柔軟な帯状物体の動的モデルパラメータの逐次推定

Sequential estimation of dynamic model parameter of a flexible cable

○高垣 祐介 (立命館大学) 平井 慎一 (立命館大学)

Yusuke TAKAGAKI, Ritsumeikan University

Shinichi HIRAI, Ritsumeikan University

This paper presents the modeling of flexible cable. Recently, the application of automatic industrial robots in line production gives advantages in high speed and high precision of operation. However, the deformable objects such as flexible cable are done manually by human. There are problems to automate the operation of the flexible cable. Firstly, it has the unique deformation in every parts of the cable. Secondly, the tip of flexible cable draws different orbit compared to the motion of rigid body. In this paper, the mathematical model of flexible cable based on Voigt Model is explained. Next, the method of parameters identification is described. Finally, the comparison between the actual deformation and simulation were carried out for the verification of the proposed method.

Key Words: Flexible cable, Flexible Parts Conveyance, Flexible

1. 緒言

従来,産業用ロボットが広く使われており,様々な分野の 製造工程における省人化,自動化が進んでいる.しかしなが ら、ケーブルなどの柔軟物を取り扱う工程は依然として手作 業で行われているのが現状である.産業用ロボットでは様々 な物体操作を行うが、これらの多くは剛体物を取り扱うもの であった.なぜならば、剛体の場合は対象物が把持機構の運 動と同様の運動を行うため、対象物の形状を考慮するだけで、 頂点位置などの情報を指定するのが容易なので、ロボットの 制御のみで操作が可能だからである.一方,柔軟物の場合は, 材質特性、形状や個体差により、対象物の先端が把持機構の 運動とは異なった軌道を描いたり、全体の形状が変化すると いった事象が発生し、対象物操作を困難にしている.柔軟物 をロボットで扱う場合は、操作中における柔軟物の形状変化 を把握する必要がある.連続で形状変化を把握する手段とし て, 高速カメラなどの視覚センサによるフィードバックをリ アルタイムで行う方法がある.しかし,これらの形状変化を 動作処理に反映させるためには、生産ライン毎にカメラと情 報処理用の PC を必要とする.一方で,柔軟物を任意の位置に 誘導するためのレールや型を設けることによって、柔軟物の 特性である粘弾性を考慮せずに操作する方法が実際の製造工 程で採用されている.しかし、このような設備は非常に大型 であり、費用が膨大になる.また、現在の主流になりつつあ るセル生産方式とは異なり、工程が1箇所に集中することに よるリスクが高くなる. さらに, 設備自体がレーンや型に合 致する種類の柔軟物のみに限られてしまう. その結果, 産業 用ロボットの多くが操作が容易な剛体物を取り扱う限定的な 工程で配備され、柔軟物を扱う工程を手作業で行うという分 担がなされてきた、そこで、本研究では、小規模な作業現場 で柔軟物を操作するロボットのために、操作の前段階で視覚 センサによる静的な形状情報から柔軟物の弾性を算出する手 法を採用する. さらに物体を運動させ、そこから柔軟物が受 ける固有の粘性を算出することで高コストの技術を使用する ことなくフラットケーブルの自動化を実現することを目指す.

本報告では、フラットケーブルを対象とし、フラットケーブ ルのモデリングとその変形パラメータの推定について述べる.

2.1 フラットケーブル

本研究では,線密度 0.00744 g/mm,幅 17 mm,厚さ 0.1 mm のケーブルを用いる.図1にケーブルを示す.

Fig. 1 Flat cable

Fig. 2 Cable model

2.2 ケーブルモデル

本報告では、静止形状と動的な形状変化のシミュレーションについて述べる。質量 M,長さ L のケーブルを,n 個の質点と質点を結ぶ稜線で構成するパーティクル法でケーブルを モデリングする。ケーブルの変形形状を再現するために質点にフォークトモデルがあると仮定する。図2にケーブルのモデル概要を示す。ケーブルの各質点の位置を $P_i = [x_i, y_i]^T$,弾性係数を K_i ,質点の質量を m = M/n,重力加速度を gとする。運動エネルギー Tならびに弾性エネルギー U_k ,位置エネルギー U_p ,は

$$T = \frac{1}{2}m\sum_{i=0}^{n} (\dot{x}_{i}^{2} + \dot{y}_{i}^{2}), \qquad (1)$$

$$U_k = \frac{1}{2} \sum_{i=1}^{n-1} K_i \phi_i^2,$$
 (2)

$$U_p = mg \sum_{i=0}^{n} y_i \tag{3}$$

Fig. 3 Robot hand

と表すことができる.角度 ϕ_i は把持位置から i 番目の区間 稜線と i - 1 番目の区間の稜線の延長線がなす角度であり,

$$\phi_i = ATAN2(X_i, Y_i) - ATAN2(X_{i-1}, Y_{i-1}),$$

(i = 1, 2, \dots, n - 1) (4)

