel has different 8-bit value, resulting a
44×44-dimension array of tactile data as illustrated in Fig.
2. Wherever the load is applied, the corresponding node will
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Fig. 2. The similarity between a tactile data and a grayscale image.

output non-zero value. In several cases, the sensor suffers
positive error (nonzero at no-load state) due to noise of the
measurement and process. We found that the obtained array
shown in Fig. 2 looks akin to a grayscale image. This image
has a size of 44×44, in which each pixel corresponds to a
tacel; each pixel has a 8-bit value equal to that of the tacel.
In addition, this image has a background consisting of zero-
valued pixels; and foreground which is formed by nonzero
valued pixels. As a result, a tactile array can be transformed
totally to a real grayscale image, known as tactile image.
Hence, every action on tactile data will be considered as
processing on images. In the next section, we perform several
examples to see how potential it is in object manipulation
tasks.

III. SOME EXAMPLES

A. Localization

In the image processing technique, we are able to localize
not only position of the contact, but also its orientation by
exploiting image moment definition:

Mpq = ∑
x

∑
y

xpyqI(x,y), (1)

in which x,y, I(x,y) are coordinates of each tacel in the image
coordinates, and its intensity, respectively. Here p is the x-
order and q is the y-order, whereby order means the power
to which the corresponding component is taken in the above
sum [6]. In this case, M00 would be the contact area; and the
centroid of the contact area is computed as followings:

[
x0
y0

]
=

1
M00

[
M10
M01

]
. (2)

Using this idea of image moment, we also can estimate the
orientation of the contact area, through central moments:

µpq = ∑
x

∑
y

(x− x0)p(y− y0)qI(x,y). (3)

The eigenvectors of the covariance matrix derived by using
the second order central moments correspond to major and
minor axes of the image intensity, thus the orientation θ can
be extracted from the angle of the eigenvector with the largest
eigenvalue by the following equation:

θ =
1
2

arctan
(

2µ11

µ20−µ02

)
(4)
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(d) Changes of coordinates of the centroid

Fig. 3. Localization.

To illustrate this example an experiment was conducted,
in which the gripper held tightly a rectangular object; then
this object was moved arbitrarily, but maintain the contact,
to imitate the in-hand manipulation task. Fig. 3(b) illustrates
the trace of the contact area during the movement of the
object in the gripper. We also can obtain values of the
object’s orientation angle (Fig. 3(c)), and the coordinates of the
centroid in the tactile image (Fig. 3(d)). Consequently, given
the tactile data one can easily localize the grasped object’s
position and orientation using above idea of image moments.

B. Contact Shape Recognition

Research beforehand used discrete information through a
specific number of tactile images during an object exploring
task to realize/discriminate object. Usually, obtained tactile
images were coarse, thus few information about the object
could be assessed. Therefore, it required complicated teach-
ing/learning method to assist the object recognition process
[3][4]. Naturally, richer, clearer, and reliable information after
each touch would decrease the complication of learning algo-
rithm, as well as uncertainties, and accelerate the realization
process in real time application. By exploiting our method with
edge detection technique, one can expect better description of
contact area, also partial shape of the grasped object (Fig. 4).
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Fig. 4. Contact shape detection in term of boundaries.
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Fig. 5. Slip detection.

C. Slip Detection Method

One of the most difficult tasks for tactile sensor is to detect
slips occurring on the contact surface with object. Tactile
sensors typically bring information about only perpendicular
force component of applied load. Therefore, tangential traction
cannot be measured via change of normal force, resulting
complications in slip detection. One might judge the slip
through movements of the entire contact surface. However,
micro slips, which dominates the pre-slip stage of soft object
or non-uniform contact pressure distribution [7], cannot be
attained easily.

Our approach focuses on tracking featured points on the
contact area using image processing, to detect the incip-
ient/overt slip of the object. Featured points are easy-to-
track ones, which are usually corners, end-point, etc. Then,
optical flow of these points is extracted using Pyramid Lucas-
Kanade algorithm [6]. For example, the grasped object in (Fig.
5(a)) was moved and rotated at the same time. Trajectories
of featured points are marked with white lines (Fig. 5(b)),
showing that points away from the instantaneous center of
rotation (of this movement) travel further than the closer ones.
As a result, we are able to realize not only points where the
slips happen, but also direction of the slide. It is expected to
be more efficient to detect the slip when the contact area is
more complicated than uniform one, such as contacting with
sphere or ellipsoid objects.

IV. A CASE STUDY

In this section, we attempt to estimate force/torque (F/T)
acting on the robotic fingertip at various posture of grasped
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Fig. 6. Geometrical analysis: a) Grasped object with gripper. b) Separation
of one finger for analyzing with applied forces. c) External forces acting on
object.

object given information from tactile sensor. A model will be
proposed for the tactile sensor, and the estimated force/torque
wrench will be compared to the real ones from 6-DOF F/T
sensor.

