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(a) natural shape (b) deformed shape

(c) elastic (d) viscoplastic  (e) rheological
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Construction of Virtual Rheological Objects Computable in Realtime
Seiji Tomokuni™!, Yuuta Sugiyama™!, and Shinichi Hirai"?
Abstract — We describe virtual rheological objects computable in realtime. Deformable

soft objects such as food and tissue show both elastic and plastic properties, which are re-
ferred to as rheological objects. Construction of virtual rheological objects has not been,
however, established yet. In this article, we construct virtual rheological objects, which
are applicable to realtime presentation of deformation and force of rheological objects.
First, we formulate three-element model to describe the rheological deformation using a
truss model. Second, applying an extended penalty method, we maintain the topology of
the truss model and describe the interaction among objects. Next, we demonstrate co-
herent description of rheological objects, viscoelastic objects, and plastic objects. Finally,
we demonstrate the realtime computation of virtual rheological objects.
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Abstract

A physical modeling of rheological objects is pre-
sented.  Objects showing rheological nature involve
foods and biological tissues yet no systematic approach
to build their virtual objects is not established. In this
article, we will construct 2D /3D virtual rheological 0b-
jects.
Keywords: deformation, modeling, rheological objects

1 Introduction

Deformable objects can be categorized into 1) vis-
coelastic objects, 2) plastic objects, and 3) rheological
objects. Construction of virtual viscoelastic objects
and virtual plastic objects has been studied exten-
sively in computer-aided surgery and computer graph-
ics. On the other hand, construction of virtual rheo-
logical objects has not been studied yet though various
objects such as type of food and biological tissues in
the real world tend to deform rheologically.

In this article, we will develop a systematic and co-
herent method to construct virtual rheological objects.
First, we will summarize the properties of rheological
deformation. Secondly, we will select rheological ele-
ments appropriate for the construction of virtual rhe-
ological objects. Thirdly, we will apply the particle-
based modeling to virtual rheological objects. We will
then investigate the topology maintenance of virtual
rheological objects. Finally, we will simulate the phys-
ical interaction among rheological objects.

Related works Solid mechanics has also been stud-
ied for a long time to formulate the deformation of
solid bodies %1] Solid mechanics basically focuses
on the local deformation of solid bodies rather than
the global deformation of objects. Rheology has been
studied for past several decades and fruitful results
have been obtained [2]. Rheology focuses on one-
dimensional deformation rather than two-dimensional
(2D) or three-dimensional (3D) deformation as well.
Modeling of global object deformation has been ex-
tensively studied in computer graphics and virtual re-
ality. Elasticity theory has been applied to the model-
ing of deformable objects in physically based modelin
[3, 4]. Introduction of finite element method (FEM
has extended these works; geometrically-nonlinear
FEM and rotation-invariant nonlinear FEM are ap-
plied to the modeling of global deformation [5, 6]. Ex-
plicit FEM approach with Green strain is proposed to

0-7803-7736-2/03/$17.00 ©2003 |IEEE
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Viscoelastic, plastic, and rheological
deformations

Figure 1:

perform realtime computation of global deformation
[7] Boundary element method (BEM) has been intro-
duced to the modeling of deformable objects [8, 9].
BEM approach is applicable to uniform objects alone
but can reduce the computation time, resulting in re-
altime simulation of global object deformation. Non-
linear shell theory has been applied to the modeling
of fabric deformation [10]. Particle-based model of
a cloth has been proposed for the drape simulation
of the cloth [11]. Implicit numerical integration has
been introduced to the particle-based cloth model to
reduce the computation time [12]. Modeling of plas-
tic objects has been studied in computer graphics [13]
and has been applied to computer crafts [14, 15].

This article contributes to the modeling of rheolog-
ically deformable objects. We will first formulate the
dynamic behavior of rheological elements. Particle-
based modeling [16, 17] will be applied to describe the
2D/3D object deformation. Then, topology mainte-
nance of virtual rheological objects will be addressed.
Finally, penalty method [18, 19] will be applied to sim-
ulate the physical interaction among rheological ob-
jects.

2 Rheological Deformation

Objects deform in response to forces applied to the
objects. Objects can be categorized into three groups
with respect to their deformation. Assume that a nat-
ural shape of an object is as given in Figure 1-(a). On
applying external forces, the object deforms as in Fig-
ure 1-(b). Let us release the applied force and exam-
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Table 1: Inferring rules of residual deformation

serial residual non-residual
residual residual residual
non-residual residual non-residual
(a) serial
parallel residual non-residual
residual residual non-residual

non-residual  non-residual

(b) parallel

non-residual

Table 2: Inferring rules of bouncing deformation

serial bouncing non-bouncing
bouncing bouncing bouncing
non-bouncing | bouncing non-bouncing
(a) serial
parallel bouncing non-bouncing
bouncing bouncing bouncing
non-bouncing | bouncing non-bouncing

(b) parallel

ine the stable shape after the release. Deformation of
viscoelastic objects is completely lost and their stable
shape coincides with their natural shape, as illustrated
in Figure 1-(c). Namely, viscoelastic objects have no
residual deformation. Deformation of plastic objects
completely remains and their stable shape coincides
with their deformed shape under the applied forces, as
shown in Figure 1-(d). Namely, plastic objects have
no bouncing deformation. Objects with residual defor-
mation and bouncing deformation are referred to as
rheological objects. Deformation of rheological objects
is partially lost after the applied forces are released,
as illustrated in Figure 1-(e). Various objects includ-
ing foods and tissues are categorized into rheological
objects.

3 Modeling of Rheological Elements

3.1 Selection of Rheological Elements

Rheological objects deform according to forces ap-
plied to the objects. The relationship between the
applied forces and the object deformation can be de-
scribed in a physical model. Let us introduce an elas-
tic element and a viscous element so that a physical
model can describe the time-dependent deformation of
a rheological object. Various deformation properties
are then described by combinations of the two funda-
mental elements. These combinations are referred to
as rheological elements. Next, we have to select rhe-
ological elements appropriate for virtual rheological
objects.

As for the deformation properties of a rheological
object, recall that 1) residual deformation is involved,

R

Figure 2:  Minimal elements describing

rheological deformation

2) bouncing displacement is involved, and 3) vibra-
tions decrease. Let us examine whether individual
rheological elements satisfy the first condition. Let
us investigate a rheological element consisting of two
elements connected in series. If either of the elements
has residual deformation, the connected element has
residual deformation as well. If neither of the two
has residual deformation, the connected element has
no residual deformation. These inferences are summa-
rized in Table 1-(a). Let us investigate a rheological
element consisting of two elements connected in paral-
lel. If both of the elements have residual deformation,
the connected element has residual deformation. If ei-
ther of the elements has no residual deformation, the
connected element has no residual deformation. These
inferences are summarized in Table 1-(b). Note that
a viscous element has residual deformation while an
elastic element has no residual deformation. Thus, we
can determine whether a given rheological element has
residual deformation or not using Table 1.

Similarly, let us examine whether individual rheo-
logical elements satisfy the second condition. Let us
investigate a rheological element consisting of two el-
ements connected in series. If either of the elements
has bouncing deformation, the connected element also
has bouncing deformation. If neither of the two has
bouncing deformation, the connected element has no
bouncing deformation. These inferences are summa-
rized in Table 2-(a). Let us investigate a rheological
element consisting of two elements connected in par-
allel. If either of the elements has bouncing deforma-
tion, the connected element has bouncing deformation
as well. If neither of the two elements has bouncing
deformation, the connected element has no bouncing
deformation. These inferences are summarized in Ta-
ble 2-(b). Note that an elastic element has bouncing
deformation while a viscous element has no bouncing
deformation. Thus, we can determine whether a given
rheological element has bouncing deformation or not
using Table 2.

Now let us examine whether individual rheological
elements satisfy the third condition. Note that ele-
ments connected in parallel have the same displace-
ment. Thus, a set of elements connected in parallel
is referred to as a part of a rheological element. Each
rheological element can be then regarded as a series
of parts. If a part involves viscous elements, any vi-
bration on the part converges to zero. On the other
hand, vibration on a part without viscous elements os-
cillates and does not converge to zero. Thus, we find
that all parts must involve viscous elements to satisfy
the third condition.

Consequently, we find that rheological elements
listed in Figure 2 satisfy the three conditions and con-
sist of the minimal fundamental elements. In this arti-
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cle, we will use the rheological element shown in Figure

2-(a), which is referred to as a three-element model.

3.2 Formulation of the Rheological Ele-
ment

We will apply the particle-based modeling [16, 17]
to describe the deformation of rheological objects. We
will describe a 2D /3D object shape by a combination
of triangles/tetrahedra. Vertices of individual trian-
gles/tetrahedra correspond to mass particles and their
edges correspond to rheological elements. Then, the
object model consists of a set of mass particles and a
set of rheological elements among the particles. Let
Py through Pn_1 be mass particles, where N denotes
the number of the particles. Let Ey through Ejy;_1 be
rheological elements, where M specifies the number of
the elements. Each rheological element connects two
mass particles. One particle is referred to as the start-
ing particle of the element while the other is referred
to as its end particle.

Let us formulate the dynamic equation of a virtual
rheological object. We will apply the three-element
model, illustrated in Figure 2-(a), to rheological ele-
ments. Two mass particles P; and P; are connected
by a rheological element Ej, as shown in Figure 3.
This rheological element consists of two parts; the left
part is referred to as a Voigt part and the right part
is referred to as a damper part. Let P; be the starting
particle of the element while P; be its end particle. Let
x; be the position of particle P;, v; be its velocity, and
m; be its mass. Let [ be the length of element Ej, and
dj, be the length of its Voigt part. Then, the length
of its damper part coincides with I — di. We find
that state variables of the mechanical system shown
in the figure are given by x;, v;, ©;, v;, and di. Let
L be the natural length of the Voigt part of element
E}. Since the extension of the Voigt part is given by
dr — Ly, the magnitude of a force generated by the
Voigt part is described as follows:

0ot — ke {dy — Ly} — crdy, (1)

where k; represents the stiffness of the Voigt part and
c1 denotes its viscosity. Recalling that the length of
the damper part is given by Iy — di, the magnitude of
a force generated by the damper part is described as

follows: ) .
fe = —co{li, — di}, (2)

where ¢y represents the viscosity of the damper part.
Since the forces generated by the two parts coincide

seoniD e

s | | [ et 5t ] iwina | s | e

(c) 10

Figure 4: Simulation with linear damper

. igt
with each other, say, f, "¢

equation:

= fx, we have the following

_ —ky{dy — Ly} + c2li,

d
g (c1+¢2)

3)

Length Iy, satisfies [ = (z; — ;) - (z; — ;). Differen-
tiating this equation with respect to time yields

I, = (@i —xj) - (vs 'UJ). (4)
L
Note that a force applied to particle P; by element Fj,
is described as frex while a force applied to particle
P; is given by — fi,ey, where ey, is a unit vector from
the starting particle to the end particle, which is given
by er = (x; — ;) /lk.
Let R; be a set of rheological elements with particle
P; as their starting particle and S; be a set of rheo-
logical elements with particle P; as their end particle.
Then, any element involved in set R; applies force fiex
to mass particle P; while any element involved in set
S; applies force — frex to the mass particle. Conse-
quently, we find that the dynamic equation of particle
P; is described as follows:

mv; = Z frer — Z frex + F5*, (5)

kER; keS;

where F$*" be the resultant of external forces applied
to particle P;. On solving differential equations (3)

and (5) numerically, we can compute the deformation
of a rheological object.

3.3 Force-dependent Nonlinear Damper
Rheological elements involve damper parts to de-
scribe residual deformation.  Conventional three-
element model applies a linear damper to its damper
part. Displacement of the linear damper continues in-
creasing or decreasing as long as a force is exerted on
the damper. This property is, however, inadequate
for the introduction of gravity into virtual rheologi-
cal objects. A virtual rheological object involving lin-
ear damper parts continues deforming as long as grav-
ity forces are exerted on its mass particles. Thus, it
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turns out that the shape of a virtual rheological ob-
ject collapses under gravity. Figure 4 simulates the
deformation of a virtual rheological object involving
linear damper parts under gravity. As shown in the
figure, the object continues deforming and the shape
of the object collapses finally. Thus, we will introduce
a force-dependent nonlinear damper into the damper
part of a three-element model. The viscosity of a force-
dependent nonlinear damper changes according to the
magnitude of a force applied to it. The viscosity cor-
responding to the gravity force applied to a particle
must take a large value so that the shape of a virtual
rheological object does not collapse under gravity. In
this article, viscosity of a force-dependent nonlinear
damper is given as follows:

Cmax (f < fl)
=9 APl (i<f<fo)
Cmin (f > .f2)

where f denotes a force generated by the damper part,
fi, f2, A, and B are constants, ¢mez = Ae 51, and
Cmin = Ae” B2 Figure 5 simulates the deformation of
a virtual rheological object involving force-dependent
nonlinear dampers. We find that the shape of the
object does not collapse under gravity.

On introducing force-dependent nonlinear dampers
into a virtual rheological object, we can appropriately
compute the deformation of the object regardless of
body forces such as gravity and electromagnetic forces.
Figures 6 and 7 show the deformation and the motion
of a rheological object on a rigid table caused by an
external force. Gravity does not work in Figure 6 while
it works in Figure 7. Without gravity, only a reaction
force from the table is applied to the object after the
exerted external force is lost. Thus, the object moves
upward, as shown in Figure 6-(d). Under gravity, the
left bottom region of the object makes contact with
the table again after the external force is lost because
a reaction force and a gravitational force are applied
to the object.

e | s | e

s | o | R e TR,

(c) 15

Figure 7: Simulation with gravity

4 Particle-based Modeling of Rheolog-
ical Objects

4.1 Particle-based Model

We have introduced particle-based approach [16,
17] to describe 2D /3D deformation of rheological ob-
jects. In this section, we will describe the topology of
a virtual rheological object. The particle-based model
involves a set of mass particles and a set of rheo-
logical elements among the particles. Each element
has its starting and end particles. This implies that
each element is directed from the starting particle to
the end particle. Consequently, topology of a virtual
rheological object is described by a directed graph.
Nodes in the graph represent mass particles and the
arcs describe directed rheological elements. Moreover,
a 2D/3D shape is described by a connection of tri-
angles/tetrahedra, which must be involved in object
topology. Figure 8 shows a simple example of a 2D
discrete element model. This model consists of 4 mass
particles, 5 rheological elements, and 2 triangles. Ta-
ble 3 provides the topology of this model. The starting
and end particles are specified for each element. Each
triangle consists of three arcs in the positive direction
or in the negative direction. The symbol following
each element denotes its direction in the triangle.
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Figure 8: Example of 2D discrete element model

Table 3: Description of discrete element model

element | start point | end point
Eq Py Py
Ey Py Py
Es Py Ps
Es P P3
Ey Py Ps
triangle arcs
To Ey + | Fs —| Ey -—
T Ey +|Ey2 — | E1 +

4.2 Topology Maintenance

Topological connection among mass particles in a
virtual rheological object must be consistent so that
the deformation of the object can be computed appro-
priately. Since the dynamic equations given in egs.(3)
and (5) are solved numerically at discrete time points,
the topological connection often collapses, resulting in
failure of the computation.

Recall that a 2D virtual rheological object consists
of triangles. In order to maintain the consistency in
the topological connection, we have to distinguish a
triangle from its reflection. Noting that edges of a
triangle are directed, we find that a signed distance
between a vertex of a triangle and its opposite edge
can be defined, as illustrated in Figure 9. Let nfj be a
unit vector perpendicular to edge P;P; and directed to
vertex Py at the natural state of a virtual rheological
object, as shown in Figure 9-(a). The signed distance
between vertex Pj and edge P;P; is then formulated
as follows:

dt; =P,Py - k. (6)

This signed distance must be larger than a small pos-
itive value so that the topological connection among
particles P;, P;, and P is consistent. In other words,
when the signed distance is shorter than the small pos-
itive value, particle Py must be guided so that the
signed distance increases. Thus, we will introduce the
following artificial force generated by a virtual Voigt
model between vertex Py and edge P;P;:

{ 0 (df; > €)

Fis = (“K(d — o)~ Cdtynk, (< @ ()

where K and C' denote elasticity and viscosity of the

(a) positive (b) negative

Figure 9: Signed distance between vertex and edge

(a) initial

Figure 10: Modeling of viscoelastic object

virtual Voigt model, respectively, and e represents a
small positive threshold. When the signed distance
dfj is below threshold €, the above artificial force is

applied to particle Py to increase the signed distance.
The discussion can be extended to a 3D virtual rhe-
ological object by introducing a signed distance be-
tween a vertex of a tetrahedron and its opposite face.
The topological connection of a virtual rheologi-
cal object may also collapse due to an inappropriate
value of ar = dj /1), which specifies the ratio between
the length of the Voigt part and that of the damper
part. Note that ratio ap must satisfy the condition
0 < ar < 1. Solving dynamic equations numerically
at discrete time points often breaks this condition and
the consistency in the topological connection is lost.
Thus, we will define the possible minimum value
and the possible maximum value a4, of variable ay.
Namely, the following condition is imposed on ratio

Qg
Amin S ag S Amax - (8)

When the value of length dj is below a,;nl; during
the computation process, the minimum value ;. [x is
substituted into length di. When the value of length
dy exceeds amqzlk during the computation process, the
maximum value a4zl is substituted into length dj.

5 Simulating Rheological Objects
5.1 Elasticity and plasticity

Our approach can describe not only rheological ob-
jects but viscoelastic objects and plastic objects in
a systematic and coherent manner. Viscoelastic ob-
jects can be described by the Voigt part alone. Recall
that the ratio of the Voigt part is described by ax and
the condition given in eq.(8) is imposed on the ratio.
Thus, viscoelastic objects can be described simply by
substituting 1 into both an, and ape,. Figure 10
shows an example of the modeling of a viscoelastic
object.

Plastic objects can be described by single dampers.
On substituting 0 into elasticity kq of the Voigt part, a
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Figure 11: Modeling of plastic object

three-element model coincides with a serial connection
of viscous elements. The viscosity of the Voigt part is
given by constant ¢y and the viscosity of the damper
part is given by co, which depends on the force ap-
plied to the part. The resultant viscosity of the serial
connection is then described by ¢1ea/(c1 + c2). This
resultant viscosity is mainly governed by the smaller
viscosity. Namely, if ¢; < co, the resultant viscosity is
almost equal to ¢1, and vice versa. Since the viscosity
corresponding to the gravity force applied to a parti-
cle must take a large value, the corresponding force-
dependent nonlinear damper should be dominant, say,
€1 > Cmaz. Consequently, we find that plastic objects
can be described by the following condition:
ki =0, ¢1> cnas-

The viscosity of an object is then specified by ¢pin.
Figure 11 shows an example of the modeling of a plas-
tic object.

5.2 Physical Interaction among Rheolog-

ical Objects

Let us describe the physical interaction among rhe-
ological objects in contact. Collisions between two
rheological objects and collisions between two regions
of a rheological object cause reaction forces at the con-
tacting regions. We will apply the penalty method
[18, 19] to compute the reaction forces. Namely, reac-
tion forces can be simulated by introducing artificial
forces similar to eq.(7). In a 2D model, we will de-
fine an artificial force between a vertex and an edge
on the surfaces. When the signed distance between a
vertex and an edge is below a threshold and the foot
of the perpendicular of the vertex is on the edge, a
force generated by a virtual Voigt model is applied to
the vertex and to the edge in the opposite directions.
In a 3D model, we will define a artificial force between
a vertex and a triangle on the surfaces.

Figure 12 shows the collision of two regions of a vir-
tual rheological object. An external force is exerted on
the object at the center of its top face and is lost af-
ter a while. Two regions of the object are in contact
with each other, as shown in Figure 12-(b). The two
regions suffer no interference and the object deforma-
tion can be computed well, as shown in Figure 12-(c)
and (d). Figure 13 shows the deformation of a rheo-
logical object pressed by a rigid object. A rigid object
is put on a rheological object and is removed after a
while. The rigid object is modeled as a viscoelastic
object with large elasticity. The deformation process
can be computed successfully as shown in the figure.

Let us simulate kinetic friction forces caused by the
collision between two regions of rheological objects.

(c) 10.5 s

k= EYAVAVAVAVAY
ma— i

(d) 20 s

Figure 13:

Deformation of rheological object
pressed by rigid object

The magnitude of the kinetic friction can be com-
puted by the Coulomb-Amonton law. The direction
of the friction is determined by the relative velocity
between a vertex and an edge in the 2D model or be-
tween a vertex and a triangle in the 3D model. Figure
14 demonstrates the effect of friction. In this demon-
stration, a small viscoelastic object is on a rheological
object. Let us apply an external force to the right side
of the rheological object. The small object then slides
on the surface in the right direction. The coefficient
of kinetic friction is equal to 0.0 in Figure 14-(a) while
it is equal to 0.3 in Figure 14-(b). Since the surface
is frictionless in Figure 14-(a) whereas it is frictional
in Figure 14-(b), the small object slides more in Fig-
ure 14-(a) than it does in Figure 14-(b). As shown in
the figure, we can simulate the kinetic friction forces
between the two regions.

Figure 15 demonstrates the collision among six rhe-
ological objects under gravity. The proposed approach
can simulate the physical interaction among multiple
rheological objects, as shown in the figure.

6 Concluding Remarks

We have developed a systematic and coherent
method to construct virtual rheological objects. First,
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Figure 15: Collision among objects

we selected rheological elements appropriate for de-
scribing the deformation of rheological objects. It
turned out that the three-element model with a force-
dependent damper is appropriate. Secondly, we ap-
plied the discrete element approach to virtual rheolog-
ical objects. We found that introducing a signed dis-
tance into a triangle/tetrahedron of a virtual rheologi-
cal object and controlling the length ratio of the Voigt
part are essential in order to keep the model topology
consistent. Thirdly, we described the physical interac-
tion among rheological objects. We have shown that
our approach can describe viscoelastic, plastic, and
rheological deformations in a systematic and coherent
manner. It also turned out that the contact among
rheological objects can be simulated appropriately.

Future issues include 1) identification of physical
parameters in virtual rheological objects, 2) realtime
computation of rheological deformation, and 3) dy-
namic simulation of food forming process and human
mastication process.
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Modeling of Contact among Virtual Rheological Objects
Yuuta SUGIYAMA, Masafumi KIMURA, Seiji TOMOKUNI, and Shinichi HIRAI
Dept. Robotics, Ritsumeikan Univ.

o

Abstract : In this paper, we will present a technique of modeling contact among virtual rheological
objects. A collision of virtual rheological objects, which are modeled as a lattice structure model,
is expressed using artificial forces between the edges and the nodes. We will develop the

time-integrated penalty method, where an artificial force involves a time-integral term.
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Modeling of viscoelastic objects, plastic objects, and rheological objects
using three element models
o Seiji Tomokuni, Masafumi Kimura, Yuuta Sugiyama, and Shinichi Hirai

Ritsumeikan University

Abstract: In this report, we will present a method to construct the physical models of viscoelastic objects, plastic objects, and rheological
objects using three element models in a coherent manner. We introduce constraints into the ratio of voigt part. Viscoelastic objects, plastic
objects, and rheological objects are modeled by setting the parameter of the three element models with constraints.

Keywords. Modeling, Deformation, Virtual
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Abstract :

A physical modeling of virtual rheological objects is presented. Objects

showing rheological nature involve food and biological tissues while no systematic approach
to build their virtual objects can be found. In this report, we will construct a physical model

of 2D /3D rheological objects.

Key Words: rheological objects, modeling, deformation, contact, friction
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Chapter 2

Particle-based Modeling of
Object Deformation

This chapter introduces particle-based modeling, which can describe 2D /3D
object deformation in a simple and intuitive manner. This particle-based
approach has developed in computer graphics [4, 5] to simulate 2D /3D object
deformation. In the particle-based modeling, an object is described by a set of
finite number of particles. The motion and the deformation of the object can
be sketched by the motion of individual particles. Specifying internal forces
among the particles characterizes the deformation of the object. Solving
motion equations of particles provides the motion and the deformation of
the object.

Section 2.1 describes deformation elements to formulate 1D object de-
formation. Elasticity and viscosity are briefly reviewed. Parallel and serial
connection among elastic and viscous elements are then introduced to for-
mulate viscoelastic, viscoplastic, and rheological deformations. Section 2.2
and 2.3 introduce particle-based modeling of 2D /3D object deformation.

2.1 Deformation Elements

2.1.1 Elasticity

FElasticity determines the relationship between force and displacement. We
can feel the hardness of a deformable object by pushing the object surface
by a finger and observing the surface displacement against the applied force.
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Figure 2.1: Connection of elastic elements

For example, pushing the surface of a hard aluminum plate yields little dis-
placement while a soft sponge is deformed much by the equally applied force.
Generally, the relationship is nonlinear and time-variant. In the formulation
of object deformation, we often assume an ideal relationship: linear and time-
wnvariant elasticity, which is represented by a linear elastic element. Let d be
the extension of the element and f be the generated force along its extension.
Linear elastic element is then described as

f=kd

where constant k is referred to as elastic coefficient.

Let us investigate the force-extension relationship in a system of two
elastic elements connected in parallel illustrated in Figure 2.1-(a). Let f;
and fy be two forces generated by the elastic elements specified by k; and
ko: f1 = kyx and fo = kox. Force f is the sum of the two elastic forces: f =
fi+ fo. Then, we have f = (k;+kz2)x. This equation suggests that coefficient
k of an elastic element equivalent to the two elastic elements connected in
parallel is given by

k= ki + ko.

Note that elastic coefficient £ is larger than ky and k. Let us investigate the
force-extension relationship in a system of two elastic elements connected in
serial illustrated in Figure 2.1-(b). Let x; and z5 be two extensions of the
two elastic elements: f = kixq, and f = koxs. Extension x is the sum of
the two extensions: = = x1 + x5. Then, we have z = (1/k; + 1/ks)f. This
equation implies that the coefficient k of an elastic element equivalent to the
two elastic elements connected in serial satisfies the following equation:

1 1 1

Note that elastic coefficient k is smaller than k; and k.
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Figure 2.2: Connection of viscous elements

2.1.2 Viscosity

Viscosity determines the relationship between force and the rate of displace-
ment. We can examine our skin condition by pushing a skin by a finger
before releasing the pushing finger and observing the motion of skin surface
after the release. Surface of a healthy skin goes back to its natural position
quickly while surface of a swollen skin may go back slowly. This rate of dis-
placement comes from the viscosity of the skin. Generally, the relationship
is nonlinear and time-variant as well. We often assume an ideal relationship:
linear and time-invariant viscosity, which is represented by a linear viscous
element. Let d be the extension of the element and f be the generated force
along its extension. Linear elastic element is then described as

f=bd

where constant b is referred to as viscous coefficient.

Let us investigate the force-extension relationship in a system of two
viscous elements connected in parallel illustrated in Figure 2.2-(a). Two
viscous forces generated by the elements are given by f; = by& and fo = bea.
Thus, coefficient b of a viscous element equivalent to the two viscous elements
connected in parallel is given by

b= by + bs.

Note that viscous coefficient b is larger than b; and by. Let us investigate the
force-extension relationship in a system of two viscous elements connected in
serial illustrated in Figure 2.2-(b). Two extensions of the viscous elements
satisfy f = bit; and f = byds. Thus, coefficient b of a viscous element
equivalent to the two viscous elements connected in serial is given by the
following equation:

b b by
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Note that viscous coefficient b is smaller than b; and b,.