と表すことができる.ただし,

$$\begin{bmatrix} X_i \\ Y_i \end{bmatrix} = \begin{bmatrix} x_{i+1} \\ y_{i+1} \end{bmatrix} - \begin{bmatrix} x_i \\ y_i \end{bmatrix}$$
(5)

とする.フラットケーブルは伸びにくいため稜線の長さLが 一定であると仮定する.そのため位置ベクトルの成分 x_i な らびに y_i は、ホロノミックな幾何制約

$$R_i(x_i, x_{i+1}, y_i, y_{i+1}) \triangleq \left\{ X_i^2 + Y_i^2 \right\}^{\frac{1}{2}} - L = 0$$
 (6)

を満たさなければならない.ホロノミック制約を有する系の ラグラジアンは

$$\mathcal{L} = T - U_k - U_p + \sum_{i=0}^{n-1} \lambda_i R_i(x_i, x_{i+1}, y_i, y_{i+1}) \quad (7)$$

と表される.ここで λ_i はラグランジュの未定乗数である. 次に図3にロボットハンドとケーブルを示す.ロボット位置を $P_{-1} = [x_{-1}, y_{-1}]^T$ とすると

$$\phi_0 = ATAN2(X_0, Y_0) - ATAN2(X_{-1}, Y_{-1})$$
(8)

となる. P₀ の質点にケーブルと同じフォークトモデルがあると仮定する.フォークトモデル部分のみのラグラジアンは

$$\mathcal{L}_0 = -\frac{1}{2} K_0 \phi_0^2 \tag{9}$$

となる.式(1),式(2),式(3),式(9)よりラグラジアンは

$$\mathcal{L} = \frac{1}{2} m \sum_{i=0}^{n} (\dot{x}_{i}^{2} + \dot{y}_{i}^{2}) - \frac{1}{2} \sum_{i=0}^{n-1} K_{i} \phi_{i}^{2} - mg \sum_{i=0}^{n} y_{i} \quad (10)$$
$$+ \sum_{i=0}^{n-1} \lambda_{i} R_{i} (x_{i}, x_{i+1}, y_{i}, y_{i+1})$$

となる.よって、ラグランジュの運動方程式を導出し、粘性

係数 C_i で表されるダンパー項を加えると

$$m\ddot{x}_{i} = \begin{cases} -\lambda_{0}X_{0}P_{0} - Y_{0}P_{0}^{2}(K_{0}\phi_{0} - K_{1}\phi_{1}) + C_{0}\dot{x}_{0} \\ (i = 0) \end{cases}$$

$$m\ddot{x}_{i} = \begin{cases} -\lambda_{0}X_{0}P_{0} - Y_{0}P_{0}^{2}(K_{0}\phi_{0} - K_{1}\phi_{1}) + C_{0}\dot{x}_{0} \\ +Y_{i-1}P_{i-1}^{2}(K_{i-1}\phi_{i-1} - K_{i}\phi_{i}) \\ -Y_{i}P_{i}^{2}(K_{i}\phi_{i} - K_{i+1}\phi_{i+1}) + C_{i}\dot{x}_{i} \\ (i = 1, 2, \cdots, n - 2) \end{cases}$$

$$(11)$$

$$\lambda_{n-2}X_{n-2}P_{n-2} - \lambda_{n-1}X_{n-1}P_{n-1} \\ +Y_{n-2}P_{n-2}^{2}(K_{n-2}\phi_{n-2} - K_{n-1}\phi_{n-1}) \\ -Y_{n-1}P_{n-1}^{2}K_{n-1}\phi_{n-1} + C_{n-1}\dot{x}_{n-1} \\ (i = n - 1) \\ \lambda_{n-1}X_{n-1}P_{n-1} + Y_{n-1}P_{n-1}^{2}K_{n-1}\phi_{n-1} \\ (i = n) \end{cases}$$

