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Manipulation of Flexible Linear/Belt ObjectsManipulation of Flexible Linear/Belt Objects

Wire harnessWire harness Flexible printed circuit boardFlexible printed circuit board

A modeling of linear/belt object deformation is required for plaA modeling of linear/belt object deformation is required for planning of nning of 
manipulative operations and their execution by a mechanical systmanipulative operations and their execution by a mechanical system.em.
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FrenetFrenet--SerretSerret FormulasFormulas
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Modeling of Linear Object DeformationModeling of Linear Object Deformation
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Assumption :Assumption :
Deformation in any direction perpendicular to the central axis oDeformation in any direction perpendicular to the central axis of a linear f a linear 

object is negligibleobject is negligible..
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Rotation MatrixRotation Matrix
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Rotation matrix Rotation matrix ::
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Rotation of Object Coordinate SystemRotation of Object Coordinate System
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Infinitesimal rotational anglesInfinitesimal rotational angles ::
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Infinitesimal Rotational AnglesInfinitesimal Rotational Angles

ηω

ξω

ζω

Vertical bendVertical bend

TwistTwist

Horizontal bendHorizontal bend
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Curvature, Curvature, TorsionalTorsional Ratio, and Normal Strain Ratio, and Normal Strain 

θφθωωκ ηξ
2

22
222 sin

ds
d

ds
d

⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛=+=

2
22 cos ⎟

⎠
⎞

⎜
⎝
⎛ +== θφψωω ζ ds

d
ds
d
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Spatial CoordinatesSpatial Coordinates
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The geometrical shape of a deformed linear object can be represeThe geometrical shape of a deformed linear object can be represented by nted by 
four functions :four functions : )(),(),(),( ssss εψθφ
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Potential EnergyPotential Energy

Uflex =
1
20

L∫ Rfκ
2ds

Utor =
1
20

L∫ Rtω
2ds

Uext =
1
20
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2ds

Ugrav = Dgx
0

L∫ ds

U =Uflex +Utor +Uext +UgravPotential energy :Potential energy :

Gravitational energy :Gravitational energy :

TorsionalTorsional energy :energy :

Flexural energy :Flexural energy :

Extensional energy :Extensional energy :

VariationalVariational principle in principle in staticsstatics ::
The potential energy of a linear object attains its minimum valuThe potential energy of a linear object attains its minimum value in its e in its 

stable deformed state under the imposed constraints. stable deformed state under the imposed constraints. 

: Flexural rigidity: Flexural rigidity

: : TorsionalTorsional rigidityrigidity

: : ExtentionalExtentional rigidityrigidity

: Linear density: Linear density
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Positional/Positional/OrientationalOrientational ConstraintsConstraints
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( ) ( ) ( )( ) [ ]Lsszsysxf ,0,0,, ∈∀≤

Consideration of Contact with ObstaclesConsideration of Contact with Obstacles

( ) 0,, =zyxf

( ) 0,, >zyxf

Surface Surface ::

Inside Inside ::

Outside Outside :: ( ) 0,, <zyxf
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Consideration of SelfConsideration of Self--interactioninteraction
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The geometrical constraints imposed on a linear object are givenThe geometrical constraints imposed on a linear object are given by not by not 
only only equationalequational conditions but also inequality conditions.conditions but also inequality conditions.
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Minimization ProblemMinimization Problem
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Positional/Positional/orientationalorientational constraintsconstraints

Avoidance of (selfAvoidance of (self--)interference)interference
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Computational ResultsComputational Results

Basis functions:Basis functions:
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Experimental VerificationExperimental Verification (1)(1)

][800 mmlz = ][600 mmlz =

1.01.0××1010--2 2 [N/m][N/m]Weight per unit lengthWeight per unit length
22..33××1010--4 4 [Nm[Nm22]]TorsionalTorsional rigidityrigidity
6.66.6××1010--4 4 [Nm[Nm22]]Flexural rigidityFlexural rigidity
8.78.7××101022 [mm][mm]LengthLength
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Experimental VerificationExperimental Verification (2)(2)

][400 mmlz = ][200 mmlz =
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Knotted Shape of Linear ObjectKnotted Shape of Linear Object
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Computational Result of Overhand KnotComputational Result of Overhand Knot



OSAKA University, Department of Manufacturing ScienceOSAKA University, Department of Manufacturing Science
Advanced Manufacturing Systems Lab.Advanced Manufacturing Systems Lab. 20