2.1.3 Voigt model

Voigt model describes viscoelastic deformation of an object. Voigt model
consists of an elastic element and a viscous element connected in parallel,
as illustrated in Figure 2.3. Let d be the extension of the model and f be
the generated force along its extension. Assuming that the elastic and the
viscous elements are linear, we have

f=kd+bd (2.1)

where constants k and b are denote the elastic and viscous coefficients.

Let us formulate the motion of four particles Py through P3 on a line
connected by three deformation elements Ey through E, illustrated in Figure
2.4. Particle Py is fixed to space and an external force f*(¢) is applied to
particle P3. Let uy through us be the displacements of particles Py through
P3. Then, extensions of elements Eq through Es are given by dy = uy — uq,
dy = uy — uy, and dy = u3z — us. Let fy through f5 be forces generated by
elements Ey through E, along their extensions. Each element applies its force
in the positive direction to its left particle and in the negative direction to
its right particle. Thus, motion equations of the particles are described as
follows:

miy = f1— fo
mis = fo— fi (22)
miy = —fo + fOU)

where A(t) represents the constraint force corresponding to a geometric con-
straint ug = 0, which is imposed on particle Py. Applying the constraint
stabilization method (see Appendix D) to the geometric constraint yields

tip + 2wty + w?ug = 0 (2.3)

where w denotes a predetermined angular frequency. Solving the above five
differential equations, we obtain five functions ug(t) through us(t) and A(t).

Assuming that Ey through E, are formulated as a Voigt element with
elastic coefficient k and viscous coefficient b, forces fy through f, are described
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Figure 2.5: Motion of four particles connected by Voigt models
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as follows:
f() = k’do -+ bdo = k(u1 - Uo) + b(u1 - 1:60),
fl = kdl + bdl = k‘(UQ — ul) + b(UQ — al), (24)
f2 = k’dg + bdg = k(u3 — Ug) + b(U3 — UQ)

Solving a set of differential equations (2.2) and (2.3) under a set of forces
given in (2.4), we obtain five functions wug(t) through us(t) and A(¢). Figure
2.5 shows two examples of the computation. The external force fe(t) is
equal to 1 at ¢ € [0,20] while vanishes thereafter. Parameters are m = 1,
b =6, and k = 2 in Figure 2.5-(a) while m = 1, b = 2, and k = 2 in
Figure 2.5-(b). Displacement of each particle converges to a constant as long
as a constant external force is applied. This displacement is determined by
the elastic coefficient and the magnitude of the external force. For example,
during time period [0, 20], displacement u; converges to 0.5, which is equal
to the magnitude of force divided by the elastic constant 2. Recall that the
equivalent elastic coefficient between Py and Py is given by 2/2; yielding
that displacement u, converges to 1, which is equal to the magnitude of
force divided by the equivalent elastic constant. Since the equivalent elastic
coefficient between Py and P3 is given by 2/3, displacement uz converges to
1.5 during the time period.

2.1.4 Maxwell model

Maxwell model describes viscoplastic deformation of an object. Maxwell
model consists of an elastic element and a viscous element connected in se-
rial, as illustrated in Figure 2.6. Let d be the extension of the model and
f be the generated force along its extension. Let d®®* and d*® be extensions
of the elastic and the viscous elements. Assuming that the elastic and the
viscous elements are linear, we have

d = dela + dvis)
f = kgzela, (2.5)
f — bdvis

where constants k& and b denote the elastic and the viscous coefficients. Elim-
inating d"* yields

f = kd™, (2.6)

d® = —Ad® +d (2.7)
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Figure 2.7: Motion of four particles connected by Maxwell models

where A = k/bis a positive constant. The former specifies the force generated
by the element. The latter provides a differential equation that a system
variable d®® must satisfy.

Let us formulate the motion of four particles Py through P3 on a line
connected by three deformation elements E, through E, illustrated in Figure
2.4. Assuming that Ey through E,; are formulated as a Maxwell element
with elastic coefficient k& and viscous coefficient b, forces fy, through f5 are
described as follows:

fO = kdglaa fl = kd(i)laa f2 = kdglaa (28)

where variables d&'® through dS® satisfy the following differential equations:

d* = —AdS® + dy = —AdS® + (0y — 1),
dP = —Ad 4 dy = —Ad? + (i — 1), (2.9)
A" = —Ad$® +dy = —Ad3® + (ts — o).

Solving a set of differential equations (2.2), (2.3), and (2.9) under a set of
forces given in (2.8), we obtain eight functions ug(t) through ws(t), dg#(t)
through d§(t), and A(¢). Figure 2.7 shows two examples of the computation.
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Figure 2.8: Maxwell model with slider

The external force f(t) is equal to 1 at ¢ € [0, 20] while vanishes thereafter.
Parameters are m = 1, b = 40, and k = 60 in Figure 2.7-(a) while m = 1,
b = 40, and k£ = 10 in Figure 2.7-(b). The rate of displacement of each
particle converges to a constant as long as a constant external force is applied.
This rate is determined by the viscous coefficient and the magnitude of the
external force. For example, during time period [0, 20], rate u; converges
to 0.025, which is equal to the magnitude of force divided by the viscous
constant 40. Recall that the equivalent viscous coefficient between Py and
P, is given by 40/2, yielding that rate s converges to 0.050, which is equal
to the magnitude of force divided by the equivalent viscous constant. Since
the equivalent viscous coefficient between Py and Pj3 is given by 40/3, rate
ug converges to 0.075 during the time period.

Maxwell model with slider The viscous element of a Maxwell model can
extend until an applied force is removed. To avoid such limitless extension, we
attach a slider to the viscous element, as illustrated in Figure 2.8. A slider
allows the extension of the viscous element while a condition is satisfied.
The slider prohibits the extension once the condition is broken. Generally,
the third equation of eq.(2.5), which characterizes the motion of the viscous
element, is replaced by the following equation:

«is ) f  if a condition is satisfied
bd™ = { 0  otherwise (2.10)
Eliminating d"* yields
= k dela’
if a condition is satisfied : / . (2.11)
dela = d— Adela'
— k,dela’
otherwise : lf : (2.12)
e = d.
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Note that b — oo yields A — 0, converting eq.(2.11) into eq.(2.12).

Let [ be the length of a Maxwell model with a slider and [°'* be the length
of its elastic element. A simple condition for the slider restricts the length of
the elastic element:

0<% <.
Generally,
aminl S lela S amaxl

where ap;, and ap. are constants not less than 0 and not more than 1.
These parameters define the possible minimum and maxmimum values of
ratio [9%/1. Let lj; be the initial length of the element and [£'% be the initial
length of its elastic element. The above condition can be rewritten as follows:

amin(linit + d) S Lela + dela S amax(linit + d)

init

A viscous element with a slider stops extending when it reaches length thresh-
olds determined by i, and ana.y, even though an external force may still be
there.

2.1.5 Three-element model

Three-element model describes viscoelastic and viscoplastic deformation of
an object, which is referred to as rheological deformation. Three-element
model consists of a Voigt element and a viscous element connected in serial,
as illustrated in Figure 2.9. Let d be the extension of the model and f be the
generated force along its extension. Let d"°'8' and d"' be extensions of the
Voigt and the viscous elements. Assuming that the elastic and the viscous
elements are linear, we have

d = dvoigt + dvis’
f o= kd™® +bd*, (2.13)
f _ b,dViS

where constant k represents an elastic coefficient and constants b and b’
denote viscous coefficients. Eliminating d** yields

J = B(kd™® +bd), (2.14)
= —Ad"™"® + Bd (2.15)

d'vo igt
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Figure 2.10: Motion of four particles connected by three-element models

where A =£k/(b+ V) and B =V'/(b+ V') are positive constants. The former
specifies the force generated by the element. The latter provides a differential
equation that a system variable d"°'8' must satisfy.

Let us formulate the motion of four particles Py through P3 on a line
connected by three deformation elements Ey through E, illustrated in Figure
2.4. Assuming that Ey through E5 are formulated as a three element model
with elastic coefficient k& and viscous coefficients b and ¥, forces fy through
fo are described as follows:

fo = B{kdy™ +bdo} = B {kdy™ + b(in —1i0)} ,
fi = B{kd" +bd,} = B{kd™® + b(i — 1)}, (2.16)
fo = B{kdy™ +bdy} = B{kdy™ + bliss — 112} ,

where variables
tions:

d3°®" through dj”®" satisfy the following differential equa-

A = —AdY® 4 Bdy = —Ady™ + Blin — o),
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BU% = —AQC® + Bdy = —AdY + Blin — ), (217)
d® = —Ady"® + Bdy = —Ady™ + B(is — ).

Solving a set of differential equations (2.2), (2.3), and (2.17) under a set of
forces given in (2.16), we obtain eight functions ug(t) through us(t), Ay (1)
through dy”®'(t), and A(t). Figure 2.10 shows two examples of the compu-
tation. The external force f™*(¢) is equal to 1 at ¢ € [0, 20] while vanishes
thereafter. Parameters are m = 1, b = 8, k = 2, and & = 40 in Figure
2.10-(a) while m =1, b = 2, k = 2, and ¥’ = 40 in Figure 2.10-(b). Note
that a three-element model consists of the Voigt part, which is characterized
by k and b, and the viscous part, which is specified by &’. Both parts deform
while an external force is applied to the model. After the external force is
released, deformation of the Voigt part vanishes but the viscous part contains
its deformation. During time period [0, 20], the extension of each Voigt part
converges to 0.5, which is equal to f*™'/k. Extension rate of each viscous
part converges to 1/40, which is equal to f** /b, implying that the extension
of the viscous part reaches to 0.5 during the time period. Consequently, the
extension of each three-element model is equal to the sum of the two exten-
sions, that is, 1.0 at time ¢ = 20. Extension of each Voigt part is lost after
an external force is released at ¢ = 20 but the extension of each viscous part
remains. As a result, the extension of each three-element model converges to
0.5 after an external force is released.

Three-element model with slider The viscous element of a three-element
model can extend until an applied force is removed. To avoid such limitless
extension, we use a three-element model with a slider illustrated in Figure
2.11. A slider allows the extension of the viscous element while a condition
is satisfied. The slider prohibits the extension once the condition is broken.
Generally, the third equation of eq.(2.13), which characterizes the motion of
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the viscous element, is replaced by the following equation:

s wis ) f if a condition is satisfied
b = { 0  otherwise (2.18)
Eliminating d"* yields
= B (kd”® +bd),
if a condition is satisfied . ,f ( , ) (2.19)
dvmgt — _Advmgt + Bd
= kd"s 4 bd,
otherwise { dvoig:}: y (2.20)

Note that ' — oo yields A — 0 and B — 1, converting eq.(2.19) into
eq.(2.20).

Let [ be the length of a three-element model with a slider and [V°'* be
the length of its Voigt part. A simple condition for the slider restricts the
length of the Voigt part:

0 S lvoigt S L
Generally,

aminl S ZVOigt S amaxl
where an;, and ap. are constants not less than 0 and not more than 1.
These parameters define the possible minimum and maxmimum values of
ratio [V°%8' /1. Let L, be the initial length of the element and 28" be the
initial length of its Voigt part. The above condition can be rewritten as
follows:

amin(linit + d) S l'VOigt + dVOigt S amax(linit + d)

init

A viscous element with a slider stops extending when it reaches length thresh-
olds determined by @i, and anay, even though an external force may still be
there.

2.1.6 Generalized Voigt model

Applying an external force to a deformable object and releasing the force
yield the free deformation of the object. Free deformation of a single Voigt
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model is basically determined by a single value k/b. Unfortunately, free
deformation of an actual object often shows different behavior, which cannot
be characterized by a single value of k/b. This behavior can be described by
a set of Voigt models connected in serial, which is referred to as generalized
Voigt model.

Let us formulate the generalized Voigt model illustrated in Figure 2.12.
This model consists of n Voigt elements. Let d be the extension of the gener-
alized Voigt model while d; be the extension of the i-th element. Extensions
d and d; through d,_; are independent state variables. Extension d,, is de-
pendently described by the state variables as follows:

dp=d—dy — - —dp_.

Let k; and b; be the elastic and viscous coefficients of the i-th Voigt element.
Noting that forces generated by individual elements are equal with each other,
we have

kydy + bldla
f = kady+ b2d2,

~

where f denotes the force generated by the generalized Voigt model. Dividing
the above equations by b; through b, and summing up all equations yields

k Ky kn, .
S A 2y | (d—dy — =)+ d
. bl bn,1 bn
I= L S
b1 by b,

Note that using the above equation, force f can be computed from state
variables d; through d,_; and d. This equation specifies the force generated
by a generalized Voigt model. State variables d; through d,,_; satisfy the
following differential equations

. k1 1

dy = —2g, 4+ =
1 b, 1+ blf’
. ko 1

dy = —24,4 —
2 by 2+ b2f,
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Figure 2.13: Free deformation of generalized Voigt model

- ke 1
dp1 = ———d,_
! bn—l ! * bn—l

f.

Consequently, we can construct dynamic equations of particles connected by
generalized Voigt models.

Let us simulate the free deformation of a generalized Voigt model con-
necting a particle and a fixed wall. The model consists of three Voigt ele-
ments; of which elastic and viscous coefficients are given by k;/b; = 1/10,
ko /by = 1/100, and k3/bs = 1/1000. Mass of the particle is equal to 1. Ex-
ternal force applied to the particle is equal to 50 at ¢ € [0, 1] while vanishes
thereafter. Displacement of the particle is plotted in Figure 2.13-(a). Log-
arithm of the displacement is also plotted in Figure 2.13-(b). As plotted in
the figure, logarithm of the displacement can be approximated by three line
segments; each corresponds to one of three Voigt element.
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2.1.7 Generalized Maxwell model

While a constant deformation is exerted to an object, force generated by the
deformed object decreases. This phenomena is referred to as force relaxation.
Force relaxation of a single Maxwell model is basically determined by a single
value k/b. Unfortunately, force relaxation of an actual object often shows
different property, which cannot be characterized by a single value of k/b.
This property can be described by a set of Maxwell models connected in
parallel, which is referred to as generalized Mazwell model.

Let us formulate the generalized Maxwell model illustrated in Figure 2.14.
This model consists of n Maxwell elements. Let f be the force generated
by the generalized Voigt model and f; be the force generated by the i-th
element. Let k; and b; be the elastic and viscous coefficients of the i-th
Maxwell element. Let d$® through d°® be extensions of elastic elements
specified by k; through k,,. Then, we have

f=kadS™ + kod§™ + - - - + k™.

Note that using the above equation, force f can be computed from state
variables d§'* through d®. This equation specifies the force generated by a
generalized Maxwell model. Noting that the rate of extension in individual
elements are equal with each other, we have

d'cila _ __dcila + d,
by

dgla _ M dgla +d,
by

At = —pmdt+d

where d denotes the rate of extension of the generalized Maxwell model. The
above equations provide a set of differential equations that state variables d¢'
through d®® must satisfy. Consequently, we can construct dynamic equations
of particles connected by generalized Maxwell models.

Let us simulate the force relaxation of a generalized Maxwell model con-
necting a particle and a fixed wall. The model consists of three Maxwell
elements; of which elastic and viscous coefficients are given by k; /b = 1/10,
ko /by = 1/100, and k3/bs = 1/1000. Mass of the particle is equal to 1. The
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Figure 2.15: Force relaxation of generalized Maxwell model

particle is forced to move toward the wall by displacement 1. Force applied
to the particle is plotted in Figure 2.15-(a). Logarithm of the force is also
plotted in Figure 2.15-(b). As plotted in the figure, logarithm of the force
can be approximated by three line segments; each corresponds to one of three
Maxwell element.
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2.2 Particle-Based Modeling of 2D Object De-
formation

2.2.1 Geometric description of 2D object

This section describes geometric description of a 2D object for its particle-
based modeling. Any 2D shape can be approximated by a set of triangles.
Each triangle consists of three particles and three edges. Each edge connects
two particles; one is referred to as the starting particle of the edge while the
other is referred to as its end particle. This implies that each edge is directed
from the starting particle to the end particle. Figure 2.16 shows a simple 2D
object. This object consists of 4 particles, 5 edges, and 2 triangles. Table
2.1 provides the geometric description of the object. The starting and end
particles are specified for each edge. Let us trace the contour of a triangle
counterclockwise. Some edges are in the positive direction during the tracing
while the others are in the negative direction. The former is denoted by
symbol + and the latter is expressed by symbol — in the table.

Figure 2.16: Example of 2D object

Let us formulate the extension of each edge and its time rate of change.
Let P; and P; be the starting and end particles of edge E,. Let x;(t) =
[z, y;]* be the position of particle P; and v;(t) = [vi, vy,] be its velocity at
time ¢. Let Mt = [z yni¥]T he the natural position of particle P;. Note
that the natural position x"® is constant. Let [, denote the current length

of edge E, and [™* be its natural length, which are described as

e o= {(@i— ) (w—=))}2, (2.21)
l;nit _ {(w;nit B wipit) . (w;nit _ wipit)}i ' (2‘22)

? J ? J
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Table 2.1: Description of 2D object by a set of triangles

edge || starting particle | end particle
EO PO P1
E1 PQ PO
E, Py P;
E; Py P;
Ey Py P3
triangle edges
Ty Eo +|E; —|E -
T, E, +]E —|E +

Note that length /™ is constant. Extension of edge E, at time ¢ is simply
described as follows:
dy =1, — ™. (2.23)

Differentiating the above equations with respect to time yields the time rate
of change of extension d,:

d, = (v, — V) - e, (2.24)

where e, denotes the unit vector from the starting particle to the end particle,
which is given by

(2.25)

Let us formulate the signed area of each triangle and its time rate of
change. Let P;, P;, and P; be the particles of triangle T,. The area is
positive if the triangular loop is counter clockwise while is negative if the
loop is clockwise. The signed area of AOP,P; is formulated as

1

Ty Ty
Yi Yj
Let S, be the signed area of triangle T,, which is given as follows:

Differentiating the above equations with respect to time yields the time rate
of change of extension S,
. d

d d
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where

d 1] v
—AOP,P, =—-| ™
dt T2 vy Yy

2.2.2 Truss model

Let us attach deformation elements to individual edges in a 2D object shape.
This model is referred to to a truss model. We can formulate forces caused by
the attached deformation elements and derive dynamic equations of particles,
implying that we can sketch the object deformation by solving the dynamic
equations. This section describes the 2D truss model of a deformable object.

Let us formulate a set of dynamic equations of particles Py through Pj
in a 2D object shown in Figure 2.16. Particle Py is fixed to space and an
external force £™'(t) is applied to particle Ps. Let m; be the mass of particle
P;. Deformation elements are attached to individual edges. Let f, be the
magnitude of force generated by the deformation element corresponding to
edge E, along its extension. Then, the deformation element applies force
fa€q to the starting particle of the edge and force — f,e, to its end particle.
As a result, we have the following dynamic equations of particles:

moty = foeo —fier +faeo +A(t)
mity = —foeo +f3es

.. 2.26
Moy = fiel +fiey ( )
maig = —foes —fres —fies +FF()

where A(t) represents the constraint force corresponding to a geometric con-
straint wg = 0, which is imposed on particle Py. Applying the constraint
stabilization method (see Appendix D) to the geometric constraint yields

ito + 2wty + w g = 0 (2.27)
where w denotes a predetermined angular frequency. Solving the above five
differential equations, we obtain five functions wu(t) through us(t) and A(t).
Voigt model

Let us attach a Voigt model specified by elastic coefficient k and viscous
coefficient b to all edges. Force f, is then simply described as f, = kd, +bd,,.
Substituting fy = kdy + bdy through fy = kdy + bdy into eq.(2.26), we have
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Figure 2.17: Computation of 2D Voigt deformation

four differential equations of the second order with respect to uy through
us. Solving the four differential equations with eq.(2.27), we can obtain
through us and A to sketch the 2D Voigt deformation.

Figure 2.17 demonstrates 2D Voigt deformation. An elastic object on a
flat table is deformed by a rigid bar. The rigid bar moves downward during
the first 10s and moves upward during the next 10s. The elastic object
is described by a set of 16 x 6 squares, each of which is divided into two
triangles. FElastic and viscous coefficients of the Voigt model are given by
k = 1.2 and b = 1.5. Total mass 30 is equally distributed to all 17 x 7
particles. All bottom particles of the elastic object are fixed to the table.
Topology maintenance forces (see Section 2.2.4) and volumatic forces (see
Section 2.2.5) are introduced to this simulation. As illustrated in the figure,
the simulation describes elastic nature of the object.
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Figure 2.18: Computation of 2D Maxwell deformation

Maxwell model

Let us attach a Maxwell model specified by elastic coefficient k& and viscous
coefficient b to all edges. Let d®'* be the extension of the elastic element of
the Maxwell model on the a-th edge. Force f, is then described as f, = kd?
where A = k/b. Substituting fy = kd$® through f; = kd$® into eq.(2.26),
we have four differential equations of the second order with respect to wug
through wz. In addition, extension d°® satisfies

A = —Ad* + d,.

a

Thus, we have five differential equations of the first order with respect to
dé® through d. Solving the four differential equations of the second order
and the five differential equations of the first order with eq.(2.27), we can
obtain ug through wus, dg* through d§?®, and A to sketch the 2D Maxwell
deformation.

Figure 2.18 demonstrates 2D Maxwell deformation. Elastic and viscous
coefficients of the Maxwell model are given by £ = 1.2 and b = 1.5. Total
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Figure 2.19: Computation of 2D three-element deformation

mass 30 is equally distributed to all particles. As illustrated in the figure,
the simulation describes viscoplastic nature of the object.

Three-element model

Let us attach a three-element model specified by elastic coefficient £ and
viscous coefficients b and V' to all edges. Let d®® be the extension of the
elastic element of the Maxwell model on the a-th edge. Force f, is then
described as f, = B(kd}*s" + bd,), where A = k/(b+ V)and B=10/(b+V).
Substituting fo = B(kdy"® +bd,) through fy = B(kd}" +bd,) into eq.(2.26),
we have four differential equations of the second order. In addition, extension
dPO8t satisfies

At = —AdC + Bd,.

Thus, we have five differential equations of the first order with respect to dE)’Oigt

through d}”'". Solving the four differential equations of the second order and
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the five differential equations of the first order with eq.(2.27), we can obtain
ug through wug, dy”® through d;”®", and X to sketch the 2D three-element
deformation.

Figure 2.19 demonstrates 2D three-element deformation. Elastic and vis-
cous coefficients of the Maxwell model are given by £ = 1.2, b = 1.5, and
b/ = 15. Total mass 30 is equally distributed to all particles. As illustrated
in the figure, the simulation describes rheological nature of the object.

2.2.3 Internal forces among particles

Recall that a system of particles should conserve its linear momentum and
angular momentum as long as no external forces are applied to the system.
In other words, the sum of all internal forces and the sum of moments of all
internal forces must vanish. Consequently, we must satisfy these two condi-
tions in introducing internal forces to a particle-based model. Deformation
element attached to each individual edge applies a pair of forces to its start-
ing and end particles. These two forces, which are referred to as edge forces,
are internal.

Let us introduce a pair of forces applied to a particle and its opposite
edge. Let P; be a particle and E, be its opposite edge, of which starting and
end particles are denoted by P; and Py. Let f, , be a force applied to particle
P; by edge E,. Then, its negative force —f, , should be applied to edge E,
at point P, where point P is the intersection point of a line including edge
E, and another line that passes point P; along directional vector f, ,. Force
—fi. applied to edge E, at point P can be equivalently split into two forces
applied to particles P; and Pj. Consequently, the following three forces,
which are referred to as particle-edge forces, are applied to particles P;, P;,
and Py:

fpe'i,a; i fz‘,a>
pe. . = 6 —1f.

f na; g T o+ 6( fz,a)’
pe — o _

f ia; kK — a—+ ﬂ( fi,a)

where o and 3 are signed distances given by o = P;P - e, and 8 = PPy, - e,.
Since the sum of the three forces and the sum of their moments vanish,
particle-edge forces are internal as well.
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(a) force and its reaction force (b) equivalent forces

Figure 2.20: Particle-edge force

2.2.4 Topology maintenance force

Since the dynamic equations are solved numerically at discrete times, a tri-
angle in the particle-based model may reverse, resulting in failure of the
computation. Let us define a particle-edge force that avoids the reverse of
triangles in the model. Let us introduce vector n, at edge E, so that e, and
n, form a right-handed coordinate system. Let T, be a triangle consisting
of particle P; and its opposite edge E,. Let P; and Pj be the starting and
end particles of the edge.

Assume that edge E, is in positive direction along the triangle. Vector
n, is the inward normal vector of edge E, at the initial shape of an object,
as illustrated in Figure 2.21-(a-1). Thus, it is still the inward normal vector
while triangle T, be consistent. Contrary, vector n, turns to the outward
normal vector when triangle T, reverses, as shown in Figure 2.21-(a-2). Let
us introduce a signed distance between particle P; and edge E, given by

d; o =P;P; - . (2.28)

The signed distance is positive while triangle T), is consistent but is negative
when the triangle reverses. In other words, when the signed distance falls
negative, particle P; must be guided so that the signed distance increases.
Thus, we can introduce the following artificial force generated by a virtual
Voigt model between particle P; and edge E, to avoid the reverse of the
triangle:

] 0 (dig > 0)
oo _{ {(~Kdiy = Cdialma (50 < 0) (229)
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Figure 2.21: Signed distance between particle and its opposite edge

where K and C denote elastic and viscous coefficients. When the signed
distance d;, drops negative, the above artificial force and its reaction force
are applied to particle P; and edge E, to increase the signed distance.

Assume that edge E, is in negative direction along triangle T, as illus-
trated in Figure 2.21-(b-1). Vector n, is the outward normal vector while
triangle T), be consistent. Contrary, vector n, turns to the inward normal
vector when triangle T), reverses, as shown in Figure 2.21-(b-2). The signed
distance between particle P; and edge E, given by

—

d@a :PJPZ : (—na) (230)

is positive while triangle T, is consistent but is negative when the triangle
reverses. Thus, the following force avoids the reverse of the triangle:

B 0 (di,a > 0)
fw—{ (“Kdyy— Cdy o} (~110) (dig <0) ° (2:31)
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Figure 2.22: Elastic deformation with/without topology maintenance forces

When the signed distance d;, drops negative, the above artificial force and
its reaction force are applied to particle P; and edge E, to increase the signed
distance.

Consequently, a set of particle-edge forces caused by force f; , defined in
either eq.(2.29) or (2.31) prevents the reverse of triangles.

Figures 2.22-(a) and (b) demonstrate how topology maintenance forces
work. An elastic triangular object with £ = 1.2 and b = 1.5 is deformed
by a rigid bar. Each figure shows the stationary shape of the elastic object
after its deformation. Topology maintenance forces are introduced in the
computation of Figure 2.22-(a) but not in Figure 2.22-(b). As shown in 2.22-
(a), the stationary shape coincides to the natural shape of the object. On
the other hand, shape shown in 2.22-(b) collapses, that is, triangles near the
contacting region reverse. This demonstrates that the topology maintenance
forces are requisite to prevent the reverse of triangles in a truss model.

2.2.5 Volumatic force

Let P be pressure inside triangle T, which consists of particles P;, P;, and
Pi.. Let E,, E, and E. are opposite edges of the three particles. Pressure
P generates forces acting on the edges of the triangle. The force is applied
at the mid-point of an edge along its normal. The magnitude of the force
is proportional to the length of the edge. Thus, force applied to edge E, is

given by Pl,n2", where n2"* denotes the outward unit normal vector of edge
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out { n, edge E, is in positive direction
a

not = . . o .
—n, edge E, is in negative direction

This force can be equivalently split into two forces applied to particles P; and
Py; both forces are described as (1/2) Pl,n$". Forces applied to edges E; and
E. are also described by Plyny™ and Pl.n2", which can be distributed to
their starting and end particles. Consequently, the following forces, which
are referred to as areal forces, are applied to particles P;, P;, and Py:

fVOlp; ;= %P {lbn(gut =+ lcnccmt} 7

.fVOIp; i = %P {lcn(c)ut + langut} ’

o = %P {1an™ + lymg™}

Note that the above three forces pass the center of circumcircle of triangle
T,. Since the sum of the three forces and the sum of their moments vanish,
areal forces are internal.

