Control of Loosely Coupled Joint by Soft Actuators via Deformable Cartilage

M. Shibata, T. Yoshimura, and S. Hirai Dept. of Robotics, Ritsumeikan Univ.

Prototype in 3D space

3D loosely coupled joint

Our goal

* http://www.abdn.ac.uk/diss/historic/museums/anatomy.hti

A human arm

Including soft materials driven by soft actuators

Concept of loosely coupled joint

soft actuatorssoft cartilage

Concept

Simple mechanism

Contributions

- Robotic hand that has high robustness for environmental variation
- Clarification of roles of a human cartilaginous area

Outline

- Introduction
- Basic characteristics of loosely coupled joint
- Angle control using visual feedback
- Angle control using one length sensor
- Angle measurement method to reduce errors
- Conclusion

Prototype of loosely coupled joint

2D loosely coupled joint

Movie

See MAN

2D loosely coupled joint (movie)

Sift of center of rotation

Compliance (1/2)

movie captured by 1 kHz CMOS camera

Compliance (2/2)

Outline

- Introduction
- Basic characteristics of loosely coupled joint
- Angle control using visual feedback
- Angle control using one length sensor
- Angle measurement method to reduce errors
- Conclusion

Experimental setup

Control laws (Proportional control for link

$$\begin{cases} v_{inp}^1 = -K_P(\theta(t) - \theta_d) + v_{offset} \\ v_{inp}^2 = 0 \end{cases}$$

Vinp: Input voltage Voffset : Offset voltage (= 1.7 V) Kp : Proportional gain (t) : Current angle d : Desired angle

Experimental result

The link converges to the desired angles stably using simple P control only.

Comparative experiments

Viscosity of the cartilaginous area

Pushing a viscoelastic object on a wall

The system converges due to the viscosity of the soft material.

Outline

- Introduction
- Basic characteristics of loosely coupled joint
- Angle control using visual feedback
- Angle control using one length sensor
- Angle measurement method to reduce errors
- Conclusion

With length sensor (1/4)

(a) Photograph

(b) Configuration

Loosely coupled joint with length sensor

With length sensor (2/4)

Coordinate system for 2D

Angle identification for the length sensor (2D)

$$\theta = Ad^2 + Bd + C$$

With length sensor (3/4)

Control laws (Proportional control for link angle)

$$v_{\rm inp}^{1} = \begin{cases} -K_P(\theta(t) - \theta_d) + v_{\rm offset} : & \text{when } \theta(t) \\ 0 : & \text{when } \theta(t) \\ 0 : & \text{when } \theta(t) \\ 0 : & \text{when } \theta(t) \\ -K_P(\theta(t) - \theta_d) + v_{\rm offset} : & \text{when } \theta(t) \end{cases}$$

 $) < \theta_d$ $) \geq \theta_d$ $) < \theta_d$ $) \geq \theta_d$

> Vinp: Input voltage Voffset : Offset voltage (= 1.7 V)**Kp** : **Proportional gain** (t) : Current angle d : Desired angle

With length sensor (4/4)

Outline

- Introduction
- Basic characteristics of loosely coupled joint
- Angle control using visual feedback
- Angle control using one length sensor
- Angle measurement method to reduce errors
- Conclusion

3D type loosely coupled joint (1/4)

3D loosely coupled joint

Control of two projecting angles

3D type loosely coupled joint (2/4)

Coordinate system for 3D

$$\alpha = A(d_3 - d_1) + B, \beta = C(d_4 - d_2) + D,$$

3D type loosely coupled joint (3/4) Control laws (Proportional control for link angle) side

$$v_{\rm inp}^{1} = \begin{cases} -K_{P1}(\alpha(t) - \alpha_d) + v_{\rm offset} : & \text{when } \alpha(t) < \alpha_d \\ 0 : & \text{when } \alpha(t) \ge \alpha_d \end{cases},$$
$$v_{\rm inp}^{3} = \begin{cases} 0 : & \text{when } \alpha(t) < \alpha_d \\ -K_{P3}(\alpha(t) - \alpha_d) + v_{\rm offset} : & \text{when } \alpha(t) \ge \alpha_d \end{cases}.$$

side

$$v_{\rm inp}^2 = \begin{cases} -K_{P2}(\beta(t) - \beta_d) + v_{\rm offset} : & \text{when } \beta(t) < \beta_d \\ 0 : & \text{when } \beta(t) \ge \beta_d \end{cases},$$
$$v_{\rm inp}^4 = \begin{cases} 0 : & \text{when } \beta(t) < \beta_d \\ -K_{P4}(\beta(t) - \beta_d) + v_{\rm offset} : & \text{when } \beta(t) \ge \beta_d \end{cases},$$

3D type loosely coupled joint (4/4)

Angle measurement method

(a) side

Relationship between measurement error and method

 $\begin{cases} \alpha(t) = A_0(d_3 - d_1) + B_0 : & \text{when } \alpha(t) \ge \alpha_{th} \\ \alpha(t) = A_1 d_3^2 + B_1 d_3 + C_1 : & \text{when } \alpha(t) < \alpha_{th} \end{cases}, \qquad \qquad \beta(t) = A_1 d_3^2 + B_1 d_3 + C_1 : & \text{when } \alpha(t) < \alpha_{th} \end{cases}$

 $\beta(t) = A_2(d_3 - d_1) + B_2$

Conclusion

- We constructed a robotic joint, dubbed a loosely coupled joint, which has a viscoelastic object and soft actuators that function as the cartilage and muscles in human joints.
- The link angles converge to the desired angles stably using simple P control due to viscosity of cartilaginous area.
- Using the 3D prototype with length sensors, we have controlled two projecting angles.
- For each projecting plane, the errors were less than 1.0 deg in our 3D prototype.

Thank you for your attention.

Ongoing issues

Loosely coupled mechanism with actuator bundles

Ongoing issues

Robotic hand with actuator bundles

Prototype in 2D space

2D loosely coupled joint