$$m\ddot{y}_{i} = \begin{cases} -\lambda_{0}Y_{0}P_{0} + X_{0}P_{0}^{2}(K_{0}\phi_{0} - K_{1}\phi_{1}) + mg + C_{0}\dot{y}_{0} \\ (i = 0) \\ \lambda_{i-1}Y_{i-1}P_{i-1} - \lambda_{i}Y_{i}P_{i} \\ -X_{i-1}P_{i-1}^{2}(K_{i-1}\phi_{i-1} - K_{i}\phi_{i}) \\ +X_{i}P_{i}^{2}(K_{i}\phi_{i} - K_{i+1}\phi_{i+1}) + mg + C_{i}\dot{y}_{i} \\ (i = 1, 2, \cdots, n - 2) \end{cases}$$

$$m\ddot{y}_{i} = \begin{cases} \lambda_{n-2}Y_{n-2}P_{n-2} - \lambda_{n-1}Y_{n-1}P_{n-1} \\ -X_{n-2}P_{n-2}^{2}(K_{n-2}\phi_{n-2} - K_{n-1}\phi_{n-1}) \\ +X_{n-1}P_{n-1}^{2}K_{n-1}\phi_{n-1} + mg + C_{n-1}\dot{y}_{n-1} \\ (i = n - 1) \\ \lambda_{n-1}Y_{n-1}P_{n-1} - X_{n-1}P_{n-1}^{2}K_{n-1}\phi_{n-1} + mg \\ (i = n) \end{cases}$$

が得られる.ただし,

$$P_i = \left\{ X_i^2 + Y_i^2 \right\}^{-\frac{1}{2}} \tag{13}$$

である.

2.3 制約安定化法

制約安定化法 (constraint stabilization method) は、ホロノ ミックな幾何制約を有する常微分方程式の解を数値的に計算 する方法である [1].制約安定化法では幾何制約が 0 に収束 するように、幾何制約の臨界減衰を表す微分方程式

$$R_{j}(x_{j}, x_{j+1}, y_{j}, y_{j+1}) + 2\nu R_{j}(x_{j}, x_{j+1}, y_{j}, y_{j+1}) + \nu^{2} R_{j}(x_{j}, x_{j+1}, y_{j}, y_{j+1}) = 0$$
(14)

を導入する.ここでの ν は角周波数を表す正の定数である. 上式は臨界滅衰を与えるので,たとえ数値計算の過程で幾何 制約 $R_j(x_j, x_{j+1}, y_j, y_{j+1})$ が破られても制約の値は再び0に 収束し,結果的に制約式が保たれる.式(6)を式(14)に代入 すると

$$R_{jx_{j}}\dot{x}_{j} + R_{jx_{j+1}}\dot{x}_{j+1} + R_{jy_{j}}\dot{y}_{j} + R_{jy_{j+1}}\dot{y}_{j+1} + \left\{ (v_{x_{j}} - v_{x_{j+1}})^{2} + (v_{y_{j}} - v_{y_{j+1}})^{2} \right\} P_{j} - \left\{ X_{j}(v_{x_{j}} - v_{x_{j+1}})^{2} + Y_{j}(v_{y_{j}} - v_{y_{j+1}})^{2} \right\} P_{j}^{3} + 2\nu \left\{ X_{j}(v_{x_{j+1}} - v_{x_{j}}) + Y_{j}(v_{y_{j+1}} - v_{y_{j}}) P_{j} \right\} + \nu^{2} R_{j} = 0$$

$$(15)$$

が得られる. ただし $R_{j_{x_j}} \geq R_{j_{y_j}}$ は制約式 R_j の $x_j \geq y_j$ に関する偏微分を表す. 以上より,式(11),式(12),式(15) にルンゲ・クッタ法を用いることで,状態変数 x_i , y_i , v_{x_i} , v_{y_i} の値を数値的に求めることができる.

Fig. 4 Cable angle

3. パラメータの同定

3.1 弾性係数の同定

弾性係数は、モデリングにあるフォークトモデルのバネ部 分の弾性を表す.このパラメータを同定することによりケー ブルの静止形状や減衰振動時の先端の振動数を実測値に近づ けることができる.同定には、図4に示す、静止形状におけ るケーブルを n 等分する稜線間角度から釣り合いの式

$$K_i = \frac{mgL}{\phi_i} \sum_{i=1}^n (n-i) \cos\theta_j \tag{16}$$

を用いて算出する.