Formulating pressure P characterizes the object deformation. Let S be
the current area of a triangle and S™ be its initial area. Voigt formulation
of volumatic forces is given by

P = Kvol(Sinit . S) . CVO]S

where KV°! and C¥°' denote elastic and viscous coefficients of volumatic de-
formation.

2.2.6 Particle-edge connection in coarse-fine model

We can apply coarse-fine approach to the geometric description of a 2D ob-
ject. Figure 2.23 shows a simple 2D shape described by coarse-fine approach.
This description consists of differently sized two triangles. Triangle Ty con-
sists of three edges Eg, Eq, and E,;. Edge E; is connecting particles P; and
P5. Triangle Ty consists of three edges P3, P4, and P5. Edge E3 is connecting
particles P3 and Py. Thus, we have the geometric description of the object
listed in Table 2.2.
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Figure 2.23: Example of coarse-fine description

Table 2.2: Coarse-fine description of 2D object by a set of triangles

edge || starting particle | end particle

Eo Py Py
E1 P1 P3
Ey P3 Po
E; P3 Py
Ey Py Py
Es Py Ps
triangle edges

To Eob +|E +|E +
Ty Es +|Es +|Es +

In this description, particle P, should be on edge E; with an internal
ratio predetermined in the initial shape of the object. In general, coarse-fine
description of an object involves particles on edges. Each of the particles
should be connected to an internally dividing point on a corresponding edge.
Let particle P; should be connected to an internally dividing point on edge
E, in coarse-fine description of an object. Particle P; may lose its coincidence
with the internally dividing point during the computation of the deformation.
Then, particle P; should be guided to the internally dividing point. This
guidance can be performed by two artificial Voigt models of natural length
0 between the particle and the internally dividing point. One is parallel and
the other is perpendicular to the edge. Let Q be the internally dividing point.
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A particle-edge force to maintain particle P; on internally dividing point Q
is then given as follows:

fio=1{-Kd"—Cd"}n, +{-Kd* — Cd°}e,

where d" = Q?Z - n, and d° = QP; - e, are signed distances along unit
vectors n, and n.. This artificial force and its reaction force are applied to
particle P; and edge E, to guide the particle to internally dividing point Q.
Consequently, a set of particle-edge forces caused by force f, , defined in the
above equation conserves the coarse-fine description of an object.

2.3 Particle-Based Modeling of 3D Object De-
formation

Particle-based modeling can be extended to 3D deformation easily. Any 3D
shape is described by a set of tetrahedra. Each tetrahedron consists of four
particles, six edges, and four triangles.

Particle-edge forces in 2D deformation are extended to particle-triangle
forces in 3D deformation. Force and its reaction are applied to a particle and
its opposite triangle in a tetrahedron. Force applied to a triangle is equiv-
alently split into three forces applied to the particles of the triangle. Thus,
we can introduce topology maintenance forces in 3D deformation. Volumatic
forces can also be introduced to 3D deformation.

Figure 2.24 demonstrates the computation of 3D deformation. A rhelog-
ical food dough is formed by a rotating roller.
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Figure 2.24: Forming process of dough
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Three element module
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(a) PC (5x5x5)  (b) FPGA (15 x 15 x 16)
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Real-time Computation of Rheological Deformation Using

FPGA
o Seiji TOMOKUNTI and Shinichi HIRAT Department of Robotics, Ritsumeikan University

Abstract:Deformable soft objects such as food and tissue show both elastic and viscoplastic properties, and are referred to as
rheological objects. We designed an computational hardware using an FPGA (Field Programmable Gate Array) and realized
a system that computes the rheological deformation 18 times as fast as a PC with a Pentium IV 1.7 GHz. Our estimations
show that an FPGA can compute the deformation 243 times faster than the PC.
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Table 1: Size of Circuits

flip-flops | slices | multipliers
All modules 8,720 6,875 25
TEM 6,880 4,144 16
MPM 1045 640 9

(a) PC (b) FPGA

Fig. 3: Deformed shape of rheological objects

Table 2: Computational time

time[ms]
PC(PentiumIV 1.7GHz) 3.65
FPGA(XC2V6000) 0.20
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Modeling of virtual rheological objects and

realtime computation of their deformation on FPGA
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Seiji TOMOKUNI, Ritsumeikan University, Nojihigashil-1-1, Kusatushi, Shiga
Masafumi KIMURA, Ritsumeikan University, Yuuta SUGIYAMA, Ritsumeikan University,

Shinichi HIRAI, Ritsumeikan University

This paper describes the realtime computation for the deformaion of virtual rheological objects on FPGA. Displaying tactile

sensation requires to compute the deformation in high frequency. We will implement realtime computation of the deformation

of large scale objects on an FPGA suitable for parallel computing. First, we will describe the simplified dynamic equations

for computing the deformation of rheology objects. Second, we will outline the calculation of object deformation on an

FPGA and will evaluate the performance of the calculation. Finally, we will discuss data transfer between a PC and an

FPGA and will propose a better design for the realtime computation of the rheological deformation.

Key Words: Virtual Rheology, Deformation, Parallel Computing, FPGA
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Deformation Properties of Three Kinds of MSD Models of Rheology Object Calibrated by
Randomized Algorithm

Ryo Nogamill Ryo Enokil Hiroshi Noborio*!

Abstract — In this paper, we propose three kinds of mass-spring-damper (MSD) mod-
els of rheology object, and experimentally evaluate the best one concerning to shape and
volume accuracies. The MSD model requires a few cost to calculate force propagation
and shape deformation of rheology object. For this reason, the dynamic animation can be
made by a personal computer within the video-frame rate (about twenty milli-seconds).
Moreover, in order to maintain deformation precision, we calibrate all coefficients of
dampers and springs under many experimental data by the randomized algorithm. Then
in the set of simple pushing operations, volume and shape of virtual rheology object based
on the best model are extremely similar to these of real rheology object. This is a case
study to generate dynamic animation efficiently and precisely by the MSD model.

Keywords : Rheology Object, Residual Displacement, MSD (Mass-Spring-Damper)
model, Uncertain Parameter Calibration, Randomized Algorithm
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Table 2 Calibration results for the first push-
ing in three models. (S: The sum of
error distances)

The number of captured points is N = 15235

Calibration S S/N K C1  C2 Volume
result  [em] [em] [gf/em®][gfs/em®]  [em?)

(model 1)2097.40 0.138 1990 510 3470 68.49
(model 2)2308.62 0.152 1720 1300 780 83.88
(model 3)1785.78 0.117 3000 1380 1550 69.95

The number of points whose errors are more than 0.25cm
first second third fourth total

(model 1) 513 381 335 267 1496
(model 2) 498 1451 459 388 2796
(model 3) 266 224 242 177 895
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Fig.10 The distance error between real and
virtual rheology objects for the first
pushing. (a) Real rheology object.
(b),(c),(d) Virtual rheology objects
which are colored by gray, whose er-
rors are larger in the proposed models
1, 2 and 3.

gbobo200000000000000D00000

gooooo (|:| ll)DDDDDDDDDDDDDD
Oo0000ooo30oooooooooOo 120000
0300 120000000000 000O0O0bO0O0a
gbooooo3ooooooon

ratio oso 4§ (530

= 0.5 I
=10
I %
5,0,0 =
// (5,0,0) i
Y E=
(0,0,5) (505)7 )—)f T

~—

(@) (c

011 0002300 (b)00 ()00

Fig.11 (a) 3-D view for the second pushing.
(b) Front view. (c) Upper view.

03 000200 3000000000O

Table 3 Calibration results for the second
pushing in three models. (S: The
sum of error distances)

The number of captured points is N = 14551

Calibration S S/N K Cl1 C2 Volume
result  [em] [em] [gf/em®]|[gfs/ecm®]  [em?)

(model 1)2483.15 0.171 1970 510 3470 67.95
(model 2)2746.35 0.189 1780 980 720 88.95
(model 3)2051.96 0.141 1950 7520 8930 70.28

The number of points whose errors are more than 0.25cm
first second third fourth total

(model 1) 1260 983 724 751 3718
(model 2) 1002 1629 755 832 4218
(model 3) 837 604 496 485 2422

(

@ (b) (c) (d)

012 000 200000000000000
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Fig. 12 The distance error between real and

virtual rheology objects for the sec-
ond pushing. (a) Real rheology ob-
ject. (b),(c),(d) Virtual rheology ob-
jects which are colored by gray, whose
errors are larger in the proposed mod-
els 1, 2 and 3.
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Abstract

In this paper, we propose and compare three kinds of mass-spring-damper (MSD) models of rheology object,
and experimentally select the best model concerning to shape deformation and volume accuracy. The MSD model
reguires a few costs to cal culate force propagation and shape deformation of rheology object. For this reason, the
dynamic animation can be made by a personal computer within the video-frame rate (about twenty milli-seconds).
Moreover, in order to maintain deformation precision, we calibrate all coefficients of dampers and springs under
many experimental data by the randomized algorithm. Then in the set of simple pushing experimental operations,
shape deformation and volume of virtual rheology object based on the best model is similar to these of real
rheology object. Thisis a case study to generate dynamic animation efficiently and precisely by the MSD model.

1. Introduction

Real-time simulation of deformable object isayounger field.
Dynamic animation is indispensable in robotics and virtual
reality, which has been aggressively used in tele-operation,
humanoid, assembly and task planning, computer animation,
game and amusement and so on. The key trade-off occurs
between calculation time and deformation/propagation ac-
curacy. In general, shape deformation should be calculated
in 33 milli secondsfor the video-framerate, and furthermore
force propagation should be calculated in afew milli seconds
for the haptic rendering. If this trade-off is broken, the ani-
mation becomes off-line, otherwise, it becomes on-line. The
performance of modern computer and graphics hardware
has made physical-based animation possible in real time.
But even with today’s best hardware and most sophisticated
technique 1,2,3, only afew hundred elements with small de-
formations have been smulated in real-time. To represent
models of elastic and visco-elastic objects, we have used
one of four approaches, i.e., the mass-spring-damper (M SD)
method 4,5,6,7, the finite difference method (FDM) 8, the
boundary element method (BEM) 9,19, and the finite element
method (FEM) 11,12 13 1415 The computation efficiency de-
creases in this order, and the deformation/propagation ac-

(© The Eurographics Association 2003.

curacy increases in this order. To solve such a trade-off be-
tween computation efficiency and shape accuracy, almost all
the researchers focus on FEM to save computational com-
plexity.

As the opposite major flow, we focus on MSD while
maintaining deformation precision in this paper. First of al,
we consider a rheology object and its deformation. Since a
rheology object always leaves a residual displacement, its
model should keep the displacement by many kinds of push-
ing operations. Although elastic and visco-elastic objects
have been aggressively modeled, but arheology object issel-
dom modeled 16,17, Also, calibrating many kinds of models
from alot of experimental dataisnot still established 6,7.

On the observation, we propose an efficient MSD method
for representing flexible deformations precisely. In order
to watch shape deformation of rheology object within the
video-frame rate (about 20 ms), we adopt the MSD. It is
more efficient than the other models. They aretypically done
off-line, that is, computers spend a few seconds, minutes or
hours to arrive at a single answer. The main defective point
of MSD for the practical purpose is the lack of deformation
accuracy. To overcome this problem, we calibrate three coef-
ficients of each element from many experimental data, which
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consists of one spring and two dampers. As the cadibration
approach, we adopt the randomized algorithm to investigate
a set of good coefficients from deformations by many push-
ing operations 18,19,

In this paper, section 2 describes a basic voxel/lattice
structure which consists of three elements, i.e., two dampers
and one spring. In addition, we explain how to calculate
shape deformation and force propagation in the structure.
Three elements are dependently used in the dynamic equa-
tion. It is represented as the quadratic differential equation.
This can be approximately calculated by the fourth-ordered
Runge-Kutta method. Moreover, we propose two extended
structures composed of the same elements. Section 3 ex-
plains how to calibrate three coefficients of each element. In
section 4, we comparethree virtual rheology modelswith the
real rheology object pushed by simple operations. First of
all, we explain how to evaluate each difference between real
and virtual rheology objects. Then, by an efficient random-
ized algorithm based on the difference, we calibrate three el-
ement coefficients so asto construct avirtual rheology object
flexibly. Finally in section 5, we will give afew conclusions
and future works.

2. ThreeKinds of Mass-Spring-Damper Models

In this section, we propose three kinds of mass-spring-
damper (MSD) models. First of al, we introduce our ele-
ment with two dampers and one spring. Then, we explain
three kinds of MSD models. The model 1 forms a basic
voxel/lattice structure with three lengths of elements. In this
model, we explain how to calculate propagation of internal
forces in each rheology object. In order to maintain the vol-
ume constant condition in the model 2, we exchange four
longest elements with eight half-length elements in each
voxel in the model 1. In order to deform afew parts whose
differences of virtual and real rheology objects are too large
in the model 3, we add a set of extrainterna forcesinitialy
inthe model 1. Finally, we propose a digitalized approach to
transmit a set of active external forces from arigid body to a
rheology object via their encountered surface. The rheology
object is digitalized as a lot of mass points. Therefore, we
develop avirtual (digital) force transmission which approxi-
mates to areal (analog) force transmission.

2.1. Our Element with Voigt Model and Damper

First of all, weintroduce our el ement which consists of Voigt
model and damper serially as shown in Fig.1. Thisis simi-
lar to elements proposed in two researches 16,17, I n the paper
16, the element is tried, which consists of Voigt and Maxcell
models seridly. In the paper 17, the element is investigated,
which consists of Voigt model and an adaptive damper se-
rially. The adaptive damper flexibly controls coefficient of
damper during pushing and releasing operations. In our ele-
ment, the left Voigt model representsviscosity and elasticity,
and the right damper expresses some residual displacement.
The former Voigt model generates many kinds of elastic and
visco-elastic materials. The latter damper makes many prop-
erties of rheology object.

W’HCZC)M

Figure 1. Our basic element with two dampers and one
spring.

We briefly introduce what kinds of properties three coef-
ficientsgenerate. The larger the coefficient K is, the stronger
the elasticity is. K controls displacement of deformation
behavior. Moreover, the larger the coefficient C; is, the
stronger the viscosity is. C; controls speed of the behav-
ior. Finally, the larger the coefficient C;, is, the larger the
residual displacement is. If Cy is small enough, the object
appears elastic or visco-elastic property. On the other hand,
if Cy is large enough, the object appears plastic property.
Furthermore, if K, Cq, Cy are adequately selected within
[100,3000], [500,10000], [500,20000], the virtual rheology
object pushed freely is stably deformed as Fig.2(a). If some
of K, Cy, C, are too large, each element becomes unstable
and consequently the shape of rheology model is crushed
as Fig.2(b). If K, Cq, Cy are too small, each element looses
elasticity, viscosity, and residual displacement, respectively.

Figure 2: (a) A stable shape of a rheology model. (b) An
unstable shape of the model.

2.2. A Basic Voxel/Lattice Model (Model 1)

A rheology object deformsin a 3-D environment. In order to
describe several kinds of deformations flexibly, we adopt a
symmetric voxel/lattice structure to describe a rheology ob-
ject 16,17 In the structure, let us distribute mass points uni-
formly in a rheology object whose intervals are the same
aong X, Y, and Z axes (Fig.3(a)). Let N be the number of
mass points and Mgpject be the total mass of rheology ob-
ject. Therefore, each massis given by M = Mgpject /N.

In our experiment, areal rheology object is made by mix-
ing wheat flour and water. The rheology object (10cm x 6¢cm
x 10cm divisions) is horizontally and vertically two times
larger than its virtua rheology object (5cm x 3cm x 5cm
divisions). Here, the unit length | is defined as 1cm in avir-
tual environment. Therefore, the former volume (600 [cm”]
= water weight [g]) is eight times larger than the latter vol-
ume (75 [cm3}). In the experiment, we use M = 6.0, Mgpject
=864[g], N=144 (=6 x 4 X 6).

The elements are inserted between all the neighboring
mass points as illustrated in Fig.3(b). The virtual rheology
object is deformed by expanding and contracting all the el-
ements. Let B, j « be position vector corresponding to mass
point (i,j,k) (1<i<6,1<j<4and1<k<6).Letus

(© The Eurographics Association 2003.
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Figure 3: (a) A voxel/lattice model of rheology object (b)
Neighboring mass points connecting by many basic ele-
ments.

derive quadratic differential equation of each massat P, j .
Each internal force acting on P, j « by the element between
R,jk and its neighboring point P ;g kv iS denoted by

Fﬂ’_ﬁ”. For each mass point, 6 elements whose distance is
denoted as| (=1cm), 12 elements whose distance is denoted
as /2l (=v/2cm), and 8 elements whose distance is denoted
as /3l (=v/3cm) are located. Therefore, total internal force
RS k acting on P, j i is given by the sum of 26(= 6 + 12 +
8) internal forces Fﬁ‘i‘y. Moreover, if the sum of active ex-
ternal forces at P j « is denoted by F° ., we can obtain the

following quadratic differential equation. This summation is
not so expensive on calculation time.

MPB, j k= RSk + RSk @

In order to calculate next position P jk (1 <i<6,1<
j <4and 1< k< 6)at each mass, we should solve the above
differential equation. Thisisdone by the fourth Runge-Kutta
method, but it is expensive. If a human operator gives an ac-
tive external force at a mass point, its next position is cal-
culated. By the expanding and contracting its neighbor ele-
ments, adequate internal forcesarereceived at all connecting
masses. Then, their next positions are calculated in parallel.
Thisserial or parallel propagation startsfrom a set of pushed
masses. Finally after determining all mass positions, we can
describe a pushed virtual object in a 3-D graphics PC.
PR Y vl @

apye{—101}
(0.3,¥)#(0,0,0)

We note that mass positions on an encountered surface
between a rheology object and its pushing rigid body, and
on the whole floor are fixed. This means the integrations by
the Runge-K utta method can be neglected at these points.

Finally in this model and the other models described in
previous works 16,17 we understand that shape of a cal-
culated (virtual) rheology object unfortunately differs from
shape of apractical (real) one. The shape differences mainly
occur at two areas: (1) upper side around pushing surface;
and (2) four sides of rheology object. This phenomenon oc-
curs because of weak expansion forces. The reason is that
volume of an experimental (real) object isalwayslarger than
volume which is eight times larger than volume of a calcu-
lated (virtual) object. To overcome this drawback, we con-
struct two kinds of modelsin the following paragraphs.

(© The Eurographics Association 2003.

2.3. Voxel/Lattice Model Including Volume Constant
Condition in the Model 1 (Modél 2)

In our previous work 2, we understand shape of a calcu-
lated (virtual) rheology object is not easily much the same
as shape of an experimental (real) object. Especialy, eight
timeslarger volume of the former object istoo small against
volume of the latter object after the releasing. To overcome
this drawback, we expand volume of each voxel by vol-
ume constant condition. The volume constant condition ex-
tends avoxel during deformation by eliminating four longest
elements (whose distances are to be v/3cm as shown in
Fig.4(a)) and adding eight half-length elements from its cen-
ter of gravity to eight vertices (whose distances are to be
v/3/2cm asillustrated in Fig.4(b)).

This technique has been already used in a mass-spring
model 12. This controls the isotropy or anisotropy of some
elastic material. Thisidea can be straightforwardly extended
to a mass-spring-damper model as this paper. Three coeffi-
cient of K, C; and C; in each of eight shorter elements are
defined by multiplying o to K, C; and C, in each of four
longest elements. Note that o is set as 0.5 because each of
four elements is two times longer than each of eight ele-
ments.

o Thecenter of gravity
(@)
Figure 4: (a) Four longest elements always connect two op-
posite verticesin a voxel. (b) Eight shorter elements connect
fromthe gravity center of a voxel to its eight vertices.

2.4. Voxel/Lattice Model Adding Extra Internal Forces
intheModel 1 (Model 3)

With the support of volume constant condition, eight times
larger volume of virtual (calculated) rheology object issim-
ilar to that of real (experimental) rheology object. How-
ever, this property is not aways stable. It depends on the
set of coefficients. The virtual object volume is sometimes
too large because of stronger diagonal forces within each
voxel. Moreover, shape of theformer object till differsfrom
that of thelatter object. Especially, the swelling of four sides
and that beside pushing surface are not enough. To overcome
this tendency, we propose the model 3 to add extra internal
forces into all mass points neighboring pushed mass points
on the rigid body and the floor. The set of interna forces
at masses neighboring masses pushed by arigid body isthe
same against the set of active external forces received from
the rigid body. Also, the set of internal forces neighboring
masses on the floor is the same against the set of reactive
external forces received from the whole floor.

In this paragraph, we explain how to calculate two kinds
of extra internal forces in this model. If a rheology object
is pushed by arigid body, a volume between pushed area
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on the upper side and the bottom side on the floor is forced
out. To express this phenomenon, we add two sets of special
internal forces initialy (Fig.5(a)). One is a set of internal
forces at mass points neighboring upper mass points pushed
by active forces Fact from arigid body, and another is a set
of internal forces at mass points neighboring bottom mass
points pushed by reactive forces Frea from afloor.

First of al, at each mass point neighboring mass point
pushed by arigid body along the vertical axis, e.g., Y-axis,
we consider an extrainternal force F whose directionisfrom
G to the mass point. The point G is the intersection between
line and plane (Fig.5(b)). The line includes the gravity cen-
ter of encountered area between rheology and rigid objects,
whose direction is coincident with a pushing direction. In
this paper’s experiments, the direction is restricted along the
vertical axis, i.e., Y-axis. On the other hand, the plane is
defined as the horizontal plane including the gravity center
Gopject Of rheology object, i.e., XZ-plane. Then, we decom-
pose each extrainternal force F into three components Fx, Ky
and 7 (Fig.5(c),(d)). As contrasted with this, at each mass
point neighboring mass point pushed from the floor along
the vertical axis, i.e., Y-axis, we consider another special in-
ternal force F whose direction is from G to the mass point.
Then, we decompose each extrainternal force F into Fx and
Fz (Fig.5(c),(d)).

Secondly, at each mass point neighboring mass point
pushed by arigid body along one of the other axes, eg.,
X-axisand Z-axis, we independently consider an extrainter-
nal force F whose direction is from G to the mass point. In
addition, we decompose each extrainternal force F into F,
Fy and F (Fig.5(c),(e)). Finally, we reverse direction of the
Fx along X-axis. As contrasted with this, at each mass point
neighboring a mass point pushed from the floor along one
of the other axes, e.g., X-axis and Z-axis, we independently
consider another extra internal force F from G to the mass
point. Moreover, we decompose each special internal force
F into Fx and F; (Fig.5(c),(€)). Finally, we reverse direction
of the Fx along X-axis.

All masses neighboring masses on a rigid body are re-
ceived by larger internal forces, whose distances are the
unit length. Also, all messes neighboring masses on the
rigid body are received by smaller internal forces, whose
distances are /2 times larger than the unit length. In
Fig.5(d),(e), the former masses are described as larger black
circles, and the latter masses are illustrated as smaller black
circles. The ratio between larger and smaller forcesis2: 1.
The sum of additional internal forces running at al the
masses is the same against the sum of external active forces
at masses around the rheology object pushed by the rigid
object. Moreover, all masses neighboring masses on arigid
floor are received by larger internal forces, whose distances
are the unit length. Also, all messes neighboring masses
on the rigid floor are received by smaller internal forces,
whose distances are /2 times larger than the unit length.

In Fig.5(d),(e), the former masses are described as larger
squares, and the latter masses are illustrated as smaller
squares. The ratio between larger and smaller forcesis2: 1.
The sum of additional internal forces running at al the
masses is the same against the sum of external reactive
forces at masses around the rheology object pushed by the
rigid floor.

In all trials, two kinds of special internal forces are ini-
tially added into the model 1. Therefore, we never add any
external force after pushing a rheology object. For this rea-
son, the sum of internal forces in the rheology object is al-
ways constant after pushing. As a result, the conservation
law of momentum is exactly maintained during the defor-
mation.

2.5. A Digital Operation Pushing a Rheology Object by
a Rigid Body

The advantage of MSD model is to calculate force propaga-
tion and shape deformation efficiently. For thisreason, we do
not like to divide avirtual rheology object into alot of vox-
els. Aslong as the number of voxels increases, calculation
cost and memory storage in three models increase exponen-
tially. To overcome this cal culation explosion, we propose a
digital operation pushing arheology object by arigid body.

In thisresearch, weflexibly push avirtual rheology object
by arigid body, which are digitalized by the unit length |.
First of al, surface around arigid body is uniformly digital-
ized by the unit length | asillustrated in Fig.6(a). In general,
since width and length of the surface cannot be divided ex-
actly, rests m and n appear at ends of the surface (mn <1).
For this reason, there are mgjor mass points, eg., f3, and
are minor mass points, e.g., f", f; and f; around the sur-
face. On the other hand, surface around a rheology object is
also uniformly digitalized by the unit length | as illustrated
in Fig.6(b). In this research, so as to keep a selected force
precisely, we push arheology object by arigid body located
on the tip of arobotic manipulator.

After transmitting many active forces from a digitalized
rigid body to another digitalized rheology object, the rheol-
ogy object starts to deform. In general, each active force f*
around the rigid body usually hits inside a cell around the
rheology object. Therefore, amajor force f* should be dis-
tributed into four forces fa, fy, fc and fq at four vertices of
acell around the rheology object (Fig.6(c)). Moreover, mag-
nitudes of four forces fa, fy, fc and fq are determined asfol-
lows: First of al, we define the total force received by each
cell as the area F = 12. Secondly, we determine fa = sx t
[area @ if 0.25x | < sand 0.25 x| <'t, we regard f, =
(I—s) xt[areab] if s<0.75x | and 0.25x | <t, we select
fe=(1—9s)x (I—t)[areac] if s<0.75x | andt <0.75x 1,
andfinaly wefind fq =sx (I —t) [aread] if 0.25x | <sand
t < 0.75x |. Overall, magnitudes of four forces linearly cor-
respond to their opposite areas. For example, magnitudes of
fa, fp, fc and fy arelinearly determined as areas a, b, ¢ and
d (Fig.6(c)). Moreover, we should consider aminor force f*

(© The Eurographics Association 2003.
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Figure 5: (a) There are two kinds of special internal forces
affecting a virtual rheology object. (b) The point G isthein-
tersection between line and plane. The line passes through
the gravity center of encountered area between rheology and
rigid objects, whose direction equals to the pushing direc-
tion. In this research, the line is limited in the vertical axis,
i.e, Y-axis. On the other hand, the plane is defined as XZ
horizontal plane including the gravity center Gopject Of rhe-
ology object. (c) An extra internal force F generated by an
active external force consists of three components F«, Fy and
F;. As contrasted with this, an extra internal force F gener-
ated by a reactive external force consists of two components
Fx and 2. (d) Fx, Fy and F; at masses denoted as black cir-
cles are made for active external and vertical forces by a
rigid body on an arbitrary sliced plane P. The magnitude
of forces at larger black circles is twice bigger than that of
forces at smaller black circles. On the other hand, Fx and F,
at masses denoted as squares are made for reactive external
and vertical forces by a whole floor on an arbitrary sliced
plane P. The magnitude of forces at larger squares is twice
bigger than that of forces at smaller squares. (e) Fx, Fy and
F; at masses denoted as black circles are made for active ex-
ternal and horizontal forces by a rigid body on an arbitrary
sliced plane P. Fx isto be the opposite force of X-component
of the active force. The magnitude of forces at larger black
circles is twice bigger than that of forces at smaller black
circles. On the other hand, Fx and F; at masses denoted as
squares are made for reactive external and horizontal forces
by a whole floor on an arbitrary diced plane P. Fx isto be
the opposite force of X-component of the active force. The
magnitude of forces at larger squares is twice bigger than
that of forces at smaller squares.