Knitted Shape of Linear ObjectsKnitted Shape of Linear Objects
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Assumption :Assumption :
The shape of the fabric can be represented by repetitions of theThe shape of the fabric can be represented by repetitions of the same same 

shape of one loop.shape of one loop.
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Computational Result of Plain Knitted FabricComputational Result of Plain Knitted Fabric
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Modeling of Belt Object DeformationModeling of Belt Object Deformation

Assumptions:Assumptions:
A belt object is rectangular.A belt object is rectangular.
The width of the object is sufficiently small compared to its leThe width of the object is sufficiently small compared to its length.ngth.
The object is The object is inextensibleinextensible. Namely, it can be bent and twisted but cannot . Namely, it can be bent and twisted but cannot 
be expanded or contracted.be expanded or contracted.
Its both ends cannot be deformed because connectors are attachedIts both ends cannot be deformed because connectors are attached to to 
the ends.the ends.
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Infinitesimal Rotational AnglesInfinitesimal Rotational Angles

ζω

ξω

ηω

BendBend TwistTwist

Shape in Shape in uvuv--spacespace

Assumption:Assumption:
A belt object is inextensible.A belt object is inextensible.

0≡ξω
In case of rectangular object: In case of rectangular object: 
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Developable SurfacesDevelopable Surfaces

Assumption:Assumption:
A belt object is inextensible.           Its surface is A belt object is inextensible.           Its surface is developabledevelopable..
Developable surface :Developable surface :

It can be generated by sweeping a straight line in 3D space.It can be generated by sweeping a straight line in 3D space.
It includes straight lines.It includes straight lines.

Cylindrical surfaceCylindrical surface Conic surfaceConic surface
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Fishbone ModelFishbone Model
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The shape of a belt object:The shape of a belt object:
Shape of the bent and twisted Shape of the bent and twisted spine linespine line

Direction of straight Direction of straight rib linesrib lines
)(),(),( uuu ψθφ

)(uα

Central axisCentral axis Straight lineStraight lineRib lineRib lineSpine lineSpine line
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Potential Energy of Belt ObjectPotential Energy of Belt Object

Cylindrical surfaceCylindrical surface
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fR : flexural rigidity along the spine line: flexural rigidity along the spine line
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ConstraintsConstraints
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To prevent rib lines from intersecting To prevent rib lines from intersecting 
with themselves :with themselves :

Necessary constraints for Necessary constraints for developabilitydevelopability
To maintain initial shape in To maintain initial shape in uvuv--space :space :

α αα d+

)(P u du

)(P duu +

Geometric constraintsGeometric constraints

Relationship between the rib angle and Relationship between the rib angle and 
infinitesimal rotational angles:infinitesimal rotational angles:

ηω
ζω

α
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(a) Computational result(a) Computational result (b) Experimental result(b) Experimental result

Experimental VerificationExperimental Verification

Obverse sideObverse side

Reverse sideReverse side

PolystyrenePolystyrene
200[mm] long200[mm] long
20[mm] wide20[mm] wide
140[140[µµm] thickm] thick
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Application to Curved/Bent Belt ObjectApplication to Curved/Bent Belt Object

cκωξ ≡

Curved belt objectCurved belt object Bent belt objectBent belt object

Assumption :Assumption :
The rib line at the bent point The rib line at the bent point 

coincides with the connecting coincides with the connecting 
line.line.

connecting lineconnecting line

Shape in Shape in uvuv--space:space:

cκ
1
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Deformed Shape of Curved Belt ObjectDeformed Shape of Curved Belt Object

(b) Computational result(b) Computational result (c) Experimental result(c) Experimental result

(a) Initial shape(a) Initial shape
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Deformed Shape of Bent Belt ObjectDeformed Shape of Bent Belt Object

(b) Computational result(b) Computational result (c) Experimental result(c) Experimental result

(a) Initial shape(a) Initial shape
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ConclusionsConclusions

A modeling method of linear/belt object deformation based on difA modeling method of linear/belt object deformation based on differential ferential 
geometry was proposed.geometry was proposed.

Differential geometry was extended to describe linear object Differential geometry was extended to describe linear object 
deformation including flexure, torsion, and extension.deformation including flexure, torsion, and extension.

The shape of a linear object can be described by The shape of a linear object can be described by four independent four independent 
variablesvariables if it is extensible and by three otherwise.if it is extensible and by three otherwise.

It was shown that more complex shapes such as knots and knittedIt was shown that more complex shapes such as knots and knitted
fabrics also can be computed using our proposed approach.fabrics also can be computed using our proposed approach.

This approach was applied to deformation of an inextensible belThis approach was applied to deformation of an inextensible belt object. t object. 

It was found that the belt object shape can be described by It was found that the belt object shape can be described by two two 
independent variables.independent variables.


