レオロジー物体の形状変形モデリング Deformation Modeling of Rheologic Objects

正 平井 慎一, 徳本 真一, 藤田 欣晃 (立命館大学 ロボティクス学科) Shinichi HIRAI, Shinichi TOKUMOTO, and Yoshiaki FUJITA Dept. Robotics, Ritsumeikan Univ, Kusatsu, Shiga 525-8577

A new approach to the deformation modeling of rheologic objects for their shape control is presented. First, viscoelastic elements are investigated to select an appropriate model for the modeling. Second, we a nonlinear damper (NLD) is introduced to simulate the behavior of rheological objects. Rheological objects are then modeled as a lattice structure with nonlinear viscoelastic elements. Model parameters of a rheological object are estimated through a creep experiment. Finally, we will compare the behavior of an actual rheological object and that of an identified model to demonstrate the validity of the proposed model.

Key Words: deformable objects, modeling, deformation, rheology, viscoelasticity

<u>1. はじめに</u>

食品産業における,生地やペースト,食肉等の成形は, 現在でも人手に頼る部分が多い工程であり,衛生面なら びにコスト面の観点から自動化が望まれている.生地や ペースト,食肉などの物体は,粘弾性特性を示すととも に,残留変形が大きいという特性を有する.このような 物体をレオロジー物体とよび,その成形作業の実現が本 研究の目的である.レオロジー物体の成形制御を行うた めには,あらかじめコンピュータ上で,物体の変形挙動 を評価することが有効である.そこで本報告では,レオ ロジー物体のモデリングと変形シミュレーションについ て考察する.

2. レオロジー要素の選択

本節では、レオロジー物体の変形特性を表す力学モデ ルについて考察する.レオロジー物体の力学的性質を表現 するために、弾性要素と粘性要素を導入する.これら2つ の基本要素を直列あるいは並列に、複数結合することによ り、粘弾性モデルを構築することができる.Fig.1-(a),(b) は、弾性要素と粘性要素をそれぞれ直列、並列に接続し て得られるモデルである.Fig.1-(c)~(h)は3個の基本要 素から成るモデル,Fig.1-(i)~(n)は4個の基本要素から 成るモデルである.5個以上の基本要素から成るモデル も、構築することができる.

レオロジー物体に力を加えると変形が生じ,後に力を0 に戻すと変形量が減少する.力を0に戻すとき減少する 変位を戻り変位,力を0に戻したときの定常変位を残留 変位と呼ぶ.レオロジー物体は,(A)残留変位を有する. (B) 戻り変位を有する.(C) 振動が減衰する.という三つ の特性を有する.Fig.1に示した粘弾性モデルが,上記の 条件を満たすか否かを調べる.粘弾性モデルは,基本要 素を直列,あるいは並列に接続した形で与えられる.並 列接続を構成する要素はすべて,同じ変位を持つ.そこ で,同じ変位を有する基本要素の集合を部と呼ぶ.粘弾 性モデルは,部の直列結合とみなすことができる.部は, 残留変位を有する残留変形部と,残留変位が0である非 残留変形部に分類することができる.このとき,粘性要 素のみから成る残留変形部は戻り変位を持たないことが わかる.一方,弾性要素を含む残留変形部ならびに非残 留変形部は, 戻り変位を有する.また, 弾性要素が部内 に単独で存在する部には,単振動が生じる.したがって, レオロジー物体における上述の三つの特性は,(A)残留

Fig.1: Viscoelastic elements

変形部を有する.(B) 非残留変形部もしくは弾性要素を 含む残留変形部を有する.(C) 弾性要素が部内で単独に存 在しない.と書くことができる.これら3つの条件を満た す粘弾性要素を選択し,レオロジー物体のモデリングに 用いる.すべての条件を満たす粘弾性要素は,(c),(e),(m) である.モデリングにおいて,要素数はできる限り少な いほうが良い.したがって,3要素モデル(c)あるいは(e) が適切である.

次に, Fig.1-(c) に示す3要素モデルを例に, 粘弾性モデルの定式化を示す.Fig.2に示すように,座標系の原点をOとする.3要素モデルの両端の座標を P_{n-1} , P_n とする.