(© The Eurographics Association 2003.

X
fd fa
Ll s b ¢ C
e
\é >< S a d
%
: fe—t il

(b) ©
Figure 6: (a) A set of cells around a rigid body. (b) A cell-
based relationship between encountered surfaces of a rhe-
ology object and a rigid body. (c) An original force f* is
distributed into four forces fa, fp, fc and fq.

located in the margin of pushing area. That is, we consider a
horizontal force fy =m/I x f*if 0.25x1 <m, eg., 5, we
consider avertical force fy =n/l x f*if 0.25x 1 <n, eg.,
f;, and we regard a diagonal force f§ = (m? + n? )/I2 x f*
if 0.25x 1 <mand 0.25x | <n, eg., f{' (Fig.6(a). This
approach is an approximated transformation based on the
balance of all analog forces and their distances via a digi-
tal encountered surface.

3. Modified Randomized Algorithm for Calibrating C1,
C2and K

The defective point of MSD is accuracy of force propagation
and shape deformation. To overcomethis, we calibrate K, Cy
and C, by minimizing the difference between shape defor-
mations of real and virtual rheology objects in our modified
randomized algorithm.

3.1. How to Calculate Shape Difference Between Real
and Virtual Rheology Objects

In this research, a rheology object is precisely pushed by
a rigid body located at the tip of a robotic manipulator
(Fig.7(a)). The deformation, that is, the sequence of shapes
is measured by two stereo vision camera systems Digiclops
and its software development kit (SDK) Triclops (provided
by Point Grey Research Inc, Canada). Each captures about
three or more thousand points as shape of real rheology
object in the real-time manner. After capturing the shape
deformation, we finally measure how much total volume
is changed before pushing and after releasing the rheol-
ogy object. For this purpose, we use the following primitive
method. First of al, wefill aball with water, and then drop a
deformed object into the ball (Fig.7(b)). Secondly, we gather
overflowed water and measure its weight by a precise elec-
tric balance. As aresult, we can understand volume of rhe-
ology object always decreases by about three percentages.

In order to evaluate a difference between real and virtual
rheology objects, we summarize minimum distances from
captured pointsto their nearest surfaces around avirtua rhe-
ology object. A virtual object consists of 5 x 3 x 5 hexahe-
drons which are individually deformed from initial cubes.
Therefore in order to evaluate the difference, we calculate
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(b)

Figure 7: (a)An experiment system: A real rheology object
is pushed by a rectangular rigid body located at the tip of
a robotic manipulator, and deformation of its sides is mea-
sured by two Digicrops cameras. (b)A photo when we mea-
sure volume of a rheology object before pushing and after
releasing by overflowed water.

the minimum of 5 x 3 x 5 shortest distances for each cap-
tured point to al hexahedrons by Lin-Canny closest point
algorithm 18, and then we calculate the sum Sof al the min-
imum distances for al captured points, which are smaller
than the average error 0.05cm of Digiclops. In our calibra-
tion, we use the sum of four S at four times during push-
ing and after releasing. By minimizing the total sum in an
efficient randomized algorithm, we can obtain a better set
of three coefficients K, C; and C, of two dampers and one

spring.
3.2. A Steepest Descendent M ethod

1. Two parameters Ty (threshold of calculation time) and
Tran (driving distance of random walk) are given in advance.
2. Initialize coefficients K, C; and Cp in a 3-D search space.
3. We calculate shape difference S between real and virtual
rheology objects.

4. In order to find &l the possible neighbors, we decrease
and increase K, C; and C;, by A. In this 3-D case, we ob-
tain eight possibilities, that is, (K+A, C1+A, Co+A), (K+A,
CitA, Cr-A), (K+A, Ci-A, CotA), (K+A, Co-A, Cr-A), (K-
A, Ci+A, Co+A), (K-A, C1+A, Cr-A), (K-A, Co-A, Co+A) and
(K-A, C1-A, Co-A). Then, after calculating all sumsat al the
neighbors, we select their minimum.

5. If the minimum is smaller than S obtained in step 3, we
move to the neighbor with the minimum by decreasing or in-
creasing K, C; and C; by A, and return to step 3. Otherwise,
the algorithm finishes.

3.3. Our Randomized Algorithm

1. Weselect arbitrary K, C; and C, within agiven 3-D search
space, whose ranges are K™ < K < K™, C"" < C; <
CI™andC3"" < Cp <C™.

2. We calculate the Sfor the K, C; and Cy. By the steepest
descendent method described above, we get one of the local
minimawhose valueisthe smalest Sand set San =S Then,
if calculation time equals to or is larger than Ty, the ago-
rithm ends, otherwise, moveto step 3.

3. We randomly increase and decrease three coefficients K,
Cy and C, Tran times by A. Then, we calculate Sfor K, Cy
and Cp. Then, if S< San is sdtisfied, we return to step 2,
otherwise, continued to step 3.
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° o ° o first pushing
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Figure 8: Two pushing operations are described as the gray
and black lines. The vertical/horizontal differences of push-
ing and releasing are described as the whole and dot lines.
(a) Y-axis direction. (b) X-axis direction.

4. Comparative Results

In this section, we compare three MSD models with each
other concerning to computation time, memory storage and
shape accuracy. The deformation of virtual rheology ob-
ject is calculated and visualized by a 3-D graphics software
OpenGL in a persona computer (CPU: Pentium4 2.26GHz,
Main memory: 1024MB) with a 3-D graphics acceleration
board (NVDPIA Quadro 2EX, 32MB).

4.1. Computation Complexity

As mentioned previously, areal rheology object pushed and
released by a rigid body deforms during 4 seconds in all
the experiments. On the other hand, 2000 deformations of
a virtual rheology object under the models 1, 2, and 3 are
calculated during about 40 seconds in the CG environment.
As shown in Table 1, we check calculation time less than
20 milli-seconds per one deformation. The speed is enough
to make dynamic animation because it is smaler than the
video-frame rate, i.e., 33 milli-seconds. Furthermore, we
show memory storage of the models 1, 2 and 3 is too small
and also relatively constant (Table 1).

The numbers of masses and elementsin the models 1 and
3 are the same, but numbers of masses and elements in the
models 1 and 2 differ from each other. As mentioned pre-
viously, force calculation at each mass is not expensive, but
position calculation at the mass is time consuming because
of solving the differential equation. The force calculation is
always necessary in all the elements, but the position calcu-
lation is not always necessary in all the masses. For exam-
ple, since position of each mass on the floor and the pushing
body is fixed and can be calculated without the integration.
Moreover in themodel 2, since the mass position within each
voxel is calculated as the gravity center of the voxel, the in-
tegration is not necessary.

For this reason, calculation costs of three models totally
depend on the number of mass points Neg = (Nx X Ny x
Nz) — four — (Nx x Nz) (Nx, Ny, Nz: the numbers of masses

(© The Eurographics Association 2003.
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along X, Y, Z axes, respectively, fout: the number of masses
pushed by arigid body). Asshownin Table 1, since fout = 12
isin thefirst pushing under the 6 x 4 x 6 model, the number
of masses to need the integration is denoted as Ngg = (6 x
4 x 6)— 12— (6 x 6) = 96. Similarly, the number of masses
to need the integration is denoted as 182 and 304 for 7 x 5 x
7 and 8 x 6 x 8 models, respectively. As described in Table
1, calculation time of each model is proportionally evaluated
by the equation Negj = (Nx x Ny x Nz) — fout — (Nx x Nz).

Since numbers of mass points in three kinds of models
are almost the same, memory storage is also the same. The
memory storage m is approximately evaluated by summing
the mass storage my (N: the number of masses) and basic
software storage mg including C++ compiler (VC++ 6.0).
The former is proportional to the number of masses, but the
latter isinvariable. Using the resultsin Table 1, we calculate
ms = 19000[KB] and my = 16 x N[KB].

Table 1: Calculation time [msec] per one deformation and
memory storage [KB] in PC (CPU: Pentium4 2.26GHz,
Main memory: 1024MB)

Calculation time for the first pushing [msec]

Number of total masses [6x4x 6] [7x5x7] [8x6x8§
(model1) 18.508 35.125 60.316
(model2) 19.553 37.141 62.805
(model3) 18.790 35.860 60.328

Memory storage [KB]
(model1) 21416 23044 25260
(model2) 21452 23048 25360
(model3) 21492 23044 25315

4.2. Deformation Accuracy

In this paragraph, we describe a global aspect of a rheology
object by changing three coefficients. In the same random-
ized algorithm, we use the same parameters A = 10, Tgy =
30 [hour], and Tran = 100[number]. The search space
consists of three intervals [K™", K™, [CI"",CT™®] and
[CT",CT™] which are defined by [100,3000], [500,10000]
and [500,20000]. If each interval is divided by A = 10,
the search space includes candidate points whose number
is 537225000. The resolution A = 10 is experimentally se-
lected in order to find the optimal or a near-optimal solution.
If A < 10, the number of candidate pointsistoo largeto find
the solution. If A > 10, the magnitude of voxel resolution is
too largeto find it.

To caculate the sum of differences between real and
virtual rheology objects at each candidate point, we need
about 40 seconds. Inthisresearch, weuse Te = 30  [hour]
to investigate a better set of three coefficients, and there-
fore we can check candidate points whose number is about
2700. The search density is too sparse and therefore the ran-
domized algorithm selects a near-optimal solution by using
Tran = 100[number] and eliminating candidate points whose
sum Sislarger than the present minimum sum San.

In order to ascertain goodness of pushing a rheology ob-
ject by arigid body, we prepare two kinds of pushing. In both

(© The Eurographics Association 2003.

operations, external forces at masses around a rheology ob-
ject act along the Y-axis. In the first operation, all masses
around a rheology object are simultaneously pushed by a
rigid body (Fig.9). In this case, we compare which model
is the best. Shape and volume differences between real and
virtual rheology objects are given in Table 2, and also shapes
of both objects after releasing are described in Fig.10. As
shown in Table 2 and Fig.10, the model 3 is the best con-
cerning to shape accuracy and volume consistency.

ratio (0,3,0)' (5,3,0)
= 0.6 >
=10 -
0.4 AW
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// (5,0,0) =
Y b1
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Figure 9: (a) 3-D view for the first pushing. (b) Front view.
(c) Upper view.

Table 2: Calibration results for the first pushing in three
models. (S The sum of error distances)

The number of captured pointsis N = 15235
Cadlibration S S/N K C1 C2  Volume
result [cm] [em] [gf/cm?] [gfs/cnt] [em?)

(model 1) 2097.40 0.138 1990 510 3470 68.49
(model 2) 230862 0.152 1720 1300 780 83.88
(model 3) 178578 0.117 3000 1380 1550 69.95

The number of points whose error is more than 0.25¢cm

first second third fourth total
(model 1) 513 381 335 267 1496
(model 2) 498 451 459 388 2796
(model 3) 266 224 242 177 895

In the second operation, right and | eft endpoints of arigid
body contact a rheology object at different times (Fig.11).
In this case, shape and volume differences between real and
virtual rheology objects are given in Table 3, and al so shapes
of both objects after releasing are described in Fig.12. As
shown in Table 3 and Fig.12, the model 3 is the best con-
cerning to shape accuracy and volume consistency.

Table 3: Calibration results for the second pushing in three
models. (S The sum of error distances)

The number of captured pointsisN = 14551
Cadlibration S S/N K C1 C2  Volume
result [cm] [cm] [gf/cm?] [gfs/cmP) [cm?)

(model 1) 2483.15 0.171 1970 510 3470 67.95
(model 2) 2746.35 0.189 1780 980 720  88.95
(model 3) 205196 0.141 1950 7520 8930 70.28

The number of points whose error is more than 0.25cm

first second third fourth total
(model 1) 1260 983 724 751 3718
(model 2) 1002 1629 755 832 4218
(model 3) 837 604 496 485 2422
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Figure 10: The distance error between real and virtual rhe-
ology objects for the first pushing. (a) Real rheology ob-
ject. (b),(c),(d) Mirtual rheology objects which are colored
by gray, whose errorsare larger in the proposed models 1, 2
and 3.
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Figure 11: (a) 3-D view for the second pushing. (b) Front
view. (c) Upper view.
5. Conclusions and Future Works

In this paper, we represent a rheology object by three kinds
of MSD models, and cdlibrate three coefficients of two
dampers and one spring by an efficient randomized algo-
rithm based on many experimental results. Since force prop-
agation of rheology object during each deformation is effi-
cient inthe MSD model, we can watch many deformationsin
the video-frame rate by a personal computer with a popular
3-D graphics acceleration board. Moreover, by the careful
calibration as pre-processing, shape and volume of virtual
(calculated) rheology object are quite similar to those of real
(experimental) one during and after simple pushing opera-
tions. Asaresult, themodel 3isthe best concerning to shape
and volume accuracy if and only if force directions acting at
masses are along the vertical axis, i.e., Y-axis, and also force
maghitudes are not so large.

Finaly as severa future works, another structure (e.g.,
nested or non-nested tetrahedral meshes 2) and another ele-
ment (e.g. mass-spring element, Voigt and Maxwell element
16 17) should be tested by our experimental calibration. In
addition, as the calibration algorithm, we should try to use
another optimal algorithm such as GA (generic algorithm).

front i) PR

@ (b) © (d)
Figure 12: The distance error between real and virtual rhe-
ology objects for the second pushing. (a) Real rheology ob-
ject. (b),(c),(d) Virtual rheology objects which are colored
by gray, whose errors are larger in the proposed models 1, 2
and 3.
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Abstract

There are many kinds of rheology objects in our
living life. If such rheology objects are individually
and completely modeled, we can flexibly deal with
such various objects in a factory by a robotic manip-
ulator controlling siz degrees-of-freedom forces and
moments and also operate them at a 3-D graphics
world in a house by a human via a wonderful haptic
devise feeling the forces and moments. If such a sys-
tem is developed after acquiring a rheology dynamic
model, we can enjoy a clay work in a 3-D wvirtual
environment.

For this purpose, we calibrate deformation model
of a rheology object by a modified randomized algo-
rithm based on experimental data. The data is mea-
sured from a bread material pushed by a robotic ma-
nipulator exactly. The model is a 3-D wvoxel/lattice
structure with many elements, and each element con-
sists of two dampers and one spring. By changing
three coefficients of dampers and spring, we can de-
scribe various material properties concerning to vis-
cosity and elasticity. In this paper, by minimizing
shape difference between real and virtual rheology ob-
jects in the near-optimal algorithm, we find a better
set of coefficients. Using the calibrated model, we can
feel three degrees-of-freedom forces and three degrees-
of-freedom moments attracted from a calibrated vir-
tual object in a haptic devise and synchronously we
can watch shape deformation of the object in a 3-D
graphics animation.

1 Introduction

Dynamic animation is indispensable in robotics
and virtual reality, which is aggressively used in tele-
operation, humanoid, assembly, task planning, game,
amusement and so on. The animation is quickly
made in PC (e.g., Pentium 4. 2.26GHz) with a graph-
ics accelerator (e.g., NVIDIA Quadro 2EX, 32MB for
OpenGL). They are powerful and cheap for making
a sequence of 30 full color images. Even though their

motions are extremely complicated, the sequence dy-
namically describes object movements per the sec-
ond. From this background, we can easily develop a
software to make a graphics animation whose qual-
ity of image is high concerning to rendering such
as lighting, shading, texture mapping and so on.
As an example of this, we use a 3-D graphics soft-
ware OpenGL in a personal computer (CPU: Pen-
tium4 2.26GHz, Main memory: 1024MB) with a 3-D
graphics acceleration board (NVIDIA Quadro 2EX,
32MB) in order to illustrate such a wonderful 3-D
graphics animation quickly.

However, it is unfortunately difficult for us to gen-
erate exact trajectories of moving objects. The rea-
son is that every object is always affected by com-
plex physical properties in our living space. Some
properties are known, but the others are approxi-
mated or unknown. For this reason, modeling and
calibrating many kinds of physical properties are im-
portant in the dynamic animation. In general, the
animation includes two behaviors: contact and non-
contact behaviors. If two rigid bodies collide with
each other, we can calculate a sequence of contact be-
haviors based on Coulomb and Hertz models. Con-
cerning to this, researchers have proposed many kinds
of models for making friction force or impulse and
contact force or impulse [1],[2],[3],[4],[5],[6]. If many
rigid bodies are connected each other, we can calcu-
late a sequence of non-contact behaviors based on the
Newton-FEuler equations. To calibrate its dynamic
parameters, we use two kinds of approaches using a
few special motions and a huge number of general
motions, respectively [7],[8],[9].

As contrasted with these works, modeling and cal-
ibrating a rheology object is quite backward. This
work started before the decade [10],[11],[12], but has
not been well developed. Several kinds of elastic ob-
jects have been modeled and animated in computer
animation or virtual reality. However, some forget
many kinds of viscosities, and the others could not
be calibrated experimentally [13],[14],[15],[16]. As
an exception, a 2-D pixel/lattice structure was cal-
ibrated under few experimental results, whose com-



ponent consists of Voigt model (parallel damper and
spring) and Maxwell model (serial damper and spring)
[17], and then its similar 3-D voxel/lattice structure
was calibrated under few experimental results, whose
component consists of Voigt model (parallel damper
and spring) and one adaptive damper [18]. The mod-
els are unfortunately calibrated under few data, and
especially coefficients of dampers and springs are cal-
ibrated individually. In general, they are strongly de-
pending on each other so as to produce many kinds
of material properties. By changing a set of four or
three coeflicients flexibly, viscosity and elasticity of a
rheology object totally increases or decreases. They
synchronously appear by changing a set of four or
three coefficients. For this reason, we adopt the sim-
ilar 3-D voxel/lattice structure whose element con-
sists of two dampers and one non-adaptive spring.
Then, we calibrate three coefficients synchronously
in our efficient randomized algorithm under many
kinds of experimental data.

For this purpose, we firstly measure a sequence
of deformed shapes several times while pushing a
rheology object by a robotic manipulator and syn-
chronously observing it by two stereo vision systems
Digiclops. Secondly, we minimize a sequence of dif-
ferences of deformed shapes between virtual and real
rheology objects in the calibration. Finally, we watch
deformation of the rheology object in a 3-D graph-
ics animation by OpenGL and feel its three reactive
forces and three reactive moments by six-degrees-of-
freedom robot arm Joyarm. The system is useful in
several practical areas. For example, modeling and
calibrating an arbitrary real rheology object can be
used in robot assembly [19],[20], the virtual system is
frequently used at surgery simulations in medical en-
gineering [21],[21],[22]. Also, they are the basic tech-
nique in many application areas [23],[24],[25],[26].
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Figure 1 : Visco-elastic elements: (a) Voigt model. (b) Maxcell
model. (c) An element with two dampers and one spring

In this paper, section 2 describes Voigt, Maxwell
models, and then our element. In addition, we build
a 3-D voxel/lattice structure for representing shape
deformations and force propagations. Section 3 ex-

plains how to calibrate three coefficients of two dampers

and one spring in our 3-D structure. The set of co-
efficients is used in dynamic equation represented as
quadratic differential equation. This can be approx-
imately calculated by the Runge-Kutta method. In
section 4, we describe two experimental results for
a same visco-elastic object by two kinds of pushing.
First of all, we explain how to evaluate shape dif-
ference between real and virtual visco-elastic object.
Secondly, by an efficient randomized algorithm using

a sequence of shape differences, we calibrate three
coefficients in order to construct a virtual rheology
object accurately. Finally, we will give a few conclu-
sions and future problems in section 5.

2 Model of Visco-Elastic Object

In this section, we will briefly explain a classic
model, which products many material properties of
some visco-elastic object. As shown in Fig.1(a),(b),(c),
famous Voigt and Maxwell models and our compo-
nent have been used for representing a visco-elastic
object. Voigt model consists of spring and damper,
which connects neighbor mass points in parallel. On
the other hand, Maxwell model is a sequence of spring
and damper between neighbor mass points. For ex-
ample, the mixture is adopted for expressing a rhe-
ology object [17]. In this paper, we use an element
which consists of Voigt model and one damper.

Figure 2 : Our element consists of Voigt model and a damper
serially.

2.1 Owur mass-spring-damper element

In Fig.2, we formulate some behaviors of our el-
ement. First of all, let O be the origin of coordi-
nate system. Let P,_; and P, be coordinates of
element endpoints. Spring and damper coefficients
in the Voigt part are denoted as K and C, respec-
tively. The other damper coefficient in the element
is denoted as Cy. The natural length of Voigt part is
given by Li. Let M be mass at each endpoint. Let
P,, be position of connecting point between Voigt
and damper parts. Furthermore, d, = P, - P,_1
is defined. Since these positions P,_1, P, and P,
exist on a straight line, P,, can be defined by a pa-
rameter k as follows: P,, = kd,, + P,_1. Here, time
varying direction vector is defined as e,, = d,,/ | dy, |,
and also time varying length coefficient is defined as
Zn=k|dy, |

Let F, be a force applied to a mass point P, by
the classic model. The force F. equals to a force
acting in the Voigt part. Thus, we have the following
equation.

E, = —C1Zpen — K(Zn — L1)en, (1)

Also, the force F, coincides the force acting to a
damper part. In consequence, we obtain the follow-
ing equation.



Fe = ~Co( 3 (ldul = Zu))en (2)

Here, a force applied to a mass point P, is defined
as F,. Consequently, the dynamic equation of the
mass point P, is denoted as

MP,=F.+F, (3)

From three equations (1), (2) and (3), we calculate
the dynamic equation of three element model. First
of all, by eliminating F, in the equations (1) and (2),
we directly obtain the parameter k. By substituting
k into each of equations (1) and (2), we can obtain
the value of vector F, and consequently generate a
motion of mass point P,. The purpose of this re-
search is to select a better set of three coefficients
for at least two pushing a given visco-elastic object
in a 3-D environment by two kinds of randomized
algorithms.

In this paper, while changing values of three co-
efficients randomly in reasonable ranges by an effi-
cient randomized algorithm, we are seeking for the
best set. When the pushing is strong or weak, the
best set of three coefficients a little bit differs from
each other. However, as shown in our experimental
results, the difference is not so large. For this rea-
son, we use one best set for all pushing. Moreover,
the classic model generates a wonderful sequence of
object shapes, which is totally affected by values of
three coefficients.

2.2 3-D voxel/lattice structure

A visco-elastic object deforms in a 3-D environ-
ment. In order to describe several kinds of deforma-
tions flexibly, we adopt a symmetric 3-D voxel/lattice
structure. For this purpose, let us distribute mass
points in a natural shape of a visco-elastic object at
the same intervals along x, y, and z axes (Fig.3(a)).
Let N be the number of mass points and Mgpject be
total mass of the object. Therefore, each mass point
is given by M = Mopject/N.
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Figure 3 : (a) A 3-D voxel/lattice structure of a visco-elastic
object (b) Neighboring lattice mass points.

Our elements are inserted between all neighboring
mass points as illustrated in Fig.3(b). Namely, the
elements are arranged, whose distances are 1, v/2,
and v/3 (The unit is the distance between horizon-
tal and vertical neighbor mass points). Visco-elastic

deformation of an object can be represented by de-
formation of all the elements. Let P; ;. be posi-
tion vector corresponding to mass point (7, j, k). Let
us derive motion equation of a mass point at P j .
Force acting on P ; by the element between P; ;1

and its neighbor point Pjiq j+gk+ is denoted by

B

ik - Then, total internal force acting on P, ;. is

given by the sum of Fﬁﬁc’ﬂ’, that is,

>, EY @
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The force anjiﬁf can be computed using a proce-
dure explained in paragraph 2.1. Thus, force Ffig
can be computed by summing all forces. Let F?;
be a total external force acting on P; ;. Thus, the

equation of motion is described as follows:
MP k= Ff,+ FY (5)

By solving a set of equations corresponding to all
mass points consisting of the model, we can compute
deformation of a visco-elastic object. By calculating
successively forces among neighbor mass points, we
can obtain forces on all mass points of the above 3-D
voxel /lattice structure. Each force between neighbor
mass points, position and velocity of each mass point
are calculated by the quadratic differential equation.
This can be done by the Runge-Kutta method. By
these techniques, we can simulate deformation of a
pushed visco-elastic object virtually in a 3-D graph-
ics environment.

A 3-D voxel/lattice structure is as follows: The
voxel structure consists of 6 X 4 X 6 mass points
(Fig.4). All elements are inserted between all neigh-
boring mass points. Therefore, there are 5 x 3 X 5
elements whose distances are 1, and there are 6 x 4
x 6 x 2 elements whose distances are v/2. Moreover,
we add the lattice structure into the voxel structure.
Therefore, there are 5 X 3 x 5 X 4 elements whose
distances are v/3.

(5,0,0)

Y
)"X
z
(0,0,5) (5,0,5)

Figure 4 : 12 upper mass points of a rheology object are syn-
chronously pushed by a rectangular object located on the tip of a
robotic manipulator.

Let us compute deformation of the model when
12 upper mass points of a rheology object are syn-
chronously pushed by a rectangular object located
on the tip of a robotic manipulator (Fig.4). The
sum of all mass points is really measured by M =
6.0 under Mopjecr = 840 [g] and N = 144 [points].



Also, three coefficients K [gf /em?], C1[gfs/em3] and
Colgfs/em?] are experimentally initialized as 400,
2000 and 2000, respectively, in two types of push-
ing. Finally, we should note that the bottom of the
object is fixed to the space. This means 36 bottom
mass points of a rheology object are received by the
same repulsive forces of calculated attractive forces
from its floor.

3 Two Kinds of Randomized Algorithms

for Calibrating K, C1 and C2

In the last section, we construct a basic model for
representing relations of forces, velocities and posi-
tions of many mass points in a rheology object. The
model always needs two coefficients C; and Cs of dif-
ferent damper parts and one coefficient K of a spring
part. Changing the set of coefficients means chang-
ing material of the rheology object. Unfortunately, a
rheology object has many aspects depending on ab-
solute magnitude and time difference of a given outer
force. This is an interesting property of the rheology
object, which differs from rigid, plastic and elastic
objects.

In this section, we calibrate K, C; and Cy by min-
imizing shape differences between real and virtual
rheology objects in two kinds of randomized algo-
rithms. Finally, we should note that we did not use
force differences acted from real and virtual rheol-
ogy objects because force information is quite noisy
(its magnitude and orientation include 10 and more
percent errors).

3.1 How to calculate shape difference be-
tween real and virtual rheology ob-
jects

Figure 5 : An experiment system: A real rheology object is
pushed by a rectangular object located at the tip of a robotic
manipulator, and side deformations are simultaneously measured
by two Digicrops cameras.