A. Estimation Model

Given a known object which is grasped by the gripper
with an arbitrary pose as illustrated in Fig. 6(a). One can
see in Fig. 6 that {O},{C},{W},{S},{G} are coordinates of
the object, contact location, wrist, sensor location, and the
global one, respectively. We will use feedback from tactile
sensor to estimate wrench [F,M]t acting on the position of
the {S}-coordinate (location of F/T sensor). Fig. 6(c) shows
the relative position of the grasped object in the gripper. In
the {W}-coordinate, localization of the object is specified by
position and orientation of the {C}-coordinate respect to the
{W}-coordinate, particularly xc,yc,zc,θc. While (xc,yc,θc) can
be easily obtained through localization ability of the tactile
sensor which is mentioned in Section III-A; contact depth of
the object over the soft pad zc can be estimated by relative
position of two fingers of the gripper. External forces acting
on the object are contact force, including normal and tangential
components, and the gravity force.

To calculate normal force component acting on the contact
surface, we exploit the idea of virtual cantilever paradigm
proposed in [7], in which the soft pad is virtually divided to
infinite number of elastic cantilevers. Normal force distribution
can be estimated by calculation of reactive force acting on
deformed cantilevers. In this paper the the contact surface is
flat, thus cantilevers have the same contact depth dn (Fig. 6(b)),
which simplifies the calculation of the normal force as stated
below:

|Fn1 |=
∫∫

S

Eds

l
dn =

E
l

dn

∫∫

S
ds =

ES
l

dn, (5)

where E, l are Young’s modulus and thickness of the soft pad,
respectively; S is contact area which is calculated as zero-order
moment M00 of the tactile image mentioned in Section III-A.
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Fig. 7. Postures of the grasped object through phases.

As a result, normal force component in the {C}-coordinate
is specified as FC

n1
= [0 0 Fn1 ]

t . There are two components
of friction force acting on two contact surfaces of fingers.
Due to the symmetry, it is sufficient to calculate one, the
other is obtained similarly. In the {O}-coordinate, we have
the following equations:

{
FO

f ric1
+FO

f ric2
+FO

P = 0
|FO

f ric1
|= |FO

f ric2
|= |P/2| (6)

As a result, friction force in {C}-coordinate:

FC
f ric1

= TC
O (−1

2
FO

P ) =−1
2

TC
O FO

P , (7)

where TC
O is the homogeneous transform matrix from {O}-

coordinate to {C}-coordinate. Consequently, forces acting on
the {S} is estimated as follows:

FS = T S
C FC

contact = T S
C (FC

n1
+FC

f ric1
), (8)

where T S
C is the homogeneous transform matrix from {C}-

coordinate to {S}-coordinate.
To estimate the moments M on the {S}-coordinate, we

simply introduce a vector pS
C = [px py pz]t from {S} to {C} so

that: M = pS
C×FS. By using a skew symmetric matrix PS

C we
can easily obtain the following relation: M = pS

C×FS = PS
CFS.

Because this analysis is static, friction torque acting on the
contact surface can be eliminated. As a result, for each posture
of the grasped object and data from the tactile sensor, wrench
acting on the fingertip can be obtained as follows:

[
F
M

]
=

[
T S

C FC
n +T S

C FC
f ric

PS
CT S

C FC
n +PS

CT S
C FC

f ric

]
. (9)

B. Experiment Results

In this experiment, we changed various posture of the
grasped object in sequence as illustrated in Fig. 7. Obtained
wrench from F/T sensor was then compared with the calcu-
lated results from the aforementioned estimation model. Some
representative results are plotted in Fig. 8. One can observe
that there are similarity between the estimated wrench and
experimental wrench. Slightly small differences come from
the uncertainties in experimental setup, data acquisition, and
estimation model. As a result, this case study shows that by
only using tactile data, and proposed estimation model, we
can obtain force/torque acting on the fingertip.
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Fig. 8. Comparison between estimated wrench (dark blue dots) and
experimental ones (dark pink dots).

V. CONCLUSION

In this paper, we present a concept of using tactile sensors
as sufficient tools in localizing, recognizing object in robotic
in-hand manipulation tasks. Our approach operates on a mod-
erately high-resolution intensive array data that are obtained
from a tactile sensor when a robotic gripper grasps an object.
In stead of using tactile data as an array of discrete numbers,
we treat it as a grayscale image. By working with successive
images from tactile sensor exploiting image processing tools,
we are able to extract rich information about the contact
condition between an object and the gripper. Experimental
results show that from the processed data, one can realize the
grasped object’s position/orientation, contact shape, as well
as the stick-slip condition on the contact surface. We also
conducted a model for an object-grasping gripper with tactile
feedback in various postures of the object, and a corresponding
experiment setup to validate computed results. In the future,
we will enhance the tactile system with artificial intelligence
to apply in real-time manipulation tasks.
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