Fig.2: Formulation of three element model

3 要素モデルの非残留変形部のバネ定数を K_1 ,ダンパー 定数を C_1 ,残留変形部のダンパー定数を C_2 とする.さら に,非残留変形部の自然長を L_1 ,残留変形部の自然長を L_2 ,両端の質量をMとする.さらに, $d_n = P_n - P_{n-1}$ と定義する.残留変形部と非残留変形部の結合点の座標 を P_n^1 とする.3 点 P_{n-1} , P_n^1 , P_n は直線上に存在するので, P_n^1 はパラメータkを用いて, $P_n^1 = kd_n + P_{n-1}$ と表現で きる.点 P_n に作用する力を F_e とする.力 F_e は非残留変 形部にかかる力と等しいので,

$$F_e = -C_1 \frac{d}{dt} \left\{ k |d_n| \right\} \frac{d_n}{|d_n|} - K_1 (k|d_n| - L_1) \frac{d_n}{|d_n|}.$$
 (1)

また,力 F_e は残留変形部にかかる力と一致する.したがって,

$$F_e = -C_2 \frac{d}{dt} \left\{ (1-k) |d_n| \right\} \frac{d_n}{|d_n|}.$$
 (2)

質点 P_n に働く外力を F_a とすると, 質点 P_n の運動方程式は,

$$MP_n = F_e + F_a. aga{3}$$

式 (1)(2)(3) が,3 要素モデルの運動方程式を与える. (1)(2) 式から F_e を消去すると,パラメータ kを導出することができる.パラメータの値より3 要素モデルにかかる力を計算することができ,質点 P_n の運動を計算することができる.なお,他の粘弾性モデルに対しても,同様の定式化が可能である.

3. 非線形ダンパーを用いた粘弾性モデル

Fig.1に示す粘弾性モデルには,力を作用させる限り変 形が続くという問題点がある.たとえば,パン生地の上 に軽い物体を置く場合を想定する.このとき,パン生地 に変形は生じない.しかし,この粘弾性モデルでは,残 留変形部のダンパーが伸縮し続け,結果として変形を生 じる.これは,残留変形部のダンパーが,線形であるこ とに起因する.そこで,この問題を解決するために,非 線形ダンパー(nonlinear damper.以下 NLD と略記)を 導入する.

十分力が小さい場合に変形が生じないためには,粘性の値が大きくなくてはならない.そこで,力が大きい場合には粘性要素の値が小さく,力が小さい場合には粘性要素の値が大きくなるような,NLDを導入する.NLDに生じる力の大きさをfで表し,NLDのダンパー係数をC(f)とする.たとえば,C(f)を次のように定める.

$$C(f) = \begin{cases} C_{max} & (f < F_0) \\ e^{A+Bf} & (F_0 \le f \le F_1) \\ C_{min} & (F_1 < f) \end{cases}$$

ここでA,B, F_0 , F_1 は適当な定数である.ダンパー係数 の最大値は $C_{max} = e^{A+BF_0}$,最小値は $C_{min} = e^{A+BF_1}$ で与えられる.最大値 C_{max} の値は十分に大きいとする.

Fig.3: Viscosity of nonlinear damper

Fig.4: Deformation of linear three element model and nonlinear three element model

ここで, Fig.1-(c) に示す3要素モデルを例に取り,線 形 3 要素モデルと,残留変形部に NLD を用いた 3 要 素モデルを比較する.線形3要素モデルのパラメータは $K_1 = 1, C_1 = 1, C_2 = 27, M = 1$ である . NLD のモデル パラメータは, $A = 8.715, B = -0.904, F_0 = 1, F_1 = 10$ である.このときの力 $f \ge NLD$ の粘性係数 C(f) の関 係を Fig.3に示す . Fig.4に , 線形 3 要素モデルに対する ステップ応答と, NLD を用いた3要素モデルに対する ステップ応答を示す.図中の実線は,NLDを用いた3要 素モデルの応答,破線は線形3要素モデルの応答を示す. Fig.4-(a) は,入力 Fの大きさが6のときの応答, Fig.4-(b) は、入力 Fの大きさが1のときの応答である.力の大 きさが 6 の場合, NLD を用いた 3 要素モデルの応答は, 線形3要素モデルの応答とほぼ同じである.一方,力の 大きさが1の場合,線形3要素モデルは変形し続けるの に対して,NLDを用いた3要素モデルは一定の値に収束 する . 以上のように , NLD を導入することにより , 実際 のレオロジー物体に近い挙動を得ることができる.

4. レオロジー物体の格子構造モデル

レオロジー物体の成形作業において,物体は空間的な 変形を伴う.したがって,成形作業のシミュレーションの ためには,レオロジー物体の3次元変形モデルを構築す ることが必要である.本報告において,レオロジー物体 の物体モデルとして,格子構造モデルを採用する.格子 構造モデルにおいては,まず,格子の単位長さを設定す る.次に,その単位長さにより,レオロジー物体を空間3 軸方向に等間隔に分割し,物体内部の格子点に質点を配 置する.次に,すべての隣り合った質点間に非線形粘弾 性モデルを配置する.すなわち,非線形粘弾性モデルを, 縦,横,斜め方向に配置する.物体の粘弾性変形は,配 置した非線形粘弾性モデルの変形によって表現する.