In this research, a rheology object is made by mix-
ing wheat flour and water (Fig.6(a)). The scale of
the object is denoted as 10cm X 6cm x 10 cm. The
rheology object is pushed by a rectangular object
located at the tip of a robotic manipulator (Fig.5).
The deformation, that is, the sequence of shapes of
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Figure 6 : (a) A real rheology object is built by mixing wheat
flour, food red and water. (b) Its virtual rheology object is shown
by a point-based computer graphics under about three or more
thousand surface points measured by two Digicrops cameras.

the real rheology object is measured by the support
of two stereo vision camera systems Digiclops and
its SDK (Software Development Kit) T'riclops (pro-
vided by Point Grey Research Inc, Canada). Each
provides real-time 3-D digital image for capturing
shapes of the object. A set of about three or more
thousand points is captured as shape of the object
(Fig.6(b)). Each image has 240 x 320 pixels with
24bit full color. The set is obtained three times per
one second. An average error for capturing our rhe-
ology object is about 0.05cm if the distance from
Digiclops to a rheology object is about 60cm. This
error decreases experimentally by changing surface
texture of the object and location of the camera and
lighting without highlight and shadow. Especially,
surface texture is artificially made by mixing food
red into our rheology object. Then because of the
latter reason, two sides of the rheology object are
focused and measured by two stereo vision camera
systems Digiclops.
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Figure 7 : The real and virtual coordinate systems are coincident
with each other by matching their vertices and color landmarks.

Figure 8 : A simulation system in PC: A virtual rheology ob-
ject is pushed by a rectangular object, and deformations of five
sides are calculated by a quadratic differential equation in our 3-D
voxel/lattice structure.

Then, we calculate the sum of minimum distances
from a captured point to the nearest surface of a vir-
tual rheology object as follows: First of all, a virtual



object (its coordinate system) is coincident with a
real object (its coordinate system) by using their cor-
ners and landmarks as illustrated in Fig.7. A virtual
object consists of 5 x 3 x 5 hexahedrons individually
deformed from cubes (Fig.8). Each hexahedron has
six patches which are classified into real and virtual
patches. A real patch is always outside a virtual rhe-
ology object, and a virtual patch is always inside it.
We firstly determine whether a captured point is in-
side each hexahedron or not. On the assumption that
each hexahedron is convex shape, if a captured point
is always located in the opposite side of the normal
vector of each patch of a hexahedron, the point is in-
side the hexahedron. In this case, the nearest point
is always on one of real patches (is never on edges or
vertexes) (Fig.9(a)). Therefore, we only calculate the
minimum of shortest distances against real patches.
On the other hand, if the point is outside all hexahe-
drons, we should calculate the minimum of 5 x 3 x 5
shortest distances for all hexahedrons by Lin-Canny
closest features algorithm [27] (Fig.9(b)).

Then, after neglecting minimum distances smaller
than the average error 0.05¢m of Digiclops, we sum-
marize the other minimum distances from about three
or more thousand captured points to their nearest
surface of the rheology object. In our calibration, we
use the sum S for four sets of captured points during
and after each pushing. By minimizing the total S
in an efficient randomized algorithm, we can obtain
a better set of three coefficients K, C7 and Cs.
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Figure 9 : (a) If a captured point is inside a hexahedron, we cal-
culate the minimum distance from the point to six patches around
the hexahedron. (b) Otherwise, we calculate the minimum dis-
tance from a captured point to all hexahedrons.

In this section, we optimize K, Cy and Cs by using
a steepest descendent method and two kinds of ran-
domized algorithms. The global (former) random-
ized algorithm gets local minima from initial points
uniformly selected in a given 3-D search space. On
the other hand, the local (latter) randomized algo-
rithm finally picks up a better local minimum around
the best of all local minima selected in the former
[28].

3.2 A Steepest Descendent Method

1. Two parameters T,y and Ty, are given in
advance.
2. Initialize coefficients in a 3-D search space.

3. We calculate shape difference S between real
and virtual rheology objects.

4. In order to find all the possible neighbors, we
decrease and increase K, C; and Cs by A. In this 3-
D case, we obtain eight possibilities, that is, (K+A,
Ci+A, Ca+A), (K+A, C1+A, Co-A), (K+A, Cr-
A, Co+A), (K+A, C1-A, Co-A), (K-A, C1+A, Cs
+A), (K-A, C1+A, Ca-A), (K-A, Ci-A, Ca+A)
and (K-A, Cy-A, C3-A). Then, using S for each
neighbor, we select the minimum of sums at all the
possible neighbors.

5. If the minimum is smaller than S obtained in
step 3, we move to the neighbor with the minimum
by decreasing or increasing K, C; and Cy by A, and
return to step 3. Otherwise, the algorithm finishes.

3.3 A Local Randomized Algorithm

1. By the steepest descendent method described
above, we get one of the local minima. Then, if cal-
culation time equals to or is smaller than T.,;, the
algorithm ends with the smallest S, otherwise, move
to step 2.

2. We randomly increase and decrease three coef-
ficients K, C1 and Co T}qp times by A. Then, return
to step 1.

3.4 A Global Randomized Algorithm

1. Up to a time threshold T,,;, we randomly se-
lect initial points within a space whose ranges are
Km'm < K < Kma;c, C{nm < Cl < C{nam and
Cin < Cy < C9% in 3-D search space. The density
of the initial points is always uniform.

2. For all initial points, we get local or global
minima by the steepest descendent method described
above. Then, the algorithm ends with the smallest
S of all the minima.

3.5 An Efficient Algorithm

1. By a global randomized algorithm, we globally
find a better local minimum in a given 3-D search
space.

2. By alocal randomized algorithm from an initial
point selected by step 1, we locally find a better local
minimum near the initial point [28].

4 Comparative Results

In this section, we calibrate three coefficients of a
virtual rheology object during deformations by two
types of pushing a real rheology object, which are
illustrated in Fig.10. The difference is only the ve-
locity of pushing (direction and orientation are the
same). In this research, our rheology object con-
sists of wheat flour and water. During and after



each pushing, deformation of the virtual object is
visualized by a 3-D graphics software OpenGL in a
personal computer (CPU: Pentium4 2.26GHz, Main
memory: 1024MB) with a 3-D graphics acceleration
board (NVIDIA Quadro 2EX, 32MB). Also in our
virtual reality system, 3-D repulsive forces and 3-
D repulsive moments of a rectangular object from
a pushed virtual object can be felt by a Joyarm
(Fig.11).
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Figure 10 : Weak and strong pushing a rheology object. Weak
(first) pushing is described by whole and dotted black line, and
strong (second) pushing is shown by whole and dotted gray line.

Figure 11 : A human operator watches deformation of a rheology
object by a 3-D graphics software OpenGL and feels its three
forces and three moments by a six-degrees-of-freedom robotic arm
Joyarm.

4.1 General Properties

In this paragraph, we describe a global aspect of
a rheology object by changing three coefficients. As
shown in Fig.12(a), as long as each of K, Cy and
(5 increases, shape difference S decreases. However,
if C1 4+ C5 increases extremely, a virtual rheology
object cannot converge to a reasonable shape whose
neighbor positions of masses are frequently reversed
(Fig.12(b)). On the observation, we select search
space [Kmin’ Kma:v]v[C{ninv Ciﬂaw] ,[an‘nv ngaa:] lim-
ited by [100,2000],[1000,8000],[5000,20000], respec-
tively.

4.2 The First Pushing

In our efficient 3-D randomized algorithm, we set
A =1, Teqy = 30 [hour], Tran = 1000[number].
After the calibration, we finally obtain coefficients
Klgf/cm?], Ci[gfs/cm?] and Cz[gfs/cm?] as 1831,
4732 and 18524.

In the figures 13 and 14, we describe shape trans-
formation of initial and calibrated virtual objects
against the real object, respectively. A set of dark
gray areas means shape differences are larger than
0.25cm, and another set of light gray areas means
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Figure 12 : (a) Shape difference S changes when K, C; and Ca
synchronously change within reasonable available ranges. (b) If
C1 + C: increases extremely, our rheology model does not con-
verge to an unique shape.

Figure 13 : (a),(b),(c),(d) Four shape differences between real
and virtual objects by the first pushing, whose coefficients are
initially given as reasonable values K = 400 and C; = Cy = 2000.
A set of dark gray areas means shape differences are larger than
0.25cm, and another set of light gray areas means the differences
are less than 0.05cm.

the differences are less than 0.05cm. Therefore, we
can see that differences between a calibrated object
and its real object are smaller than differences be-
tween a non-calibrated object and the real object.
Also in the figure 15, we describe the distribution
of differences of minimum distances from about three
or more thousand captured points to initial and cali-
brated virtual objects. In the figure 15(a),(b),(c),(d),
numbers of captured points are 34, 14, 90, 101, whose
differences are less than 0.1cm, on the other hand,
numbers of captured points are -47, -22, -33, 4, whose
differences are more than 0.25cm, respectively. From
these results, we can see that almost all numbers in-
crease in relatively small differences, on the other
hand, almost all numbers decrease in relatively large
differences. This means a calibrated object is bet-
ter than its non-calibrated object against the real



object. As a result, the calibration leads a virtual
rheology object that has high viscosities and elastic-
ity. Moreover, by the comparison between calibrated
and initial virtual rheology objects with the real rhe-
ology object, a calibrated rheology object looks like
the real rheology object, and therefore our calibra-
tion is meaningful.

Figure 14 : (a),(b),(c),(d) Four shape differences between real
and virtual objects by the first pushing, whose coefficients are
completely calibrated as K = 1831, C; = 4732 and C2 = 18524.
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Figure 15 : (a),(b),(c),(d) (the number of captured points at each
distance between a calibrated virtual object and its real object)
- (the number of captured points at each distance between an
initial virtual object and its real object) at four sampling times
pushing the objects firstly. In each figure, plus numbers appear in
relatively small distances (differences), on the other hand, minus
numbers appear in relatively large distances (differences). This
means a calibrated object is better than its non-calibrated object
against the real object.

4.3 The Second Pushing

In the same algorithm, we use same parameters
A =1, Teqy = 30 [hour], Tran = 1000[number],

and finally we obtain calibrated coefficients K[gf/cm?],

Cilgfs/cm3] and Calgfs/cm?] as 1398, 6345 and
18524.

In the figures 16 and 17, we compare shape trans-
formation of initial and calibrated virtual objects
against the real object, respectively. A set of dark
gray areas means shape differences are larger than
0.25cm, and another set of light gray areas means
the differences are less than 0.05cm. Therefore, we
can see that differences between a calibrated object
and its real object are smaller than differences be-
tween a non-calibrated object and the real object.

Figure 16 : (a),(b),(c),(d) Four shape differences between real
and virtual objects by the second pushing, whose coefficients are
initially given as reasonable values K = 400 and C; = Cy = 2000.

Also in the figure 18, we compare the distribution
of differences of minimum distances from about three
or more thousand captured points to initial and cali-
brated virtual objects. In the figure 18(a),(b),(c),(d),
numbers of captured points are 87, 40, 35, 107, whose
differences are less than 0.1cm, on the other hand,
numbers of captured points are -40, -47, 21, -58,
whose differences are more than 0.25cm, respectively.
From these results, we can see that almost all num-
bers increase in relatively small differences, on the
other hand, almost all numbers decrease in relatively
large differences. This means a calibrated object is
better than its non-calibrated object against the real
object. As a result, a calibrated rheology object is
similar to the real rheology object, and therefore our
calibration is meaningful.

Figure 17 : (a),(b),(c),(d) Four shape differences between real
and virtual objects by the second pushing, whose coefficients are
completely calibrated as K = 1398, C1 = 6345 and C2 = 18524.

5 Conclusions

In this paper, we select a classic 3-D voxel/lattice
structure with many mass-damper-spring components
as a visco-elastic object, and than calibrate three co-
efficients of two damper and one spring in each com-
ponent by an efficient randomized algorithm based
on many experimental results. By these approaches,
we can watch many deformations by a 3-D graphics
animation (OpenGL) and feed many forces/moments
by a haptics (Joyarm). In future, we try to inves-
tigate the deformation of rheology object by many
kinds of pushing (i.e., translation movements along
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Figure 18 : (a),(b),(c),(d) (the number of captured points at each
distance between a calibrated virtual object and its real object) -
(the number of captured points at each distance between an initial
virtual object and its real object) at four sampling times under
pushing the objects secondly. In each figure, plus numbers ap-
pear in relatively small distances (differences), on the other hand,
minus numbers appear in relatively large distances (differences).
This means a calibrated object is better than its non-calibrated
object against the real object.

X, Y and Z axes, and also rotation movements cen-
tered at X, Y and Z axes, and their combinations).
Moreover, another structure (e.g., nested or non-
nested tetrahedral meshes) and another component
(e.g. mass-spring component, Voigt and Maxwell
component) should be tested by our calibration. Fi-
nally, as the calibration algorithm, we should try to
use another optimal algorithm such as GA (generic
algorithm).
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Abstract— The MSD (Mass-Spring-Damper) model efficiently
calculates shape deformation of many kinds of materials such
as elastic, visco-elastic, and rheologic objects. For this reason,
dynamic animation can be made in a personal computer and
its popular acceleration board within the video-frame rate. The
problem of MSD model is how to maintain shape precision of each
deformation. For this purpose, we have calibrated coefficients of
damper and spring of Voigt part and a coefficient of damper of
the other part in the basic MSD element under many surface
points capturing a real rheologic object by the randomized
algorithm. Nevertheless, the shape precision is not unfortunately
enough. To overcome this, we improve our previous approach in
the following five points:

(1) The number of voxels in the MSD model increases from
75 to 600.

(2) The ratio between lengths of Voigt and the other parts
in the MSD element is added to three coefficients of spring and
dampers of the basic element as calibrating parameters.

(3) Four unknown parameters of the basic element are
distinguished to calibrate in and on each voxel. In addition, the
parameters are distinguished to calibrate among surface and core
areas of a virtual rheologic object.

(4) In order to speed up the calibration, we use GA (Genetic
Algorithm) in replace of RA (Randomized Algorithm).

(5) Each or both of local and global volume constant conditions
are added into the previous approach.

In conclusion, we investigate relations between shape deforma-
tion, volume resolution, and number of calibrated parameters in
several MSD models representing a rheologic object. Also, we
improve deformation precision by increasing not only volume
resolution but also number of calibration parameters or by
adding each or both of volume constant conditions.

1. INTRODUCTION

Real-time dynamic animations of many kinds of deformable
materials are developing because of wonderful PC, graph-
ics acceleration board and so on. Modeling many types of
deformable objects is indispensable in robotics and virtual
reality. The key trade-off occurs between calculation time and
deformation accuracy. The performance of modern computers
and graphics hardware has made physically-based animation
possible in real time. But even with today’s best hardware
and most sophisticated technique [1],[2],[3], only few hundred
elements with small deformation have been simulated in real-
time. Furthermore, the deformation is not always precise
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because shape sequences of real and virtual objects are not
compared yet.

In order to construct models of elastic and visco-elastic
objects, we have usually used one of four methods, i.e.,
the mass-spring-damper (MSD) method [4],[5],[6],[7], the
finite difference method (FDM) [8], the boundary element
method (BEM) [9], and the finite element method (FEM)
[10],[11],[12],[13],[14]. The computation cost and deforma-
tion accuracy increase in this order. To solve the trade-off,
we have studied two approaches, so called fast FE and precise
MSD methods. In this research, we focus on the latter method.
Modeling a rheology object is more difficult than doing an
elastic or visco-elastic object because the rheology object
always leaves a residual displacement after pushing operation.
For this reason, a rheology object has been seldom modeled
except few works [15],[16],[17],[18],[19]. Also, whether the
modeling is precise has not been estimated yet. Few papers
calibrated uncertain parameters of elastic or visco-elastic vir-
tual object by many experimental data captured from a real
one [6],[7].

In this paper, we derive elastic, viscous, and rheologic prop-
erties by many deformations captured from a real rheology
object. For this purpose, we extend our previous MSD model
to three kinds of MSD models by adding local and/or global
volume constant conditions. In order to maintain a better
sequence of shape deformations, we increase a discrete number
of voxels, and also distinguish to calibrate at most four set
of uncertain coefficients in the MSD models under a lot of
experimental data by GA (Genetic Algorithm) in replace of
RA (Randomized Algorithm) as an optimal or near-optimal
probabilistic search. Four sets are classified as follows: (1)
One set is allocated for elements on a voxel, and another set is
allocated for elements in the voxel. (2) One set is allocated for
elements in core area of virtual rheology object, and another
set is allocated for elements in surface area of it. Thirdly, we
carefully compare four models in a popular personal computer
with a general graphics acceleration board, and consequently
select the best one for maintaining a better trade-off between
shape precision and calculation time.

In this paper, section 2 describes our voxel/lattice structure



with many basic MSD elements which consist of Voigt and
damper parts. In addition, we explain how to calculate shape
deformation and force propagation in the structure. They are
calculated by solving dynamic equation (quadratic differential
equation). It is approximately calculated by many kinds of
numerical methods for integrating ordinary differential equa-
tions. Moreover, by adding local and/or global volume constant
conditions, we propose three extended models. Section 3
explains how to calibrate uncertain parameters in Voigt and
damper parts and their length ratio. For this purpose, we
use randomized and genetic algorithms as probabilistic near-
optimal algorithm. In section 4, we prepare several kinds
of comparative experimental results to select the best MSD
model. Finally in section 5, we give a few conclusions.

II. THREE EXTENDED MASS-SPRING-DAMPER MODELS

In this section, we propose three extended mass-spring-
damper (MSD) models. Firstly, we introduce our element with
two dampers and one spring. Secondly, we explain four kinds
of MSD models. The model 1 forms a basic voxel/lattice
structure with three lengths of elements. In this model, we
explain how to propagate internal forces. Finally, in order
to decrease the volume difference between virtual and real
rheology objects, we consider two types of modifications
in the model 1. In the model 2, we replace four longest
diagonal elements of eight half-length elements in each voxel
of the model 1. By the replacement, each volume is strongly
expanded. In the model 3, we add a set of external forces
around the surface of virtual rheology object so as to maintain
the volume of real rheology object. We call these as local and
global volume constant conditions. Finally in the model 4,
we construct the virtual rheology object including basic MSD
local and global conditions.

A. Our Element with Voigt and Damper Parts

First of all, we introduce our basic MSD element which
consists of Voigt and damper parts serially (Fig.1). This is
similar to elements proposed in [15],[16]. The element in [15]
consists of Voigt and Maxcell models serially, and that in [16]
consists of Voigt model and adaptive damper serially. The
adaptive damper flexibly controls coefficient of damper during
pushing and releasing operations.

a 1-a

C1

Fig. 1. Our basic MSD element with two dampers and one spring.

In our basic MSD element, the larger the coefficient K is,
the stronger the elasticity is. Thus, K controls displacement
of deformation behavior. The larger the coefficient C; is, the
stronger the viscosity is. Therefore, C| controls speed of the
behavior. Finally, the larger the coefficient C, is, the larger the
residual displacement is. As long as C, is small enough, the
object appears elastic or visco-elastic property. On the other

hand, if C; is large enough, the object appears plastic property.
If K, C; or C, is too small, each element looses elastic,
viscous, or rheologic property. Finally, the initial length of
basic MSD element between neighbor mass points is denoted
as 1, and the ratio between Voigt and damper parts is denoted
as a : 1 —a (Fig.1). If the length of Voigt part is too long, the
residual replacement does not appear. If the length of damper
part is too long, the back replacement does not appear. To
avoid such cases, we set an interval 0.3 <a <0.7.

B. A Basic Voxel/Lattice Model

A rheology object deforms in a 3-D environment. In order
to describe several kinds of deformations flexibly, we adopt
a symmetric voxel/lattice structure to describe a rheology
object [15],[16]. In the structure, let us distribute mass points
uniformly in a rheology object whose intervals are the same
along X, Y, and Z axes (Fig.2(a)). Let N be the number of
mass points and M., be the total mass of rheology object.
Therefore, each mass point is given by M = M jec;/N. In the
experiment, we use M je; = 864 [g], N = N, X N, X N,. For
example, M = 6.00 for N = 144 = 6 x4 X 6, or M = about
1.02 for N = 847 = 11 x 7 x 11.
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Fig. 2. (a) A voxel/lattice model of rheology object, (b) Neighboring mass
points by basic MSD elements.

In our experiment, a real rheology object is built by mixing
wheat flour and water. The rheology object whose scales are
10cm X 6cm X 10cm along X, Y and Z axes is horizontally
and vertically two times larger than its virtual rheology object
whose scales are 5cm X 3cm X Scm along the axes. Therefore,
the former volume (600 [cm®] = water weight [g]) is eight
times larger than the latter volume (75 [cm?)]). Based on this
similarity, force propagation and shape deformation of real
object equals to these of virtual one.

The elements are inserted between neighboring mass points
as illustrated in Fig.2(b). The virtual rheology object is de-
formed by expanding and contracting the elements. Let P; ;; be
position vector corresponding to mass point (i, j, k) (i, j, k are
integers, Ny >i>1, Ny>j>1and N; >k >1, Ny, N,, N:
the numbers of masses along X, Y, Z axes, respectively). Let
us derive quadratic differential equation of each mass at P; j;.
Each internal force acting on P;;; by the element between
P;;x and its neighbor P, jipk+, is denoted by F;’ﬁ(y For
each mass, 6 shorter elements whose distance is denoted as [,
12 normal elements whose distance is denoted as \/El, and 8
longer elements whose distance is denoted as V3! are located.
As a result, the unit length [ is defined as 5/(N, — 1) cm in a
virtual rheology object.



Therefore, total internal force F! ik acting on P; j; is given
by the sum of 26(= 6 + 12 + 8) internal forces F;’ﬁ{y
Moreover, if the sum of active external forces at P;j is
denoted by F' IEJ » We obtain the following quadratic differential
equation. This summation requires small calculation time.

P 1 E
MPisJ'sk:F'j,k-i-Fi,j,k (1)

L

In order to calculate next position P;jr (Ny >i>1, Ny >
j=1and N, > k > 1) at each mass, we should solve the above
differential equation. This is done by many kinds of numerical
integration methods, but they are too expensive.
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We note that mass positions on an encountered surface
between a rheology object and its pushed rigid body, and on
the whole floor are fixed. Therefore, numerical integrations at
the positions can be neglected.

C. Voxel/Lattice Model Including Feed Forward (Local) Vol-
ume Constant Condition

In our previous work, we understand shape of a calculated
(virtual) rheology object is not the same against shape of its
experimental (real) object. Especially, volume of the former
object is too small against volume of the latter object after
releasing. To overcome this, we expand volume of each voxel
by local volume constant condition.

The local volume constant condition extends a voxel during
deformation by eliminating four longest elements (whose
distances are V3lcm in Fig.3(a)) and adding eight half-length
elements from its center of gravity to eight vertices (whose
distances are V3I/2cm in Fig.3(b)).

Fig. 3. Local volume constant condition: (a) Four longest elements directly
connecting two opposite vertices in a voxel. (b) Eight shorter elements
connecting from the center G, of gravity of a voxel to its eight vertices.

This technique has been already used in a MS (mass-
spring) model [20]. This controls isotropy or anisotropy of the
elastic material. This idea can be straightforwardly extended
to rheological material controlled by a MSD (mass-spring-
damper) model.

D. Voxel/Lattice Model Including Feedback (Global) Volume
Constant Condition

The local volume constant condition is a feed-forward
approach and thus cannot decreases the volume difference
between real and virtual objects directly. For this reason, the
volume of virtual object does not equal to that of real one.
Also, the local volume constant condition does not ensure
stability of shape deformation, especially if all uncertain
parameters are not well calibrated. To overcome this, we test

another volume constant condition which has been used in
[16],[21],[22].

According to the global volume constant condition based on
Pascal’s Principle, we always add a set of external forces to a
set of mass points around the surface of virtual rheology object
by minimizing the volume difference between V;,, and V (Vj,:
the volume of real rheology object, V: the volume of virtual
rheology object). If V < V;,, is satisfied, an outward external
force p appears around the virtual rheology object (Fig.4(a)),
otherwise, an inward external force p appears around the
object (Fig.4(b)) (V: time difference of the volume V, K,,:
elastic coefficient of global volume constant condition, C,,;:
viscous coeflicient of global volume constant condition). The
sum of magnitudes of external forces is denoted as p.

p= —Kyoi(V = Vir) = CvalV (3)
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Fig. 4. Global volume constant condition: (a) If V < V;,; is satisfied, an
outward external force appears around the virtual rheology object. (b) If V;,, <
V is kept, an inward external force occurs around it. (c) An external force
F ,{‘“' on a patch Py is distributed into four forces F}" of its corners.

Furthermore, concerning to a patch P; whose number is k,
area is S, and outward unit normal vector is n;;”’ . By the
global volume constant condition, there is an additional force
F,{“C at a patch P; (Fig.4(c)).

The force F ,{”C acting to the patch P, is denoted as the
following equation.

F {”C =pS an”t 4

In succession, the force F ,{“C is distributed into four forces
at corner masses of Py. Therefore, the force F!*" acting to
each corner mass is denoted by the following equation (i:
mass number around a virtual rheology object, A;: a set of
all patches including the mass).

F/" = ﬂ (5)
4
keA;

The sum of external forces at mass points around a virtual
rheology object amounts to zero. This means that the set
of internal forces is always constant and also momentum
variation is completely fixed. Furthermore, as long as two
coefficients K,,; and C,, are set large enough, volumes of
virtual and real rheology objects strictly equal each other. The
parameter calibration is not necessary because of the feedback
depending on their volume difference.

III. Tue CompaRIisON OF GA AND RA 10 CALIBRATE MANY
UNCERTAIN PARAMETERS

The defective point of MSD is accuracy of force propa-
gation and shape deformation. To overcome this, we calibrate



many uncertain parameters of our MSD models by minimizing
differences of shape deformations between real and virtual
rheology objects. For the calibration, we use RA (Randomized
Algorithm) and GA (Genetic Algorithm).

A. How to Calculate Shape Difference Between Real and
Virtual Rheology Objects

In this research, a rheology object is precisely pushed by a
rigid body located at the tip of a robotic manipulator (Fig.5(a)).
The deformation, that is, the sequence of shapes is measured
by two stereo vision camera systems Digiclops and its soft-
ware development kit (SDK) Triclops (provided by Point Grey
Research Inc, Canada). Each captures about three or more
thousand points as shape of real rheology object in the real-
time manner. After capturing the shape deformation, we finally
measure how much total volume is changed before pushing
and after releasing the rheology object. For the measurement,
we use the following primitive method. First of all, we fill a
ball with water, and then drop a deformed object into the ball
(Fig.5(b)). Secondly, we gather overflowed water and measure
its weight by a precise electric balance. As a result, we can
understand volume of rheology object always decreases by
about three percentages.

Fig. 5. (a)An experiment system: A real rheology object is pushed by
a rectangular rigid body located at the tip of a robotic manipulator, and
deformation of its sides is measured by two Digicrops cameras. (b)A photo
when we measure volume of a rheology object before pushing and after
releasing by overflowed water.

In order to evaluate a difference between real and virtual
rheology objects, we summarize minimum distances from
captured points to their nearest surfaces around a virtual
rheology object. A virtual object consists of Ny X Ny, X N,
hexahedra which are individually deformed from initial cubes.
Therefore in order to evaluate the difference, we calculate
the minimum of N, X N, X N_ shortest distances for each
captured point to all hexahedra by the Lin-Canny closest point
algorithm [23], and then we calculate sum S of the minimum
distances for all captured points, which are larger than the
average error 0.05cm of Digiclops. In our calibration, we
use the sum of four S at four times during and after each
pushing (Fig.6). By minimizing the total S in randomized or
genetic algorithm, we can obtain a better set of all calibrated
parameters.

B. Randomized Algorithm

1) A Steepest Descendent Method: 1. Two parameters T,
(threshold of calculation time) and 7,,, (driving distance of
random walk) are given in advance.

2. Initialize all the uncertain coefficients within their individual
intervals.

3. We calculate shape difference S between real and virtual
rheology objects.

4. In order to find all the possible neighbors, we decrease and
increase A at some of uncertain coefficients. For example, if
the number of coefficients is 8 and 16, we have 28 and 2'°
neighbors, respectively.