3.2 粘性係数の逐次推定

次に粘性係数の同定方法について説明する.ケーブルを先 端から 100 mm の位置で把持し,水平方向に 30 mm 動かし た後の把持位置から i 番目の質点から見た i + 1 番目の質点 の自由振動を測定することで粘性係数を同定する.図5より 振動の山に着目して隣り合う振幅の大きさを a_1, a_3, \dots, a_i , a_{i+2} で表す.周期を T,粘性減衰係数を c_j ,単位質量あた りの粘性減衰係数を ϵ_i とする.各振幅の間には

$$e_j^{\epsilon^T} = \frac{a_i}{a_{i+2}} \tag{17}$$

なる関係があり

$$\epsilon_j = \frac{\ln^{\epsilon_j^T}}{T} \tag{18}$$

と

$$c_j = 2m\epsilon_j \tag{19}$$

から粘性係数 c_i が計算できる.実際のケーブルの把持位置から i 番目の質点から見た i+1 番目の質点の自由振動を図 6 に示す.

把持位置から *i* 番目の質点から見た *i*+1 番目の質点の自 由振動を測定することでそれぞれの質点ごとの減衰振動を算 出することができた.図 6(a)の先端から2番目の質点に関し ては振動が微小であるため粘性係数を算出が困難である.そ のため本研究では2番目の質点の粘性係数は3質点目の粘性 係数と同じにしている.

(a) 2nd free oscillation

(b) 6th free oscillation

(c) 11th free oscillation

Fig. 6 Free vibration result

4. 検証実験

4.1 実験概要

検証実験では、ケーブル4本に対し、パラメータ同定後に 三種類の経路の操作をシミュレーションして実際のケーブル との軌跡を比較、検証する.まずケーブル先端から100 mm の位置をロボットハンドで把持し、粘弾性パラメータの同定 しシミュレーションをする.最後に撮影画像とシミュレーショ ンとを比較する.経路1,経路2はそれぞれ x 軸方向, y 軸 方向に -50 mm 移動する経路であり、経路3は根元と先端を 結ぶ直線方向に 50 mm 移動する経路である.

4.2 実験結果

図8にそれぞれ経路1,経路2,経路3の先端軌跡を示す.

(c) Path 3 Fig. 8 Simulation result

4.3 実験考察

図 8(a), 図 8(b) に示すとおり,水平方向に 50 mm,垂直方 向に 50 mm の場合の軌跡では、シミュレーションと実際との 先端軌跡の誤差が大きい.これはエンコーダ値の速度と画像 処理で算出した速度との誤差が原因と考えられる.水平方向 に移動時のロボットのエンコーダ値から算出した速度と画像 処理から算出した速度を図 9 に示す.また,図 10 に水平方 向に 50 mm 移動時のロボットのエンコーダ値から算出した ロボットの動作経路と今回のシミュレーションに使用してい る画像処理から算出した動作経路を示す.図 10 からわかる とおりエンコーダ値と画像処理との誤差が x 軸方向に -2.70 mm, y 軸方向に -0.59 mm の誤差が出ている.図 10,図 9 より実際の経路,速度と大きな差があることがわかる.この ためシミュレーションと実際の動きに誤差が出ていると考え られる.図 8(c) では振動が少ない経路でシミュレーションを 行ったため大きな誤差が生まれなかったと考えられる.

(a) X velocity

(b) Y velocity

Fig. 9 Velocity

Fig. 10 Robot path

5. 結言

本研究では柔軟帯状物体のモデリングおよび,粘弾性係 数の同定方法を提案し,同定した粘弾性係数を用いてシミュ レーションを行い,シミュレーションと撮影した実際のケー ブルを比較した.今回は,長さ 100 mm のケーブルを分割数 10 でシミュレーションした.ケーブルの分割数を増やすこと でシミュレーションがどうなるかは分かっていない.そのた め,ケーブルの様々な分割数でシミュレーションをし,分割 数を明確にする必要がある.また,ロボットハンドの速度を 画像処理プログラムで算出していることで誤差が生じている. これを解決するためにはロボットのエンコーダ値から速度を 算出することで速度の誤差を減らす必要がある.

文 献

- [1] 平井 慎一 著:"機械システム学のための数値計算法", コロナ社
- [2] 青山 貴伸 著: "使える!MATLAB/Simulink プログラミング", 講 談社サイエンティフィク
- [3] William.H.Press, Saul.A.Teukolsky, William.T.Vetterling, Brian.P.Flannery 著: "Numarical Recipes in C [日本語版] (丹慶勝市, 奧村晴彦, 佐藤俊郎, 小林誠訳)", 株式会社技術評 論社