5. レオロジー物体のモデル同定

非線形粘弾性モデルの各パラメータを求めるためには, 荷重に対する変形を計測する必要がある.そこで,粘弾 性計測装置を用いて,レオロジー物体に対するクリープ 試験を行う.クリープ試験では,レオロジー物体に一定 荷重を加え,ある時間が経過した後に除重する.荷重を 加えているとき,ならびに除重した後のレオロジー物体 の変位を計測する.

モデル同定の観点から,3要素モデルFig.1-(c),(e)の どちらが適当かを考察する.NLDは残留変形部に導入 される.Fig.1-(c)に示すモデルでは,右側の粘性要素に NLDを導入する.このとき,モデルに生じる変位の中で, 左側の非残留変形部が寄与する割合とNLDが寄与する 割合が,外力の大きさによって異なる.したがって,同 定試験において,適切な外力を与えることにより,非残 留変形部の挙動とNLDの挙動を分離することができる. Fig.1-(e)に示すモデルでは,二つの粘性要素の少なくと も一方にNLDを導入する必要がある.このモデルは,1 つの部から成っているので,NLDの挙動とそれ以外の部 分の挙動とを分離することができない.モデル同定にお いては,NLDの挙動とそれ以外の部分の挙動を分離でき ることが望ましい.そこで,Fig.1-(c)に示す3要素モデ ルを選択する.

レオロジー物体のパラメータ同定は,以下の手順で行う.試験物体として,直方体のレオロジー物体を用いる. 初期形状における上面の面積を S_0 ,高さを h_0 とする.また,クリープ試験において,物体に作用させる一定荷重をWとする.

Step 1. 応力の算出

まず, 試験物体に作用する力を, 上面に作用する応力 P(t) に換算する. クリープ試験時の上面の面積をS(t), 高さをhとする. クリープ試験では,荷重W, 面積 S_0 , 高さ h_0 の値は既知であり, 高さh(t)の値は, 計測する変 位の値より求めることができる. レオロジー物体の体積 が変化しないと仮定すると, 応力P(t)は,

$$P(t) = \frac{W}{S_0 h_0} h(t) \tag{4}$$

より求めることができる.

Step 2. 線形部の同定

応力 P(t) の値が小さいとき,NLD のダンパー係数 $C_2(P)$ は大きくなり,結果として NLD の変位は小さ くなる.したがって,応力が小さい状態から除重すると, 除重後の挙動は,主に非残留変形部のパラメータ K_1 , C_1 に依存する.除重した時刻を0,除重直前に物体に作用 している応力を P_0 ,除重後の時刻tにおける戻り変位を x(t)とすると,

$$x(t) = \frac{P_0}{K_1} \{ 1 - exp(-\frac{K_1}{C_1}t) \}.$$
 (5)

クリープ試験の結果より,除重直前の応力 P₀と除重後の 戻り変位 x(t) を求める.最小二乗法を用いて,線形部の パラメータ K₁, C₁を求める.

Step 3. NLD の同定

線形部のパラメータ K_1, C_1 が同定できれば,荷重時 の応力P(t)を(5)式に代入することによって,荷重時 における線形部の変位を求めることができる.次に,変 位の計測値から非残留変形部による変位を引くことによ り,NLDの変位を求める.変位を微分することにより, NLDの速度v(t)を計算する.NLDの粘性係数 $C_2(P)$ は, $C_2(P(t)) = P(t)/v(t)$.から求めることができる.以上の ような方法で,非線形 3 要素モデルの各パラメータ C_1 ,

initial shape

initial shape

(h) front view of deformed shape

(e) 3D view of

(f) side view of

(g) top view of

deformed shape

deformed shape

deformed shape

Fig.5: Deformation of actual reologic object

Fig.6: Cross section of deformed reologic object

 K_1 , $C_2(P)$ の値を荷重ごとに算出し, 平均値を取ることによりパラメータ値を決定する.