5. If the minimum is smaller than S obtained in step 3, we
move to the neighbor with the minimum (tie break arbitrary)
by decreasing or increasing some coefficients by A, and then
return to step 3. Otherwise, the algorithm finishes.

2) Our Randomized Algorithm: 1. We randomly select a
set of unknown coefficients and then calculate its value S as
Sran~
2. By the steepest descendent method, we get one of the local
minima, whose value is the smallest S. Then, we set S ,,, by
S. Then, if calculation time equals to or is large than T, the
algorithm ends, otherwise, move to step 3.

3. We randomly increase and decrease some of coefficients
Trqn times by A, and then calculate its S. Then, if S < §,4, is
satisfied, we return to step 2, otherwise, continued to step 3.

C. GA (Genetic Algorithm)

1. We give four parameters Gjua, Ggen, Getis G- Gind
is the number of all individuals. Each consists of calibrated
coefficients. G, is a given threshold of generation number.
If the present generation P, amounts to this, GA finishes.
G is a survival ratio of all the individuals from the present
generation to the next one (0 < G.; < 1). Finally, G, is an
arbitrary ratio of mutation.

2. We construct all individuals whose number is G;,y, which
are composed of all the calibrating coefficients. They are ran-
domly numbered within their individual intervals. Moreover,
we set the present generation Pg,, as 0.

3. We calculate shape differences S,(n = 1,2,---,Gjq) be-
tween real and virtual objects for all individuals.

4. If Pgop = Ggen is satisfied, the algorithm finishes.

5. After sorting all individuals in the order of §,, we select
higher individuals whose number is Gj,y X G¢;. Then we
eliminate the others. We call this as selection.

6. We randomly select two individuals A and B from all ones
for crossing. First of all, each of two is bit-ized, and its
crossing point is randomly selected. Secondly, we cut each
at the crossing point to generate former parts Ay and Ay,
and do latter parts By and B;. Then, one former and another
latter are combined as Ay + B;. This operation is called as
crossing. Moreover, we generate a new individual whose bits
are reversed from an original individual. This rarely occurs by
the probability G,,,. This operation is called as mutation.

Finally, G;,4 X (1 —G,j;) individuals newly appear in the next
generation by crossing and mutation (G;,g X G,j; individuals
are left from the last generation). Then, we increment P,,,.
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IV. SEVERAL COMPARATIVE RESULTS

In this section, (1) concerning to shape accuracy and com-
putation efficiency, we select the best numerical integration
method from many kinds of methods such as Runge — Kutta —
Gill, Runge — Kutta, Midpoint, BDF, Euler and Implicit —
Euler. (2) concerning to computation time, memory storage
and shape accuracy, we compare four MSD models with each
other. The model 1 is a basic voxel/lattice MSD model. In the
models 2, 3, 4, we add explained local, global, local and global
volume constant conditions in the model 1. The deformation
of virtual rheology object is calculated and visualized by a
3-D graphics software OpenGL in a personal computer (CPU:
Pentium4 3.00GHz, Main memory: 2048MB) with a 3-D
graphics acceleration board (GeForce FX 5600, 128MB).

In all models, we distinguish MSD elements in surface and
core areas of virtual rheology object to calibrate (Fig.7). The
first set is K/, Ci”rf , C;”rf , @™/ within the surface area,
and the second set is K¢, Ciore, G5, a“or* within the core
area. In addition, in the models 2 and 4, we distinguish MSD
elements on and in each voxel. That is, we categorize shortest
8 diagonal elements illustrated in Fig.3 as elements in a voxel,
and categorize the other longer 18 elements as elements on
a voxel. Therefore, the first set is K/, C‘lwf -, C;"rf -
a*f=m in each voxel within surface area, the second set is
Keoresin | Céoremin | Cgoresin - georeiny in each voxel within core
area, the third set is K*w/-on C‘f’”f —on C;’”f o asrf=ony on
each voxel within surface area, and the fourth set is K",
cioremon, C", a on each voxel within core area.
Consequently, we construct models 2° and 4’ extended from
models 2 and 4. Finally, Furthermore, in order to form a
virtual object pushed by a rigid body stably (Fig.8(a)), we
give the following intervals 50 < K*w/=in gecore=in < 3000,
100 < Kxurf—on’Kcore—on < 3000, 250 < C»[‘Wf—i”’cﬁ‘ore—in <
10000, 500 < C‘f“rf o, cireen <0 10000, 250 <
Cy" T, Cgerein < 20000, 500 < €3, C5renn < 20000,
0.3 < gswrf=in geore=in_gsurf-on gcore=on < ()7 If some of them
are too large, each element becomes unstable and consequently

the shape of rheology model is crushed as Fig.8(b).

core—on

A. Relationship between Shape Precision and Integration
Method

As mentioned in the section 2, in order to get position of
mass point, we need to solve dynamic equations (1) and (2)
including internal and external forces at the mass point. In this
paragraph, similar to cloth animations [24], [25], we compare
qualities of shape deformations by selecting many integration

SR a8t
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Fig. 7. Surface and core areas of virtual rheology object. Black and white
mass points are located on the surface and core areas, respectively. Gray voxel
and dotted line are among the core area. (a) 5 X 3 X 3 voxels, (b) 10X 6 X 6
voxels.
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Fig. 8. (a) A stable shape of rheology object. (b) An unstable shape of the
object.

methods such as Runge—Kutta—Gill, Runge—Kutta, Midpoint,
BDF, Euler and Implicit — Euler in order to solve the
equations (1) and (2). In order to keep the comparison fairness,
we fix K =500, C; = 2000, C, = 2000, a = 0.5 in the model
1 pushed by the first operation (Fig.9(a)). In addition, even
though we evaluate the difference between virtual and real
objects by S2, §3, §* (S: distance sum of captured points
between virtual and real objects), all shape deformations have
similar qualities. Here, since almost all the distances between
captured points in a real object and their ones in a virtual
object are within an interval [0.0, 0.5] cm, we always keep
the inequalities S > S > §3 > §* As shown in Table I
and Fig.10, we can see shape differences of virtual and real
rheology objects are similar in all the numerical integration
methods. We suppose the reason is that the sampling time
solving the equation is too small. As contrasted with this,
as illustrated in Table I, if the numerical integration methods
to solve the dynamics of each mass point are changed, their
calculation times are drastically altered. In results, by replacing
the Runge — Kutta method of the Euler method, we can save
calculation time to solve the differential equation about four
times. For this reason, we select the simpler method such
as Fuler, which exactly maintains shape precision by few
calculation time.
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Fig. 9. (a) 3-D view for the first pushing. (a-1) Front view in (a). (a-2)

Upper view in (a). (b) 3-D view for the second pushing. (b-1) Front view in
(b). (b-2) Upper view in (b).



TABLE I
SHAPE PRECISION AND CALCULATION TIME BY INTEGRAL METHODS FOR THE FIRST

PUSHING IN A BASIC VOXEL/LATTICE MODEL.

Compare S S? S- st Tint

indexes [em] [em?] [em?] [em*] [sec]
Runge-Kutta-Gill 2508.076 | 608.875 168.545 | 51.292 17.664
Runge-Kutta 2508.076 608.875 168.545 51.292 17.297
Midpoint 2565.494 | 633.363 177.656 | 54.221 6.939
BDF 2519.145 | 613.609 170.393 | 52.008 6.977
Euler 2518.455 | 613.325 170.280 | 51.963 6.891
Implicit-Euler 2496.485 | 603.153 165.668 | 49.534 10.297

@ () ©

(d) (e (]

Fig. 10. The virtual rheology object deformed by many integral methods.
(a) Runge-Kutta-Gill (b) Runge-Kutta (c) Midpoint (d) BDF (e) Euler (f)
Implicit-Euler.

B. Computation Complexity and Memory Storage

In the virtual 3-D graphics world, we construct a basic
voxel/lattice model called as the model 1, and build three
extended models with/without local and global volume con-
stant conditions as the models 2, 3 and 4. First of all, we
generate 2000 deformations of virtual rheology object in
simulation, which correspond to their deformations of real
rheology object in all experimental trials by 4 [s]. Therefore,
each deformation time in simulation corresponds to 2 [ms]
in experiment. Secondly in each simulation, we make their
deformations of virtual rheology object by about 8 [s] in the
models 1 and 2 or 14 [s] in the models 3 and 4 whose size
is 6 X 4 x 6. Therefore, PC and graphics acceleration board
require about 4 or 7 [ms] per each deformation (Table II).
Since they are smaller than the video-frame rate (33[msec]),
we can watch dynamic animation in real-time.

In the models 1 and 2, total time T4y for calculating
deformation almost equals to partial time 7, for integrating
many mass points, i.e., Tger = Tins. Tinr in four models directly
depends on number of mass points Ny = (Ny X Ny X N;) —
Jour — (Nx X N;) (N, Ny, N;: numbers of masses along X, Y, Z
axes, respectively, f,,: number of masses pushed by the rigid
object). As shown in Table II, since f,, = 12 is for the first
pushing under 6 X 4 X 6 model, number of masses to need the
integration is denoted as Ny = (6 X4 X 6) — 12— (6 x6) = 96.
Similarly, mass numbers to need the integration are denoted
as 704, 2272 and 5250 for 11 x 7 x 11, 16 x 10 x 16 and
21 x 13 x 21 resolutions, respectively. As described in Table
II, calculation time of each model is proportionally evaluated
by the equation Ny = (Nx X Ny X N;) — four — (Nx X N;).
Furthermore, in the models 3 and 4, we should additionally
consider time T,, to calculate volume of virtual rheology
object by summing up volumes of its polyhedrons. T,,; directly
depends on L., = (Ny—1)X (N, —1) X (N;—1). For this reason,
in the models 3 and 4, time 74,y to calculate each deformation
equals to total time Ty, and T\, i.€., Tger = Tint + Tyor.

Since numbers of mass points in four kinds of models

are almost the same, memory storage is also the same. The
memory storage m is approximately evaluated by summing mg
and my. The mass storage my directly depends on the number
of masses, and the software storage mg is determined as the
sum of C++ compiler (VC++ 6.0) and OpenGL software. It
is invariable. Using results in Table II, we calculate mg =
33[MB] (C++ compiler = 20[MB] and OpenGL = 13[MB])
and my = 12 X N[KB].

TABLE I
CALCULATION TIME [msec] AND MEMORY STORAGE [ M B] PER ONE DEFORMATION IN
PC.
Total calculation time for the first pushing [msec]

[6 x4 x6] [11x7x11] [16 x 10 x 16] [21 x 13 x 21]
(model 1) 3.617 30.211 74.578 169.282
(model 2) 4418 31.829 79.445 174.352
(model 3) 7.235 53.156 153.672 337.789
(model 4) 7.570 54.328 158.898 350.641
Deformation calculation time for the first pushing [msec]
(model 1) 2.063 15.023 47.953 117.342
(model 2) 2.494 16.470 54.608 127.637
(model 3) 5.501 37.968 129.651 290.467
(model 4) 5.820 39.141 134.482 303.230

Memory storage for the first pushing [MB]

(model 1) || 34.744 | 43.492 62.700 99.344
(model 2) || 34.240 | 43.512 62.688 99.112
(model 3) || 34.044 | 43.644 62.680 99.372
(model 4) || 34.264 | 44.884 62.904 99.168

C. Comparison between RA and GA

In this paragraph, we compare efficiencies and qualities of
RA (Randomized Algorithm) and GA (Genetic Algorithm) to
calibrate a better set of uncertain parameters in the model 1
which consists of 5 X 3 x5 voxels. Firstly, we set parameters
A =10, T,y = 168[hour] (1week), and T,,, = 100[number] in
RA. In order to calculate the sum of differences between real
and virtual rheology objects at all the captured points, we need
about 8 seconds and consequently investigate sets of uncertain
parameters, whose numbers are about 75600. Secondly, we
compare RA with GA fairly. For this purpose, we calibrate
another better set of uncertain parameters by GA. Firstly, we
set G;,4 as a small value 50. The reason is similar individuals
appear if Gy, is larger. Then, we set G.; as a small value
0.2 because of the same reason. Thirdly, we set G, as 1900.
The reason is . In RA, we check many points whose number
is about 75600. After determining G;,; = 50 and G,; = 0.2,
we always get 40 individuals in each generation. Therefore,
we should pass though 1900 generations so as to get 75600
individuals. Finally, since G,,,; should be selected as a smaller
value, we set G,,,; as 0.01.

The calibrations of eight uncertain parameters in RA and
GA are compared in Table III. The pushing operation is the
same (called as the first pushing). All calibrated parameters,
error distance and volume precision between real and virtual
rheology objects are described in Table III. Because of their
shape and volume consistencies, we understand GA is better
than RA for the calibration. The reason is as follows: RA
is a probabilistic search which randomly and sequentially
selects initial points to investigate their local minima. Then,



it finally selects the smallest value of many local minima as
a near-optimal solution. Therefore, RA consists of many local
searches. As contrasted with this, GA synchronously selects
and extends many better points in each generation. Therefore,
GA simultaneously switches global and local investigations.
As a result, GA quickly finds a hopeful area even though
search space is too huge.

TABLE III
CALIBRATION RESULTS BY RANDOMIZED AND GENETIC ALGORITHMS FOR THE FIRST

PUSHING IN MODEL1. (S: THE SUM OF ERROR DISTANCES)

The number of captured points is N = 14551

Calibration S Volume S Volume
result [em] [em?] [em] [em?]
(model 1-RA) 2442 67.35 | (model 1-GA) 2350 67.85
K C Cy a
lgf/em’]| lgfs/em®] |lgfs/cm’]

(model 1-RA) - core 2245 4970 4277 0.68
- surf 1870 3026 2526 0.47

(model 1-GA) - core 293 9988 19961 0.63
- surf 2477 561 4454 0.63

The number of points whose errors are larger than 0.25cm

first second third fourth total

(model 1-RA) 1182 922 721 737 3562
(model 1-GA) 1091 990 579 637 3297

D. Comparison between Sparse and Dense Four Models

In this paragraph, in order to check shape precision in the
progression of model resolution, we prepare two MSD models
whose sizes are 6 X 4 X 6 and 11 x 7 x 11. All calibrated
parameters, error distance and volume precision between real
and virtual rheology objects are described for models 1 ~ 4
whose sizes are 6 X4 x6 and 11x7x 11 in Table IV and Table
V, respectively. In addition, shape deformations after pushing
and releasing are illustrated in Fig.11 and Fig.12 for models
1 ~ 4’ whose sizes are 6 X4 x 6 and 11 X7 x 11, respectively.
Although all are for the second pushing operation (Fig.9(b)),
tendency is the same for the first pushing operation (Fig.9(a)).

TABLE IV
CALIBRATION RESULTS BY GENETIC ALGORITHM FOR THE SECOND PUSHING IN THREE

MODELS (S : THE SUM OF ERROR DISTANCES).

The number of captured points is N = 15372

Calibration result || (model 2) | (model 3) | (model 4) | (model 2’) | (model 4°)

S [cm] 2261 1724 1855 1831 1835
Volume [cm?] 69.62 74.97 74.49 76.30 75.94
Keo¢ [gf [em®] 2986 2994 104 220 137
cre [gfs/cm?) 508 1262 9839 1030 620
csre [gfs/cm’] 19149 12839 4071 522 1747
acre 0.66 0.70 0.70 0.60 0.60
Ksf [gf[em?] 2232 3000 1687 313 142
Cf”rf [gfs/cm’) 1980 667 559 1008 630
C;’”f [gfs/cm’] 13121 6457 9169 505 1938
a™! 0.66 0.70 0.30 0.60 0.61

K fond foxd rad

Lgf/cm®] | [gfs/cm®] | [gfs/cm®]

(model 2’) -core 2901 1163 13672 0.45

(model 2’) -surf 2880 1302 14888 0.45

(model 4’) -core 2286 920 16399 0.64

(model 4”) -surf 2301 910 16410 0.70

The number of points whose errors are larger than 0.25cm

first second third fourth total
(model 2) 486 545 910 961 2902
(model 3) 361 265 299 267 1192
(model 4) 314 563 494 426 1797
(model 27) 187 395 415 393 1390
(model 4”) 215 331 480 567 1593

TABLE V
CALIBRATION RESULTS BY GENETIC ALGORITHM FOR THE SECOND PUSHING IN THREE

MODELS (S : THE SUM OF ERROR DISTANCES).

The number of captured points is N = 15372

Calibration result || (model 2) | (model 3) | (model 4) | (model 2”) | (model 4”)
S [em] 1518 1663 1383 1506 1352
Volume [cm?) 71.14 75.16 74.58 72.88 75.64
Keoe [gf |em?] 2990 2796 1903 2424 287
Cre [gfs/em’] 3194 536 2688 4901 1961
csore [gfs/cm’] 4118 525 807 2664 5559
a“re 0.69 0.40 0.30 0.61 0.59
K [gf [em?] 1781 2704 2232 1899 1313
Cf”rf [efs/cm?] 3603 539 732 5837 3895
C;’"f [gfs/cm’) 1735 9177 3401 10606 8416
ar! 0.69 0.47 0.61 0.47 0.70
K*UX C]*UX Ci/ﬂ a*lﬂ
lgf/em®] | [gfsiem®] | [gfs/em’]
(model 2’) -core 1902 2015 1759 0.31
(model 27) -surf 236 603 19003 0.59
(model 4’) -core 117 632 1875 0.63
(model 4°) -surf 412 1300 2783 0.53
The number of points whose errors are larger than 0.25cm
first second third fourth total
(model 2) 150 111 252 291 804
(model 3) 523 263 199 212 1197
(model 4) 157 261 425 165 1008
(model 27) 219 167 232 267 885
(model 47) 258 188 168 147 761

Times differ each other in the first pushing, which left
and right edges of a rigid body contact a rheology object.
Therefore, a set of mass points around the left edge is firstly
affected by a set of external forces, and secondly another set
of mass points around the right edge is affected by another set
of external forces. Because of digitalization of our models
and time lag, all external forces are inaccurate. Moreover,
each of edges is far from any mass point in the second
pushing. For this reason, larger forces are affected at all mass
points along X=2 and Y=3, which rigid and rheology objects
encounter, relatively smaller forces are affected at all mass
points along X=1 and Y=3 or X=3 and Y=3, which rigid
and rheology objects do not encounter in 6 X 4 X 6 resolution
(Fig.9(b)). Because of discreteness of our models, it is difficult
to distribute all the external forces precisely. This imprecision
can be partially solved by increasing resolution of each model.
For this reason, all models whose voxels are 11 X7 x 11 are
more precise than these whose voxels are 6 X 4 X 6.

) © @

Fig. 11.  The sum of differences between real and virtual rheology objects
for the second pushing. (a) Real rheology object. (b),(c),(d) Virtual rheology
objects. Areas are colored by dark gray, whose errors are larger than 0.25
[cm] in the models 3, 2” and 4°.

V. CONCLUSIONS

In this paper, in order to acquire more precise deformation
of our voxel/lattice structure which consists of mass-spring-
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Fig. 12. The sum of differences between real and virtual rheology objects
for the second pushing. (a) Real rheology object. (b),(c),(d) Virtual rheology
objects. Areas are colored by dark gray, whose errors are larger than 0.25
[cm] in the models 3, 2” and 4°.

damper elements, we tried to test three ideas. First idea is
to distinguish and calibrate many types of our basic MSD
elements. Second idea is to increase volume resolution, that
is, number of voxels in a virtual rheologic object. Third
idea is to introduce two kinds of volume constant conditions,
that is, local (feed-forward) and global (feedback) ones. The
concluding remarks are as follows:

(1) The larger the number of calibrating parameters is, the
larger the calculation time to calibrate is, but the more precise
shape of the virtual rheology object is.

(2) The larger the number of voxels is, the larger the
calculation time to form is, but the more precise the shape
of virtual rheology object is.

(3) The local volume constant condition leads a feed-
forward action. This is quick but unstable. Therefore, if we
spend much time to calibrate, a virtual rheology object quickly
converges to adequate shape, otherwise, its shape is destroyed.
On the other hand, the global volume constant condition leads
a feedback action. This is slow but stable. Even though we
cannot have much time to calibrate, the virtual rheology object
frequently converges to reasonable shape. This defective point
is time consuming because of calculating the volume of virtual
rheology object.

As a result, if the model resolution is lower, we need the
global volume constant condition to converge shape of a virtual
object. Therefore, we select the model 3 as the best one in
6 X 4 x 6 resolution. Although tough calibration is necessary,
the calculation is not so large. The reason is because deforming
the virtual object is within a few milli-seconds. As contrasted
with this, if the model resolution is higher, we require much
computation costs to calibrate and deform. To save them, we
use only the local volume constant condition which is about
two times faster than the global one. For this reason, we select
the model 2 or 2’ as the best one in 11x7x11 resolution. In this
case, we spend much time to calibrate uncertain parameters
carefully. Also, we should deform a virtual object by about
thirty milli-seconds within the video-frame rate.
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Abstract— In this paper, we compare two major structures
of MSD (Mass-Spring-Damper) particle models. One is the
lattice (hexahedral) structure, and the other is the truss
(tetrahedral) structure. They (especially, the truss structure)
have been frequently used for representing elastic and/or
visco-elastic object. The MSD model efficiently calculates
shape deformation of the above materials. In addition, in
order to maintain shape precision of each deformation, we
carefully calibrate coefficients of damper and spring of Voigt
part and a coefficient of damper of the other part in the
basic MSD element under many surface points capturing
a real rheologic object. A genetic algorithm is used for
probabilistic calibration. After the comparison, we get the
following properties:

(1) The lattice structure has too many elements for calcu-
lating force propagation. Therefore, it precisely leads shape
deformation with the help of the local (feed-forward) volume
constant condition.

(2) The truss structure does not have enough elements for
propagating internal forces. Therefore, in order to keep a
reasonable volume by expanding its virtual rheology object,
we need the global (feed-back) volume constant condition.

(3) The global condition is time consuming, but can directly
control the total volume of virtual rheology object. On the
other hand, the local one is quick, but directly expands only
a part (voxel) of the virtual object. Therefore, the volume
and shape in the lattice structure with the local condition are
better than those in the truss structure including the global
one.

(4) The number of MSD elements in the lattice structure is
about two times larger than that in the truss one. Therefore,
the former calculation is about two times slower than the
latter one. As contrasted with this, the global volume constant
condition is strictly two times or more slower than the local
one. As a result, calculation time of the lattice structure with
the local condition is smaller than that of the truss structure
with the global one.

In conclusion, the lattice structure with the local volume
constant condition is the best concerning to calculation cost
and shape precision.

I. INTRODUCTION

Real-time dynamic animations of many kinds of de-
formable materials are developing because of wonderful
PC, graphics acceleration board and so on. Modeling
many types of deformable objects is indispensable in many
areas such as tele-operation, humanoid, assembly and task
planning, computer animation, game/amusement and so on.
The key trade-off occurs between calculation time and de-
formation accuracy. The performance of modern computer
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Graduate School of Engineering Science
Ritsumeikan University
Kusatsu, Shiga 525-8577, Japan
e-mail: hirai @se.ritsumei.ac.jp

and graphics hardware has made physical-based animation
in real-time. But even with today’s best hardware and
most sophisticated technique [1],[2],[3], only few hundred
elements with small deformations have been simulated
in real-time. Furthermore, the deformation is not always
precise because shape sequences of real and virtual objects
are not compared yet.

In order to model elastic or visco-elastic material,
we have usually selected one of four methods, i.e., the
mass-spring-damper (MSD) method [4],[5],[6],[7], the fi-
nite difference method (FDM) [8], the boundary element
method (BEM) [9], and the finite element method (FEM)
[10],[11],[12],[13],[14]. The computation cost and defor-
mation accuracy increase in this order. To solve such a
trade-off between computation cost and shape accuracy,
we have studied two approaches, so called fast FEM and
precise MSD approaches.

In this research, we focus on the latter approach to deal
with a rheology object. Modeling a rheology object is
more difficult than doing an elastic or visco-elastic object
because the rheology object always leaves a residual dis-
placement after pushing operation. For this reason, a rhe-
ology object has been seldom modeled except few works
[15],[16],[171,[18],[19]. Therefore, whether the modeling
is precise has not been estimated yet. Also, few papers
dealt with calibration of a virtual elastic or visco-elastic
object by many experimental data captured from its real
one [6],[7].

In this paper, we derive elasticity and/or viscosity cal-
ibrated from deformations capturing a real rheology ob-
ject [18],[19]. In this situation, we compare two MSD
models whose structure is lattice with two MSD mod-
els whose structure is truss. So far, the truss structure
[2],[10],[17],[20] has been frequently adopted against the
lattice structure [15],[16],[18],[19]. In general, the number
of MSD elements in the lattice structure is about two times
larger than that in the truss structure. For this reason, force
propagation and shape deformation are usually better in the
lattice structure. To overcome this drawback in the truss
structure, we should add the global (feed-back) volume
constant condition. Furthermore, we compare MSD lattice
structures with/without the local (feed-forward) volume
constant condition and MSD truss structures with/without
the global (feed-back) volume constant condition.



In this paper, section 2 firstly describes our lattice
structure with many basic MSD elements which consist
of Voigt and damper parts. In addition, we explain how to
calculate shape deformation and force propagation in the
structure. They are calculated by solving dynamic equation
(quadratic differential equation). In this research, we select
the classic Euler method as a numerical integration method
for the ordinary differential equation. Moreover, we explain
our truss structure with the MSD elements, and by adding
local and global volume constant conditions into the lattice
and truss structures, we mention new lattice and truss struc-
tures, respectively. Section 3 illustrates how to calibrate
uncertain parameters in Voigt and damper parts and their
length ratio. For this calibration, we use a genetic algorithm
as a probabilistic near-optimal search. In section 4, we
give several kinds of comparative experimental results to
investigate the best MSD model and its properties. Finally
in section 5, we give a few conclusions and ongoing
remarks.

II. FOUR STRUCTURES CONSIST OF MSD ELEMENTS

In this section, we explain four kinds of structures
including mass-spring-damper (MSD) elements. Each el-
ement consists of two dampers and one spring. The lattice
structure without any volume constant condition is a basic
structure with three lengths of the basic elements. In this
model, we explain how to propagate internal forces in each
rheology object. Moreover, we illustrate the truss structure
without any volume constant condition by eliminating the
longest elements from the lattice structure without any
volume constant condition. Furthermore, in order to de-
crease the shape and/or volume difference between virtual
and real rheology objects, we modify the lattice and truss
structures without any volume constant condition into the
lattice structure with the local one and the truss structure
with the global one. Here in the local condition, we add a
set of internal force to expand or reduce each voxel. Also in
the global condition, we add a set of external forces whose
sum equals to zero, which are around virtual rheology
object for maintaining the volume of real rheology object.

A. Our Element with Voigt Model and Damper

First of all, we introduce our basic MSD element which
consists of Voigt and damper parts serially (Fig.1). This
is similar to elements proposed in [15],[16]. The element
in [15] consists of Voigt and Maxcell models serially, and
that in [16] consists of Voigt model and adaptive damper
serially. The adaptive damper flexibly controls coefficient
of the damper during pushing and releasing operations.

In our basic MSD element, the larger the coefficient
K is, the stronger the elasticity is. Thus, K controls
the displacement of deformation behavior. The larger the
coefficient C is, the stronger the viscosity is. Therefore,
C1 controls the speed of behavior. Finally, the larger the
coefficient C'y is, the larger the residual displacement is.
As long as C'; is small enough, the object appears elastic
or visco-elastic property. On the other hand, if C is large
enough, the object appears plastic property. If K, C; or

(5 is too small, each element looses elastic, viscous, or
rheologic property. Finally, the initial length of basic MSD
element between neighbor mass points is denoted as 1, and
the length ratio between Voigt and damper parts is denoted
as a : 1 —a (Fig.1). If the length of Voigt part is too long,
the residual replacement does not appear. If the length of
damper part is too long, the back behavior does not appear.
To avoid such cases, we set an interval 0.3 < a < 0.7.

a l-a

C1

Fig. 1. Our basic element with two dampers and one spring.

B. A Basic Lattice (Hexahedral) Structure

A rheology object deforms in a 3-D environment. In
order to describe several kinds of shape deformations
flexibly, we firstly divide the real object into a set of
voxels, and then allocate a lot of 1-D MSD elements into
the symmetric lattice structure around each mass point
neighboring eight voxels [15],[16]. In the structure, let us
distribute mass points uniformly in a rheology object whose
intervals are the same along X, Y, and Z axes (Fig.2(a)).
Let N be the number of mass points and Moy jcc: be the
total mass of rheology object. Therefore, each mass point
is given by M = Mobj@ct/]\]. In the experiment, we use
Mopject = 864 [g], N = Ny x Ny x N, (N, Ny, N;: the
numbers of masses along X, Y, Z axes, respectively). For
example, M = about 1.02 for N = 847 = 11 x 7 x 11, or
M = about 0.15 for N = 5733 = 21 x 13 x 21.

In our experiment, a real rheology object is built by
mixing wheat flour and water. The rheology object whose
scales are 10cm x 6cm x 10cm along X, Y and Z axes,
which are horizontally and vertically two times larger than
its virtual rheology object whose scales are Scm X 3cm
x 5Scm along the axes. Therefore, the former volume (600
[em3] = water weight [g]) is eight times larger than the
latter volume (75 [cm?]). Based on this similarity, force
propagation and shape deformation of real object equals to
these of virtual one.

The elements are inserted between neighboring mass
points as illustrated in Fig.3(a). A virtual rheology object
is deformed by expanding and contracting basic elements.
Let P; ; ; be position vector corresponding to mass point
(1,7,k) (i, 7,k are integers, 1 < ¢ < N,, 1 < j < N,
and 1 < k < N,). Let us derive quadratic differential
equation of each mass at P; ; . Each internal force acting
on P; ;. by the element between P; ;. and its neighbor
Pt j+8,k+~y is denoted by Ff‘Jﬂk” For each mass, 6
shorter elements whose distance is denoted as [, 12 normal
elements whose distance is denoted as v/2I, and 8 longer
elements whose distance is denoted as /3! are located.
The unit length [ is defined as 5/(N, — 1) cm for a virtual
rheology object.

Therefore, a total internal force Fl“;tk acting on P; ;
is given by the sum of 26(= 6 + 12 + 8) internal forces



Fig. 2. (a) A real 3-D rheology object and its set of voxels. (b) The
lattice structure in the voxel model. (c) The truss structure in the voxel
model. (b-1),(c-1) The largest voxel. (b-2),(c-2) Smaller voxels whose
mass number is 3 X 3 X 3 and also voxel number is 2 X 2 X 2. (b-3),(c-3)
The smallest voxels whose mass number is 5 X 5 X 5 and also voxel
number is 4 X 4 X 4.
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Fig. 3. (a) Neighboring mass points by basic elements in the lattice

structure. (b) Neighboring mass points by basic elements in the truss
structure.

Ff‘f,}c” Moreover, if the sum of active external forces
at P; jr is denoted by F; %, we obtain the following

quadratic differential equation. This summation requires
small calculation time.

MP; ) = i + FE7y 1)

In order to calculate a next position P; ;1 (1 <1 < Ny,
1<j< Nyand 1 <k < N;) at each mass, we should
solve the above differential equation. This is done by the
relatively faster Euler method, but it is still expensive.

D DR v @
«,8,v€{—-1,0,1}
(o,,7)%(0,0,0)

Note that mass positions are fixed on surfaces of rhe-
ology object pushed by a rigid body and a whole floor.
This means the integrations by the Euler method can be
neglected.

C. A Basic Truss (Tetrahedral) Structure

As mentioned previously, a real 3-D rheology object
is expressed by a set of small voxels as its virtual one
(Fig.2(a)). Then in the last paragraph, we allocate many 1-
D MSD elements by the lattice structure in the voxel model
(Fig.2(b)). In this paragraph, we allocate many 1-D MSD
elements by the truss structure where many tetrahedrons
exist in the voxel model (Fig.2(c)). The difference between
lattice and truss structures is briefly explained as follows:
In the lattice structure, each mass point always connects
to all the neighbor points whose distances are [, v/2/ and
V3l (Fig.3(b)). On the other hand, in the truss model, each
voxel includes four smaller tetrahedrons and one larger
tetrahedron. They have many edges whose lengths are [
and v/21. Consequently, all longest pairs are eliminated,
whose distance is v/3[, and also longer pairs are partially
eliminated, whose distance is v/2[ (Fig.3(b)).

The symmetries of force propagation and shape deforma-
tion are always maintained in the lattice structure (Fig.2(b-
1),(b-2),(b-3)). As contrasted with this, any symmetry of
force propagation or shape deformation is not kept at all in
the truss structure (Fig.2(c-1)). To overcome this drawback,
we pair two voxels whose truss structures are opposite
(Fig.2(c-2),(c-3)), For this reason, in order to construct
symmetric voxel/truss structure, we prepare a set of voxels
whose N, N, and N, are set as odd numbers.

In the voxel/lattice model, we regard an arbitrary mass
pointas P (1 <i< N, 1 <5< N, 1<EkE<N,),
its neighbor mass points are denoted as Pjiq jig8 k+~y
(o, 8,7 € {—1,0,1},(«, B,7) # (0,0,0)). Therefore, in-
ternal forces between the neighbor masses are represented
as Ff‘f,}c” under two equations (1) and (2). On the contrary,
in the voxel/truss model, since each voxel includes five
tetrahedrons, the number of pairs of neighbors decreases.
For example, if i+ 7 +k is odd at an arbitrary point P; ;
(three 7, j and k are completely odd or the two are even and
one is odd), «, 0 and +y are satisfied under the following
condition:

ol + 181+ v =1 3)

For this reason, there are six pairs of neighbors whose
length is [ (Fig.4(a)). In addition, if ¢+ j 4 k is even at the
mass point F; ;. (three 4, j and k are completely even or
the two are odd and one is even), «, 3 and ~y are satisfied
under the following condition:

lal+ B[+ ] #3 “4)



For this reason, there are two kinds of MSD el-
ements whose lengths are shorter [ and longer /2l
in the voxel/truss model (Fig.4(b)). Compared with the
voxel/lattice model, there is no element whose length is
the longest /3l and also there is a few elements whose
length is the longer v/2/ in the voxel/truss model described

in Table I.
/1 |
] /
VP (b)
Fig. 4. (a) A set of MSD elements satisfied in the equation (3). (b) The

other set of these satisfied in the equation (4).

TABLE I
A COMPARISON OF NUMBERS OF MASS POINTS AND BASIC ELEMENTS
BETWEEN THE LATTICE AND TRUSS STRUCTURES.

11 x 7 x 11 resolution

number of masses | number of elements
lattice 847 8706
truss 847 4286
21 x 13 x 21 resolution
lattice 5733 65972
truss 5733 31492

D. Feed-Forward (Local) Volume Constant Condition in
the Lattice Structure

The local volume constant condition extends a voxel
during deformation by eliminating four longest elements
(whose distances are /3! cm in Fig.5(a)) and adding eight
half-length elements from its center of gravity to eight
vertices (whose distances are /3! /2cm in Fig.5(b)).

Fig. 5. Local volume constant condition: (a) Four longest elements
directly connecting two opposite vertices in a voxel. (b) Eight shorter
elements connecting from the center G, ,.¢; Of gravity of a voxel to its
eight vertices.

This technique has been already used in a MS (mass-
spring) model [21]. This controls the isotropy or anisotropy
of elastic material. This idea can be straightforwardly
extended to rheologic material controlled by a MSD (mass-
spring-damper) model. Since this needs MSD elements
whose lengths are \/3[, this can be applied for not the
voxel/truss model but the voxel/lattice model.

E. Feed-back (Global) Volume Constant Condition in the
Truss Structure

The local volume constant condition is a feed-forward
approach and thus cannot decrease the difference between

real and virtual objects directly. For this reason, the volume
of virtual object does not equal to that of real one.
Also, the local volume constant condition does not ensure
stability of shape deformation, especially if all uncertain
parameters are not well calibrated. To overcome this, we
test another volume constant condition which is similar to
[16],[22],[23].

According to the global volume constant condition based
on the Pascal’s Principle, we always add external forces
at all mass points around the surface of virtual rheology
object by minimizing the volume difference between V;,,;
and V' (V;,:: the volume of real rheology object, and V': the
volume of virtual rheology object). If V' < V4 is satisfied,
a negative unit magnitude p of external force appears
around a virtual rheology object (Fig.6(a)), otherwise, a
positive unit magnitude p of external force appears around
the object (Fig.6(b)) (V: time difference of the volume V/,
K, 0: elastic coefficient of global volume constant condi-
tion, C\,: viscous coefficient of global volume constant
condition).

p= _Kvol(v - ‘/’Lnt) - CvolV (5)
FLac
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Fig. 6. Global volume constant condition: (a) If V' < Vj,, is satisfied,
an outward external force appears around a virtual rheology object. (b)
If Vine < V is kept, an inward external force occurs around it. (c) An
external force F]f %¢ on a patch Py, is distributed into four forces Eper
of its corners.

Furthermore, concerning to a patch P}, whose number is
k, area is S, and outward unit normal vector is nZ“t. By
the global volume constant condition, there is an additional
force F/*° at a patch Py (Fig.6(c)).

The force F,{ %€ acting to the patch P is denoted as the
following equation.

F{* = pSyng"t (©)

In succession, the force F}“ is distributed into four

forces at corner masses of Pj. Therefore, the force F}’¢"
acting to each corner mass is denoted by the following
equation (z: mass number around a virtual rheology object,
Aj;: a set of all patches including the mass).

Fiver _ Z

kEA,

The total sum of all external forces at all mass points
around a virtual rheology object amounts to zero. This
means that the set of external forces around the virtual
rheology object is always zero. This means that the set
of internal forces is always constant and consequently mo-
mentum variation is completely fixed. Furthermore, as long

fac
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as two coefficients K, and C,,; are set large enough, the
volume of virtual rheology object nearly equals to that of
real rtheology object stably. These parameters should not be
calibrated at all because of the feedback property. Finally,
the global volume constant condition is categorized into
a feedback method for decreasing the volume difference
between virtual and real objects. Therefore using the global
volume constant condition, the volume of virtual object is
precisely coincident with that of real one.

ITII. CALIBRATE MANY UNCERTAIN PARAMETERS

The defective point of MSD is accuracy of force
propagation and shape deformation. To overcome this,
we calibrate many uncertain parameters of four models
by minimizing the difference between shape deformations
of real and virtual rheology objects. For this purpose,
we calibrate 16 coefficients of spring, dampers, and ratio
between Voigt and damper parts of our MSD elements
in the voxel/lattice model with the local volume constant
condition, and do 8 ones in the other three models by a
genetic algorithm (GA).

A. How to Calculate Shape Difference Between Real and
Virtual Rheology Objects

In this research, a rheology object is precisely pushed
by a rigid body located at the tip of a robotic manip-
ulator (Fig.7(a)). The deformation, that is, the sequence
of shapes is measured by two stereo vision camera Sys-
tems Digiclops and its software development kit (SDK)
Triclops (provided by Point Grey Research Inc, Canada).
Each captures about three or more thousand points as
shape of real rheology object in the real-time manner.
After capturing the shape deformation, we finally measure
how much total volume is changed before pushing and
after releasing the rheology object. For this purpose, we
use the following primitive method. First of all, we fill
a ball with water, and then drop a deformed object into
the ball (Fig.7(b)). Secondly, we gather overflowed water
and measure its weight by a precise electric balance. As a
result, we can understand volume of rheology object always
decreases by about 3 percentages.

(b)

Fig. 7.
by a rectangular rigid body located at the tip of a robotic manipulator,
and deformations of its sides are measured by two Digicrops cameras.
(b) The volume difference between an initial real rheology object and its
pushed one is measured by the overflowed water.

(a) An experiment system: A real rheology object is pushed

In order to evaluate the difference between real and
virtual rheology objects, we summarize minimum distances
from captured points to their nearest surfaces around a vir-
tual theology object. The object consists of N, x N, x N,

hexahedrons which are individually deformed from initial
cubes. Therefore, in order to evaluate the difference, we
calculate the minimum of N, x IV, x N shortest distances
for each captured point to all hexahedrons by the Lin-
Canny closest point algorithm [24], and then we calculate
the sum S of all the minimum distances for all captured
points, which are larger than the average error 0.05¢m of
Digiclops. In our calibration, we use the sum of four .S at
four times during and after each pushing operation (Fig.8).

vertical displacement (cm) ocalibrating time

10 20 30 time(s)

Fig. 8. The vertical displacement along the Y-axis in the pushing, keeping
and releasing operations described as black whole and dot lines.

(0,6,0) ' (10,6,0)

(b)
(10,0,0)

Y
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Fig. 9. (a) 3-D view for the pushing operation. (b) Front view. (c) Upper
view.

By minimizing the total S in a genetic algorithm, we
can obtain a better set of at most 16 (at least 8) Cy, Co,
K and ratio a.

B. Genetic Algorithm (GA)

1. Initialize four parameters Gindg, Ggen» Gsurs Gmut-
Ging is the number of individuals, Ggey iS a generation
threshold. G, is a survival ratio of individuals from last
generations to present ones (0 < Ggypr < 1). Gyt is a
mutation ratio (0 < Guye < 1). In addition, set present
generation Py, as 0.

2. Generate individuals whose number is G;,q4. Each
consists of calibrating parameters such as K, C; and so
on. The parameters are randomly selected within their
intervals.

3. If Pye, amounts to Ggep, this algorithm finishes.
Otherwise, evaluate and sort all individuals by shape dif-
ferences S,(n = 1,2, -+, Ginq) between real and virtual
objects for all individuals.

4. Select better individuals whose number is G;,q X
Gsyur. We call this as selection.



5. Generate a few individuals by reversing bits of their
original ones, whose number is G4 X Gpqt- This opera-
tion is called as mutation.

6. Select two individuals (A and B). Each individual
is bit-ized, and its crossing point is randomly selected.
Then, cut each at the crossing point to generate former
and latter parts (Ay and A;, or By and B;). Then, one
former and another latter are combined (Af + B;) to make
the other individuals. This is called as crossing. Finally,
after incrementing Py, we return to the step 3.

Finally, Ging X (1 — Ggy,) individuals newly appear in
the next generation by crossing or mutation (Gpqg X Gsyr
individuals are left from the last generation).

IV. COMPARATIVE RESULTS

In this section, we compare four structures with each
other concerning to computation time, memory storage and
shape accuracy. The deformation of virtual rheology object
is calculated and visualized by a 3-D graphics software
OpenGL in a personal computer (CPU: Pentium4 3.00GHz,
Main memory: 2048MB) with a 3-D graphics acceleration
board (GeForce FX 5600, 128MB).

In all structures, we distinguish MSD elements in surface
and core areas of virtual rheology object to calibrate
(Fig.10). The first set is K*urf cvrd cgurt gsurf
within the surface area, and the second set is K¢,
cyere, C5°r¢, a®r¢ within the core area. Furthermore,
in the lattice structure with the local volume constant
condition, we distinguish MSD elements on and in each
voxel. That is, we categorize shortest 8§ diagonal elements
illustrated in Fig.5 as basic elements in a voxel, and
categorize the other longer 18 elements as basic elements
on a voxel. Therefore, the first set is K54/~ Cf“rf -
C;“Tf —ingsurf—in in each voxel within surface area, the
second set is Kcore—in, Cf‘m_m, C;‘"’e_m, acre=imy in
each voxel within core area, the third set is KSur/f—on,
ggurf=on - ggurf=on - gsurf-ony on each voxel within
surface area, and the fourth set is K°°"¢—°n, C7o" ",
C5ome™0m" g™ on each voxel within core area. Finally,
so as to form a virtual object pushed by a rigid body
stably (Fig.11(a)), we give the following intervals 50 <
Ksurf—in, Kcor@—in S 3000’ 100 S Ksurf—on, [ core—on
< 3000, 250 < Cf“rf_m,Cf‘"’e_m < 10000, 500 <
Clsurf—on, Clcore—on S 10000’ 250 S C;urf—in, C;ore—in
< 20000, 500 < C;“Tf_o",Cg‘"’@_"" < 20000, 0.3 <
asurf—in, acor@—in, CLsm”f—on, qcore—on < 0.7. If some of
them are too large, each element becomes unstable and
consequently shape of virtual rheology object is crushed
as illustrated in Fig.11(b).

A. Computation Complexity and Memory Storage

In the virtual 3-D graphics world, we construct the
lattice and truss structures without any volume constant
condition, the lattice structure with the local one, and the
truss structure with the global one. First of all, we generate
2000 deformations of virtual rheology object in simulation,
which correspond to their deformations of real rheology
object in all experimental trials by 4 [s]. Therefore, each
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Fig. 10. Surface and core areas of virtual rheology object. Black and

white mass points are located on the surface and core areas, respectively.
Gray voxel and dotted line are among the core area. (a) 5 X 3 X 3 model.
(b) 10 X 6 x 6 model.

@) (b)
Fig. 11. (a) A stable shape of a rheology object. (b) An unstable shape
of the object.

deformation time in simulation corresponds to 2 [ms] in
experiment. Secondly in each simulation, we make their
deformations of virtual rheology object by about 60 [s]
in the lattice structure without any condition or 50 [s]
in the truss structure without it or 60 [s] in the lattice
structure with the local volume constant condition or 90
[s] in the truss structure with the global one, whose size
is 11 x 7 x 11. Therefore, PC and graphics acceleration
board require about 30 or 25 or 30 or 45 [ms] per each
deformation (Table II).

TABLE II
CALCULATION TIME [msec| AND MEMORY STORAGE [M B] PER ONE
DEFORMATION FOR THE PUSHING OPERATION BY OUR PC.

Total calculation time [msec

[11 x 7 x 11] | [21 x 13 x 21]
lattice str. wo. any cond. 30.727 229.094
truss str. wo. any cond. 24.039 172.758
lattice str. wi. local cond. 31.109 230.164
truss str. wi. global cond. 46.633 347.157
Deformation calculation time [msec]
lattice str. wo. any cond. 15.033 122.182
truss str. wo. any cond. 8.775 61.103
lattice str. wi. local cond. 16.093 128.683
truss str. wi. global cond. 31.239 244315
Memory storage [M B]
lattice str. wo. any cond. 44.648 99.988
truss str. wo. any cond. 44.808 100.720
lattice str. wi. local cond. 45.032 100.964
truss str. wi. global cond. 44.476 100.684

Total calculation time 7., in Table II is the sum of
deformation time T,y and the other time T, (Tear =
Taer + Tove). Tove is mainly the time to calculate Sy,
which proportionally depends on the number of voxels,
ie, (Ng —1) x (Ny —1) x (N, — 1). In the lattice and
truss structures without any volume constant condition, the
time Tjy.; for calculating deformation almost equals to
time Tj,,, for integrating quadratic differential equations at
many mass points, i.e., Tyes = Tipns. Tine in four models
directly depends on the number of our MSD elements, i.e.,



(Ng — 1) x (Ny — 1) x (N, — 1). Furthermore, in the
truss structure with the global one, we should additionally
consider time 7, to calculate the total volume of virtual
rheology object by summing up volumes of all polyhedrons
deformed from voxels. Also, T}, directly depends on
(Ngy — 1) x (Ny — 1) x (N, — 1). For this reason, only
in the truss structure with the global condition, time Ty ¢
to calculate each deformation equals to total time T,
and Tyo, i€., Tgey = Tint + Tyor. Since numbers of
mass points in four kinds of models are almost the same,
memory storage is also the same. The memory storage
m is approximately evaluated by summing my and mg.
The mass storage my directly depends on the number of
masses, and the software storage mg is determined as the
sum of C++ compiler (VC++ 6.0) and OpenGL software. It
is invariable. From Table II, we understand mg = 33[M B|
(C++ compiler = 20[M B] and OpenGL = 13[M B]) and
my =12 x N[KB] (N = N, x Ny x N,: the number of
mass points).

B. Deformation Accuracy

In this paragraph, we calibrate a better set of uncertain
parameters by a genetic algorithm (GA). Firstly, we set
Gina as a small value 50. The reason is that similar
individuals frequently appear even though G;,q is larger.
Then, we set G, as a small value 0.2 because of the
same reason. Thirdly, we set Gge, as 250 (the lattice
structure without any volume constant condition) or 360
(the truss structure without any volume constant condition)
or 250 (the lattice structure with the local volume constant
condition) or 170 (the truss structure with the global
volume constant condition) in 11 x 7 x 11 resolution. After
determining G;,q = 50 and Gy, = 0.2, we always get
40 individuals in each generation. Therefore, in order to
get 10080, 12100, 10080 and 6720 individuals, we pass
though 250, 300, 250 and 170 generations, respectively.
Thus, calibrating time by GA turns into 168 hours. Finally,
since G, should be selected as a smaller value, we set
Goue as 0.01.

All calibrated parameters, error distance and volume
precision between real and virtual rheology objects are
described for the lattice and truss structures without any
volume constant condition, the lattice structure with the
local one, and the truss structure with the global one,
whose size is 11 x 7 x 11 in Table III. In addition, shape
deformation after releasing is illustrated in Fig.12 for the
lattice and truss structures without any volume constant
condition, the lattice structure with the local one, and the
truss structure with the global one, whose size is 11 x7x11.
Every pushing operation is illustrated in Fig.8 and 9.

If a virtual rheology object modeled in the voxel/lattice
and voxel/truss models without any volume constant con-
dition is pushed by the operation, expanding the rheology
object is not enough (the volume of virtual rheology object
is extremely smaller than that of its real one. The real
volume is 72.75 [cm?] = 75 [em?] x 0.97). This means
that force propagation of a real rheology object cannot
be realized by these models themselves. This tendency is

TABLE III
CALIBRATION RESULTS BY GENETIC ALGORITHM FOR THE PUSHING
OPERATION IN FOUR STRUCTURES.

The number of captured points is N = 15372

Calibration result lattice truss lattice truss
struct. struct. struct. struct.
without without with with
local global local global
v.c.c v.c.c v.c.c v.c.c
S [em] 2201 2583 1506 1908
Volume [em?] 70.56 69.28 72.88 74.83
K°°m¢ [gf /em®] 2946 177 2424 3000
ceere [gfs/cm®) 9992 8653 4901 500
csere lgfs/em?) 19598 5395 2664 14798
a®ore 0.69 0.34 0.61 0.70
K5 [gf /em?] 2968 2717 1899 2997
ol gfs/em®] 768 519 5837 2941
C;”Tf lgfs/em?) 19883 582 10606 19998
a’urf 0.69 0.68 0.47 0.70
K" crm c, a—in
lgf /em®] | [gfs/em?] | lgfs/cm?]
lattice st. wi. Lv.c.c - core 1902 2015 1759 0.31
lattice st. wi. L.v.c.c - surf 236 603 19003 0.59
The number of captured points whose errors are more than 0.25cm
first second third fourth total
lattice st. wo. L.v.c.c 700 623 584 547 2454
truss st. wo. g.v.c.c 1076 1043 785 800 3704
lattice st. wi. L.v.c.c 219 167 232 267 885
truss st. wi. g.v.c.c 668 439 343 369 1819

remarkable especially in the voxel/truss model because its
number of MSD elements is smaller than the number of
them in the voxel/lattice model. To overcome this defective
point, we add local and global volume constant conditions
into the voxel/lattice and voxel/truss models, respectively.
The reason is as follows: the local (feed-forward) condition
cannot be applied for the voxel/truss model and also the
global (feed-back) condition is about two times shower
than the local (feed-forward) one. The feed-back condition
strictly leads the volume of a virtual rheology object to that
of a real one. For this reason, the volume of voxel/truss
model with the feed-back condition always converges to
that of a real rheology object (Table III). However, the
shape of voxel/truss model with the feed-back condition
is not always coincident to that of a real rheology object
(Fig.12 and Table III). This perhaps occurs by eliminating
four MSD elements whose lengths are the longest. This
problem can be solved in the lattice structure with the local
volume constant condition because it reasonably expands
each voxel to get shape of a rheology object which is quite
similar to shape of a real one.

V. CONCLUSIONS

In this paper, we compared lattice and truss structures in
the same voxel MSD model. The lattice structure excludes
and includes the local volume constant condition, and also
the truss structure excludes and includes the global volume
constant condition. The concluding remarks are as follows:

(1) The smaller order of differences between volumes
and shapes of virtual and real rheology objects during
the deformation is as follows: (lattice structure with the
local volume constant condition) > (truss structure with
the global volume constant condition) > (lattice structure
without the local volume constant condition) > (truss
structure without the global volume constant condition).
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Deformation differences between real and virtual rheology objects for the pushing operation. (a) Real rheology object. (b),(c),(d),(e) Virtual

rheology objects. Areas are colored by dark gray, whose errors are larger than 0.25 [cm] in the lattice and truss structures without any volume constant
condition, the lattice structure with the local one, and the truss structure with the global one.

(2) The smaller order of calculation costs is as fol-
lows: (truss structure without the global volume constant
condition) > (lattice structure without the local volume
constant condition) > (lattice structure with the local
volume constant condition) > (truss structure with the
global volume constant condition).

(3) In consequence, (lattice structure with the local
volume constant condition) is the best structure in the real-
time dynamic animation.

In future, we try to compare another structure and/or
basic MSD element with the proposed ones
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Dynamic Modeling of Rheological Deformation
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We describe continua modeling of a rheologically deformable object. Rheological 2D deformation is formulated
based on continua modeling. We show a simple simulation to demonstrate the modeling capability.

Key Words: rheology, modeling, deformation, continua, dynamic

1. Introduction

Most food and biological tissue show rheological na-
ture in their deformation. Modeling and identification
of these rheologically deformable objects are needed in
virtual reality, especially, surgery simulation and mas-
tication simulation. We have applied a particle-based
approach to the modeling of rheological objects (). Un-
fortunately, physical meaning of model parameters is
unclear in the particle-based approach, resulting the d-
ifficulty in identification of model parameters. Note that
continua modeling stands on a clear foundation. In this
paper, we apply the continua modeling to 2D rheological
deformation to build a dynamic model of a rheological
object.

2. Rheological objects

Objects deform in response to forces applied to the
objects. Objects can be categorized into three groups
with respect to their deformation. Assume that a nat-
ural shape of an object is as given in Figure 1-(a). On
applying external forces, the object deforms as in Fig-
ure 1-(b). Let us release the applied force and examine
the stable shape after the release. Deformation of wvis-
coelastic objects is completely lost and their stable shape
coincides with their natural shape, as illustrated in Fig-
ure 1-(c). Namely, viscoelastic objects have no residual
deformation. Deformation of plastic objects complete-
ly remains and their stable shape coincides with their
deformed shape under the applied forces, as shown in
Figure 1-(d). Namely, plastic objects have no bounc-
ing deformation. Objects with residual deformation and
bouncing deformation are referred to as rheological 0b-
jects. Deformation of rheological objects is partially lost
after the applied forces are released, as illustrated in Fig-
ure 1-(e). Various objects including foods and tissues
are categorized into rheological objects.