6. レオロジー物体モデルの評価

本節では、レオロジー物体の変形実験と変形シミュレーションを比較することにより、提案するモデリング手法を評価する、変形実験では、エンドエフェクターを取りつけたロボットマニュピレータを上から押し付けることによって、レオロジー物体を変形させる、エンドエフェクターは幅1cmの板である、レオロジー物体は、小麦粉と水を3:1の重量比で混ぜ合わせ練った物体であり、その初期形状は5cm×5cm×3cmの直方体である、まず、エンドエフェクターを垂直下方向に、速度1cm/sで移動させ、レオロジー物体の中央部に接触させる、次に、さらに1cm 垂直下方向に押し付けて、その状態で30秒間保つ、その後、垂直上方向にエンドエフェクターを移動さ

Fig.7: Deformation of three-dimensional model for displacement input

せ,レオロジー物体との接触状態を解放する.以上の変 形作業において、レオロジー物体の初期形状と変形形状 を撮影する.撮影結果を,Fig.5に示す.Fig.5-(a)~(d)は 初期形状であり, Fig.5-(e)~(h) は変形後の形状である. Fig.5-(a),(e) は斜め上方から見た図である.Fig.5-(b),(f) は側面図, Fig.5-(c),(g) は上面図, Fig.5-(d),(h) は正面 図である.あわせて,初期形状と変形形状の断面形状を レーザー変位計によって計測する.断面形状の計測結果 を, Fig.6に示す.破線が初期形状であり, 実線が変形形 状である.図から,レオロジー物体の中央上部が下に押 し付けられることによって,物体が前後左右に引き伸ば されると同時に,上部側面は,押し下げられた中央上部 に引っ張られるように変形していることがわかる.また, エンドエフェクターを引き離した後,1cm下に押え付け られていた中央上部に,若干戻り変位が生じていること が,Fig.6よりわかる

提案するモデリング手法を用いてレオロジー物体の 3 次元モデルを構築し,変形シミュレーションを行う.モデ ルパラメータの同定試験においては, $1cm \times 1cm \times 1cm$ の試験物体を用いた.そこで,格子の単位長さを1cm と する.実験に用いたレオロジー物体をモデル化すると, $6 \times 6 \times 4$ の質点から成る格子構造が得られる.非線形 3 要素モデルは,全ての隣り合った質点間に配置される.変 形実験と同じように,レオロジー物体の中央上部を押し 下げた場合の変形をシミュレートする.ここでは,モデ ルの中央上部の12点を下に押し下げることにより,接触 による変形を模擬する.すなわち, $(0,2,3) \sim (5,2,3)$ に対応する6点の格子点と, $(0,3,3) \sim (5,3,3)$ に対応する6点

Fig.8: Cross section of deformed two-dimensional model for displacement input

の格子点を,速度 1cm/s で一秒間,強制的に下に押し下 げ,30 秒間その状態を保つ.その後,この 12 点を解放 する.シミュレーション結果を,Fig.7に示す.Fig.7-(a) ~(d) は初期形状,Fig.7-(e)~(h) は変形後の形状である. Fig.7-(a),(e) は斜め上方から見た図,Fig.7-(b),(f) は側面 図,Fig.7-(c),(g) は上面図,Fig.7-(d),(h) は正面図であ る.また,Fig.8に,初期形状と定常状態におけるモデル の断面形状を示す.実線が定常状態の変形形状で,破線 が初期形状である.Fig.7から,中央上部が下に押される ことによって,モデルの前後左右が広がることがわかる. Fig.8から,上部側面が中央上部に引っ張られるように変 形していることがわかる.さらに,Fig.8ならびにFig.7-(h)より,中央上部の 12点を解放した後は,それらの点 において,戻り変位が生じていることがわかる.

実際の変形とシミュレーション結果を比較すると,変 形量に対して若干の違いが見られる.一方,変形形状は, 相似している.以上のことから,レオロジー物体がどの ように変形するかを推定する上で,このモデルは有効で あると考えられる.

<u>7. おわりに</u>

本報告では,レオロジー物体の成形制御を行うことを 目的として,レオロジー物体のモデリング法を提案した. 結論として,以下の三点が得られた.(1)レオロジー物体 のモデリングには,非線形ダンパーを有する3要素モデ ルが適切である.(2)格子構造モデリングにより,レオロ ジー物体の変形プロセスをシミュレーションすることが できる.(3)クリープ試験を通して,非線形3要素モデ ルのパラメータを同定することができる.以上のことか ら,本論文で提案するレオロジー物体のモデリング手法 は,レオロジー物体の成形作業に対して有用であると考 える.成形作業方策の導出が今後の課題である.

【参考文献】

 Tokumoto, S., Fujita, Y., and Hirai, S., Deformation Modeling of Viscoelastic Objects for Their Shape Control, Proc. IEEE Int. Conf. on Robotics and Automation, Vol.1, pp.767-772, Detroit, May, 1999