3. Dynamic modeling of 2D rheological object

Let o be a pseudo stress vector and € be a pseudo s-
train vector. Stress-strain relationship of 2D rheological
deformation is formulated as follows:

o(t)= /0 R(t—t)e(t')dt, (1)

where 3 x 3 matrix R(t —t') is referred to as a relazation
matriz, which determines the nature of a 2D rheologi-
cal deformation. The relaxation matrix of 2D isotropic
rheological deformation is formulated as

Rt —t)=r@—t)Ix+r,(t—1t), (2)

000000 [No.04-400000000000000000°0400000
2A1-H-7(1)

[
(b) deformed shape

= =

(c) viscoelastic  (d) plastic  (e) rheological

(a) natural shape

Fig.1  Viscoelastic object, plastic object, and
rheological object

where

/\cla
ra(t—1t) = /\clanp{)\Vis(tt/)},

Mcla
Llela €XP {— T (t — t’)} )

Elasticity of the object is specified by two elastic moduli
el and peta while its viscosity is specified by two vis-
cous moduli A** and p¥'*®. Matrices I, and I, are matrix
representations of isotropic tensors, which are given as
follows in 2D deformation:

ru(t—1t")

110 2.0 0
Li={110]|, IL,=,0 20
00 0 00 1

The stress-strain relationship can be converted into
a relationship between a set of forces applied to nodal
points and a set of displacements of the points. Let uy
be a set of displacements of nodal points. Let J) and
J,, are connection matrices, which can be geometrically
determined by object coordinate components of nodal
points. Replacing I by Jy, I, by J,, and € by uy in
the stress-strain relationship (1) of a rheological object
yields a set of rheological forces applied to nodal points
as follows:

rheological force = Jywy + J,w,, (3)

where

t /\ela
w = Adaexp{ W(tt')} (1)
0
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t ‘ucla
we = | uclaexp{mm(tt’)} () dt'
0

Let M be an inertia matrix and f be a set of external
forces applied to nodal points. Let us describe a set of
geometric constraints imposed on the nodal points by
ATuny = b. The number of columns of matrix A is
equal to the number of geometric constraints. Let A be
a set of constraint forces corresponding to the geometric
constraints. A set of dynamic equations of nodal points
is then given by

—(Hwx + Jywy) + f + AN — Miy = o.

Applying the constraint stabilization method ®) to the
constraints specified by angular velocity w, system dy-
namic equations are described as follows:

uy = YN,
Moy — AN = —J/\W)\—Ju’wu—l-f,
7AT'1')N = AT(2W’UN +w2uN),
ela .
wy = 7)\visw)‘+/\cavN’
ela |
w, = ———w,+p N,
Consequently,
1 UN
M —A UN
—AT A
1 w)
1 w,
- o -

—JHhw)y — J#w# + f
AT Quwoy + wiuy)

)\ela ela
—Svis WA + A UN
ela
12 ela

7Fw pt UN
Note that the above linear equation is solvable since the
matrix is regular, implying that we can sketch uy, vy,
wy, and w, using numerical solver such as the Euler
method or the Runge-Kutta method.

4. Simulation

Let us apply the dynamic model of 2D rheologi-
cal deformation to a 2D beam illustrated in Figure
2. The beam involves 10 nodal points and 8 trian-
gles. Edge PoP5 is affixed on a wall. Uniform pressure
P = [P,, P,])7 is applied over an edge P4Pg. Values of
elastic moduli are Aeja = 7.0, el = 5.0, values of vis-
cous moduli are Ayis = 4.0, pyis = 2.0, and area density
is given by p = 0.2. Pressure P = [10,0]7 is applied
during the first 1 second. After 1 second, no pressure is
applied on the right edge.

Figure 3 shows a successive shape of the deforming ob-
ject. As shown in the figure, the beam extends during
the first 1 second and shrinks after the applied pressure
is released. This implies that the simulation describes
the rheological deformation of the beam. Deformation
along the vertical axis is caused by non-uniform arrange-
ment of triangles. Residual forces wy and w, converge
to zero as plotted in Figure 4.

Po P1 P2 P3 Py

Fig.2 Two-dimensional rheological beam
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Fig.3 Simulation of 2D rheological deformation
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Fig.4 Residual forces

5. Conclusion

We have applied the continua modeling to rheologi-
cal deformation and have built a dynamic model of a
2D rheological object. Experimental evaluation will be
studied soon.
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Chapter 5

Continuous Modeling of
Inelastic Deformation

5.1 Viscoplastic Deformation

5.1.1 Maxwell model

Let us formulate viscoplastic deformation of an object. Simple viscoplastic
deformation can be described by Maxwell model illustrated in Figure 5.1.
Maxwell model consists of an elastic element and and a viscous element
connected in serial. Let F be Young’s modulus, which represents the elastic
element, and ¢ be viscous modulus, which characterizes the viscous element.
Let €® and &V be strains at the elastic and viscous elements. Let ¢ be
strain of the Maxwell model and o be stress applied to the model. Strain
€ coincides to the sum of strains at the two elements. Stress o is equal to
the stress caused by the elastic element as well as the stress caused by the
viscous element. That is,

e = 8ela + €v1s’

o= Ee™? o =c.

From the above equations, we have the following first order differential equa-
tion:

0+ —o = E¢.
c
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E c

—\/N\ M=o
Figure 5.1: Maxwell model of viscoplastic deformation

Solving the above differential equation, stress at time ¢ is described as follows
in a convolution form:

/Ee’E(tt (t') dt'. (5.1)

In general, .
o(t) :/O r(t—1t)e(t)dt. (5.2)

Function r(t — t') is referred to as a relazation function.

Let us reformulate eq.(5.1) using Laplace transform. Let o(s), e(s),
ela(s), and e,5(s) are Laplace transforms of o(t), e(t), e%2(t), and &"(¢).
Then, we have

e(s) = e (s) + "%(s), |
o(s) = Ee¥™(s), o(s) = cse"(s).

From the above equations, we have

o(s) = £

ST R se(s).

Applying the inverse Laplace transform to the above equation successfully
yields eq.(5.1).

5.1.2 Deformation of 1D viscoplastic beam

Let us apply finite element approach to the deformation of 1D viscoplastic
beam. The initial length of the beam is given by L. Assume that its cross-
sectional area A is constant. The left end point of the beam is fixed to
space while an external force f(t) is applied to its right end point. Divide
region [0, L] into 4 regions with constant intervals specified by h. A set
of displacements at five nodal points is given in a vector form by uy =
(g, u, ug, uz, ug] "t
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Recall that the elastic deformation is characterized by Young’s modulus
E, which defines a stress-strain relationship: ¢ = Fe. Finite element ap-
proximation yields a set of elastic forces applied to nodal points, which is
described as Kuy in Section 3.2.2. Note that a set of elastic forces applied
to nodal points is reformulated as

elastic force = E Juy

where

Consequently, replacing strain € in the stress-strain relationship by Juy
yields a set of elastic forces applied to nodal points. Note that matrix J
can be determined by geometric quantities alone. Matrix J is time-invariant
and includes no physical parameters.

Recall that a stress-strain relationship in viscoplastic deformation is de-
scribed by eq.(5.1). Thus, replacing strain ¢ in the equation by Juy, we can
derive a set of viscoplastic forces applied to nodal points as follows:

t /
viscoplastic force = / Ee= 1) Jax(t) dt’.
0
Let us introduce the following vector:
t /
w = / EBe =) gy (') dt'.
0

A set of viscoplastic forces applied to nodal points is then simply described
as

viscoplastic force = Jw.

Introduce the velocity vector vy = un and replacing elastic force Kuy in
eq.(3.18) by the viscoplastic force given in the above equation, a set of dy-
namic equations of nodal points is described as follows:

—Jw+ Aa+ f — Moy = 0. (5.3)
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where a = [1,0,0,0,0]T and f = [0,0,0,0, f(¢)]. Lagrange multiplier A
denotes the magnitude of a constraint force corresponding to a geometric
constraint a®uy = 0. Differentiating w with respect to time ¢, we have the
following equation:

E
w=——w -+ EUN = —w + E’UN.
C C

Applying the CSM to a geometric constraint aTuy = 0 yields the following
differential equation:

aliix + a’ 2wy + wiuy) = 0.

Consequently, the equations of motion and the above differential equations
can be described as follows:

'l:l’N = 7N,
M’iJN —a\ = —Jw+ f,
—aTvy = a'(2wuy +wiuy), (5.4)
w = —w+ E’UN.
c
Namely,
I ’l:l,N UN
M —a UN . —Jw + f 55
—aT | aT(Zw'UN + wiuy) (5.5)
I w —%w + By

Note that the above linear equation is solvable since the matrix is regular,
implying that we can compute iy, vy, and w. As a result, we can sketch uy;,
vy, and w using the Euler method or the Runge-Kutta method. In addition,
as the matrix in the above equation is symmetric and block diagonal, we can
compute its inverse matrix numerically in an efficient manner.

5.2 Rheological Deformation

5.2.1 Three-element model

Let us formulate rheological deformation of an object. Simple rheological
deformation can be described by three-element model illustrated in Figure
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Figure 5.2: Three-element model of rheological deformation

5.2. Three-element model consists of a Voigt element and a viscous element
connected in serial. Let F and ¢; be Young’s modulus of an elastic element
and viscous modulus in the Voigt element. Let ¢y be viscous modulus of
the viscous element. Let £'#' and "' be strains at the Voigt and viscous
elements. Let € be strain of the three-element model and o be stress applied
to the model. Strain € coincides to the sum of strains at the two elements.
Stress o is equal to the stress caused by the Voigt element as well as the
stress caused by the viscous element. That is,

e = 6vmgt + 8Vls7

o= Egvmgt + Clévmgt’ o= CQéVlS‘

From the above equations, we have the following first order differential equa-

tion on stress o:
. E C1Cy .. Ecy .
o+ o= €+ .
C1 + Co c1+ ¢ C1 + Co

Solving the above differential equation, stress at time ¢ is described as follows
in a convolution form:

o) = [ et — ) £t at (5.6)

where

E By d
r(t — t/) — ClTCQCQe C1-‘1?02 (=) (1 —+ %&) . (57)

Let us reformulate eqgs.(5.6) and (5.7) using Laplace transform. Let o(s),
g(s), €"8%(s), and e,(s) are Laplace transforms of o(t), (t), €*€'(¢), and
gV5(t). Then, we have

8(8) — 8voigt(s) + gviS(S)’
0(s) = B8 (s) 4 c156"8(s), 0 (s) = cpse"(s).
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From the above equations, we have

Co

o(s) = (01 + 02> s+ E/j(Ecl + o) (1 + C_Els) 5e(s)-

Applying the inverse Laplace transform to the above equation successfully
yields egs.(5.6) and (5.7).

5.2.2 Deformation of 1D rheological beam

Let us apply finite element approach to the deformation of 1D rheological
beam. The initial length of the beam is given by L. Assume that its cross-
sectional area A is constant. The left end point of the beam is fixed to
space while an external force f(t) is applied to its right end point. Divide
region [0, L] into 4 regions with constant intervals specified by h. A set
of displacements at five nodal points is given in a vector form by uy =
(g, u, ug, uz, ug] "t

Recall that a stress-strain relationship in rheological deformation is de-
scribed by eq.(5.6). Thus, replacing strain ¢ in the equation by Juy, we can
derive a set of rheological forces applied to nodal points as follows:

¢
rheological force = / r(t —t') Jux(t') dt’
0

t ECQ ——E (¢ C1 d . / /
= e1tez 1+—=—1|J t') dt'.
/O 1+ ¢ c + Edt UN( )

Let us introduce the following vector:

t Ecy __E_ 4y ( p 1. ) / c1Ca .
w = ————e cate un(t) + =un(t) | dt' — uy.
/O C1 + Co N( ) E N( ) 1+ ¢ N

A set of rheological forces applied to nodal points is then described as

rheological force = J <w + Qo ’iLN> )
1+ Co

Introducing the velocity vector vy = 4N and replacing elastic force Kuy
in eq.(3.18) by the rheological force given in the above equation, a set of
dynamic equations of nodal points is described as follows:

C1C2

—J ('w + ’il,N> +Xa+ f—Moy=0. (5.8)

C1 +CQ
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Differentiating w with respect to time ¢, we have the following equation:
E ECQ
w +
Cc1 + C 1+ Co

w=— UN.-

Consequently, the equations of motion and the above differential equations
can be described as follows:

'il’N = 7n,
Moy —a) = —Jw+ 22 p0) + f,
C1 + C
—a’oy = a'(2uuy + wiuy), (5.9)
w = — w — CovN).
Cc1 + Co 2N
Namely,
1 (N UN
c16
M —a oy | | Tt gEg N+ f (5.10)
—a’ A a’(2wuy + wuy) '
1 w

E
“ar g (W evN)

Note that the above linear equation is solvable since the matrix is regular,
implying that we can compute uy, vy, and w. As a result, we can sketch uy,
vy, and w using the Euler method or the Runge-Kutta method. In addition,
as the matrix in the above equation is symmetric and block diagonal, we can
compute its inverse matrix numerically in an efficient manner.

5.3 Multi-dimensional Inelastic Deformation

5.3.1 Deformation models

Recall that the stress-strain relationship of an elastic object can be speci-
fied by a constant E. In addition, 2D isotropic elastic deformation can be
formulated as follows:

o= (A+pl,)e (5.11)
where A and p denote Lamé’s constants and
110 2 00
=110}, I,=]020 (5.12)
000 0 01
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Matrices I and I, originate from the isotropy of the object deformation.
Elastic nature of a deformable object can be specified by two constants: A
and p. These constants determine normal elasticity and shear elasticity.

Recall that the stress-strain relationship of a viscoelastic object can be
specified by an operator: E + ¢d/dt. From the above observation, replacing
two elastic constants in eq.(5.11) by two viscoelastic operators yields 2D
isotropic viscoelastic deformation as follows:

o= (A+pl,)e (5.13)

where

A = /\ela + )\VIS%7 = Mela + ,U,VIS%.

Two constants A and €' specify elasticity of the object while AV and p¥'

describe its viscosity. Operator A+ \¥8d /dt characterizes normal viscoelas-

ticity of the object while its shear viscoelasticity is described in p®#+p¥isd /dt.
Recall that the stress-strain relationship of a viscoplastic object can be

specified by a relaxation function r(#' —t) and eq.(5.2). Then, 2D viscoplastic

deformation can be described as follows:
t
o(t) = / R(t — ) &(t') (5.14)
0

where 3 x 3 matrix R(t — t') is referred to as a relazation matriz, which
determines the nature of a 2D viscoplastic deformation. Replacing two elastic
constants in eq.(5.11) by two relaxation functions yields a relaxation matrix
of 2D isotropic viscoplastic deformation:

Rt —t)=r\t—=tI\+r,(t—t)I, (5.15)

where

ela
’I“)\(t—t,) _ )\elaexp{_ivis(t_t/)},

Iuela
ru(t—t) = pexp {— —(t — t/)} :
ILLVIS

vis

Two constants A and p€'* specify elasticity of the object while AV and
describe its plasticity. Relaxation function r(t — t') characterizes normal
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viscoplasticity of the object while its shear viscoplasticity is described in
ru(t—1t).

Recall that the stress-strain relationship of a rheological object can be
specified by a relaxation function r(#' —t) and eq.(5.6). Replacing two elastic
constants in eq.(5.11) by two relaxation functions yields a relaxation matrix
of 2D isotropic rheological deformation:

Rt —t) =@ —t) I+ rt — 1), (5.16)
where
)\ela)\vis ela )\vis d
rheo / 2 / 1
L5Y ( ) )\\1/1s + )\\2/1s Xp { )\\1/1s + )\\2/15( )} ( )\ela dt)

ela ,, vis ela vis d

rzheo(t - t/) = f/iis IUZ vis exp {_ vislu vis (t - t/)} <1 + Iuila _> '
P+ P+ pe dt

Two constants A°® and p®® specify elasticity of the object, AV and p}®

vis

describe its viscosity, and Ay and py® show its plasticity. Relaxation function
riheo(¢ — ') characterizes normal viscoplasticity of the object while its shear
viscoplasticity is described in ri*°(t — t').

The stress-strain relationship can be converted into a relationship between
a set of forces applied to nodal points and a set of displacements of the points.
As mentioned in Section 4.1.3, a set of elastic forces applied to nodal points

is given by
elastic force = (AJ)\ + pJ,)ux,

where J) and J, are geometric matrices determined by object coordinate
components of nodal points. The above equation suggests that replacing I
by Jy, I, by J,, and € by uy in the stress-strain relationship (5.11) of an
elastic object yields the elastic force set.

From the above observation, replacing I by Jy, I, by J,, and € by ux
in the stress-strain relationship (5.13) of a viscoelastic object yields a set of
viscoelastic forces applied to nodal points as follows:

viscoelastic force = Jy(A\uy + A"Sdy)
+ (P + gV ay). (5.17)

Replacing Iy by Jy, I, by J,,, and € by uy in the stress-strain relationship
(5.14) of a viscoplastic object yields a set of viscoelastic forces applied to
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nodal points as follows:
¢
viscoplastic force = Jy / ra(t —t") ux(t') dt’
0
t
+ JM/ ru(t—t') an(t’) dt'. (5.18)
0

Replacing 7y by 7" and 7, by 7/ in the above equation yields a set of

rheological forces applied to nodal points as follows:
t
rheological force = J, / et — 1) an(t) dt’
0
t
+ J, / rreo(t —t') ax(t') dt’. (5.19)
0

5.3.2 Computing 2D /3D viscoplastic deformation

Let us derive the dynamic equation of a 2D viscoplastic deformation. Let us
introduce the following vectors:

t )\ela
wy = /0 2\ exp {_)\vis (t — t’)} ux(t') dt’,

t ela
wy = | p exp {—'Z . (t—t/)} un(t') dt'.

Vectors wy and w, are referred to as normal residual displacement vector
and shear residual displacement vector. A set of viscoplastic forces applied
to nodal points is then simply described as

viscoplastic force = Jywy + J,w,,.

Introduce the velocity vector vy = 4y and replacing elastic force Kuy in
eq.(4.18) by the viscoplastic force given in the above equation, a set of dy-
namic equations of nodal points is described as follows:

—(waA + J“'w“) + f + AN — Moy = 0,

where A denotes a set of Lagrange multipliers corresponding to geometric
constraints ATuy = 0 and f represents a set of external forces applied to
the nodal points. Note that Lagrange multipliers describe the magnitude of
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constraint forces corresponding to individual geometric constraints. Differ-
entiating wy and w, with respect to time ¢, we have the following equations:

ela )\ela

o ela, __ ela

wy = )\viswA+)‘ N /\visw,\—ir)\ N,
ela ela

. K ela,- ela

w“ = —Fw“_}‘/,b uN = —Fw“—}_/,b UN.-

Applying the CSM to a set of geometric constraints ATuy = 0 yields the
following differential equation:

Aoy + AT (2woy + wluy) = 0.

Consequently, the equations of motion and the above differential equations
can be described as follows:

'il’N = 7n,
Moy — AN = _JAwA_Juwu+fa
—Atoy = AT(2uuy + wiuy),
ela
Wy =~ pwa ATy (5.20)
ela
w, = —%'wu + oy,
Namely,
. [ VN ]
I Q:I’N —JAw,\—Juw,an
]‘,\iT —A IUAN AT(QW’UN -+ w2uN) (5 21)
_ = ela . .
I W, —%'w,\ + Nelagy
. ela
I w, _,l%wu + ,uela’UN

Note that the above linear equation is solvable since the matrix is regu-
lar, implying that we can compute uy, ¥y, wy, and w,. As a result, we
can sketch u, v, w,, and w, using the Euler method or the Runge-Kutta
method. In addition, as the matrix in the above equation is symmetric and
block diagonal, we can compute its inverse matrix numerically in an efficient
manner.
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We can compute a set of viscoplastic forces given in Jywy+ J,w, without
constructing total connection matrices Jy and J,. Note that viscoplastic
forces applied to nodal points P;, P;, and Pj caused by the deformation of
triangle T,, = AP;P;Py are approximated as follows:

P i i
fi ik w ik wy,

P | _ 74, J 1,5 J
fz%- = J, w2 + JN wz ,
fk w) wu

where J)i\’j * and Jf;j’k are partial connection matrices given in eqs.(4.10) and
(4.11). Vectors w) and w!, denote normal and shear residual displacement
vectors at nodal point P;. Summing up the contributions of all triangles to
viscoplastic forces, we can obtain a set of viscoplastic forces applied to nodal
points.

Example Let us demonstrate the formulation of 2D viscoplastic deforma-
tion by taking an example illustrated in Figure 4.6. A square shows isotropic
viscoplasticity characterized by A%, AV ;€12 and ;¥ in its deformation.
Displacement vector and velocity vector are described as

vis

Uo Vo
u; (251
| w2 | V2
uN = us |’ UN = Vs
Uy Uy

| Us | L Us |

Normal and shear residual displacement vectors are described by

- 0 - -0 -
o ol
“ Oy
w; | wy
Wy = 3 | wy 3
w:} w;,
4
w) w),
5 5
L w}\ _ L wu _
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Recall that partial connection matrices are given as

0,1,3 _ 12,5
ST =y

0,1,3 _ 71,25 __
JOL3 = JL25 =

-1
-1

o O

e}

[
—_ ==

,_.
|

|
oN — oo —

OflW = = OO Ol =

1]
N — | —

143 _ 12,54
ST =y

1
1,43 _ 71254 _ -
‘]u o ‘]u o 2

A set of viscoplastic forces applied to nodal points Py through Ps is then

formulated as follows:

e}

)

o
(.

e}

—_| = =

nodal viscoplastic forces =

— Ol =O = OO

[ £
fi

b
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Figure 5.3: Computation of 2D viscoplastic deformation using FEM

where

4

0,1,3
Iy

_ 143
‘]>\

_ gl24
‘])\

2,5,4
Jy

0,1,3
+ Ju

1,4,3
+ JM

1,2,4
+ Ju

2,5,4
+ Ju

EEE EEE EEE €& &
TRTOEN TARENEFR TWEkRE - TWEFREO

Figure 5.3 demonstrates 2D Maxwell deformation.
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(d) 20s (e) 25s (f) 30s

Figure 5.4: Computed stress in 2D viscoplastic deformation

moduli are £ = 300 and ¢ = 500. Poisson ratios for the moduli are given by
1% = (0.35 and vV = 0.35. As shown in the figure, finite element approach
can simulate viscoplastic deformation. Figure 5.4 denotes the stress imposed
on individual triangles. Note that the stress is relaxed after the contact
between the rigid bar and the elastic object is lost.

5.3.3 Computing 2D /3D rheological deformation

Let us derive the dynamic equation of a 2D rheological deformation. Let us
introduce the following vectors:

is la is g fa
t )\ela )\\2/15 _ /\vi;\i:vis (t—t') ) )\\1/15 B , , )\\1/15 )\\2/15

A= vis vis e ! ? un + ela UN (t ) dt’ — vis vis U,
0 )\1 + )\2 )\ )\1 + )\2

ela, vis el vis vis, ,vis

t _ 4!
o ILL MZ Hvis+uvis (t 3 ) ( . ,LLl . ) / / //Ll ILLQ
w, = vis vis € ! 2 un + un (t ) dt T vis vis N
g 0 1+ [y cla j25 54 j25 S

A set of rheological forces applied to nodal points is then simply described
as

rheological force = J, (wA + )\ViSuN) +J, (wu + /ﬂisuN) )

where AV = AVSAYS/(AYS + AYS) and p"™ = pySus®/(ud™ + p3®). Introduce
the velocity vector vy = @y and replacing elastic force Kuy in eq.(4.18) by

169



the rheological force given in the above equation, a set of dynamic equations
of nodal points is described as follows:

- {J)\ (w)\ + )\vist) -+ ‘]N (wu + ,UViS’UN)} -+ f -+ AN — M’UN = 0,

where A denotes a set of Lagrange multipliers corresponding to geometric
constraints ATuy = 0 and f represents a set of external forces applied to
the nodal points. Differentiating w, and w,, with respect to time ¢, we have
the following equations:

)\ela )
w)\ = —Too Vo \W) — AVIS'UN
/\\1/1s + /\\2/1s( 2 )7
la
. Me vis
Wy = (wy, — p13°x).

P A+ ps®
Applying the CSM to a set of geometric constraints ATux = 0 yields dif-
ferential equations. Consequently, the equations of motion and the above
differential equations can be described as follows:

’l:l;N = 7N,
M’iJN — A\ = —(]>\ (’lUA -+ )\Vis’UN) — JM (’lU“ + Mvist) + f,
—Atoy = AT(2uun + wiuy),
) )\ela s
Wy = R g (WA AN, (5.22)
. luela vis
Wy = e (W — i on).
g [ ! g ?
Namely,
[ 1 [ an
M A UN
_AT A | =
1 w)
L I || wy
_ on i

—Jy (w)\ + )\vist) —J, (wu + uvist) L f
AT 2woy + wiuy)

)\ela . (523)
o _ — )\Vis
)\'ills _';)\\2/15 (’U))\ 2 UN)
_ Hea w, — vis
vi Vi Mo UN)-
i 0 S T 1y s( 1 2 ) ]
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Note that the above linear equation is solvable since the matrix is regu-
lar, implying that we can compute uy, ¥y, wy, and w,. As a result, we
can sketch u, v, w,, and w, using the Euler method or the Runge-Kutta
method. In addition, as the matrix in the above equation is symmetric and
block diagonal, we can compute its inverse matrix numerically in an efficient
manner.

We can compute a set of rheological forces given in Jy(wy + A\VSvy) +
Ju(w, + p"Svy) without construcing total connection matrices Jy and J,.
Note that rheological forces applied to nodal points P;, P;, and P}, caused
by the deformation of triangle T, = AP,;P;Py are approximated as follows:

fi w) v;
il = TR wd | A | v,
bt | w) | [ vk |
+ J;,j,k wi + IUVIS v; ’
[ w), | [ vk |

where Ji7* and Ji7k are partial connection matrices given in eqgs.(4.10) and
(4.11). Summing up the contributions of all triangles to rheological forces,
we can obtain a set of viscoplastic forces applied to nodal points.

Example Let us demonstrate the formulation of 2D rheological deforma-
tion by taking an example illustrated in Figure 4.6. A square shows isotropic
rheological deformation characterized by A&, Ay \yis - pela’vis and pyis,
A set of viscoplastic forces applied to nodal points Py through Py is then

formulated as follows:

_ f§ 1 2 _
N +f% \
nodal rheological forces = 0 1 Fa +13 ,
s+l o s
fi +Fi +f§
L 5 4
where
0 [ w | Yo
Ol = 0V wl | A vy
3 | wy U3
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Figure 5.5: Computation of 2D rheological deformation using FEM

w, Vg
0,1,3 1 vis
-+ Ju’ 'wg —f-/L V1 ,
L Wy L Vs ]
1 r 1 7 B T
1 1,4,3 W i U1
le — J)\, ) wi +)\v1s vy
1 3
3 L WA ] L U3
-1 - -
'wu V1
1,4,3 4 vis
+ J w, | +u vy ,
3
| W, | L Us |

and so on.

Figure 5.5 demonstrates 2D three-element deformation. Elastic and vis-
cous moduli are £ = 30, ¢; = 20, and ¢; = 500. Poisson ratios for the
moduli are given by v = 0.35, v} = 0.35, and 1§ = 0.35. As shown
in the figure, finite element approach can simulate rheological deformation.
Figure 5.6 denotes the stress imposed on individual triangles. Note that the
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Figure 5.6: Computed stress in 2D rheological deformation

stress is relaxed after the contact between the rigid bar and the elastic object
is lost.
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